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Abstract— This paper summarizes recent results on the mul-
tiple antenna broadcast (downlink) channel with finite rate
feedback of channel state information from each receiver. In
this model, the receivers are assumed to have perfect chan-
nel knowledge, while the transmitter gains channel knowledge
through a finite rate feedback channel from each receiver. The
SNR degradation as a function of the feedback rate is computed,
as is the feedback rate scaling required to achieve throughput
close to that with perfect CSIT. Additionally, it is shown that a
small number of antennas per receiver can be used to significantly
reduce this required feedback load. Finally, the potentialmulti-
user diversity in finite-rate feedback systems with a large number
of users is studied.

I. I NTRODUCTION

In multiple antenna broadcast (downlink) channels, capacity
can be tremendously increased by adding antennas at only the
access point (transmitter) [1][2]. In essence, an access point
(AP) equipped withM antennas can support downlink rates
up to a factor ofM times larger than a single antenna access
point, even when the mobile devices have only single antennas
However, the transmitter must have accurate channel state
information (CSI) in order to realize these multiplexing gains.
In frequency-division duplexed systems, training can be used
to obtain channel knowledge at each of the mobile devices
(receivers), but obtaining CSI at the access point generally
requires feedback from each mobile.

In the practically motivatedfinite rate feedbackmodel, each
mobile feeds back a finite number of bits regarding its channel
instantiation at the beginning of each block or frame. This
model was first considered for point-to-point MIMO channels
in [3][4][5]. In point-to-point channels, the transmitteruses
such feedback to more accurately direct its transmitted energy
towards the receiver, and even a small number of bits per
antenna can be quite beneficial [6]. This is somewhat intuitive,
because the level of CSI available at the transmitter (denoted
CSIT) does not affect the multiplexing gain of point-to-
point MIMO systems [7]. However, CSIT is more critical
in downlink channels because it does affect the multiplexing
gain [1][2][8], and thus the required feedback rate is generally
larger.

We study downlink systems in which the simple transmis-
sion technique of zero-forcing beamforming is used. While
zero-forcing can create independent channels to up toM
users (assuming there areM transmit antennas), under the
assumption of perfect CSIT, this is no longer possible when
the transmitter has imperfect CSI, as is the case in the finite

rate feedback model. In essence, imperfection in CSIT leads
to multi-user interference at each receiver, which in turn
reduces SINR’s and throughput. This performance degradation
is quantified when each of the mobiles has a single receive
antenna, and it is shown that the feedback rate must be
scaled approximately linearly with both the number of transmit
antennas and the system SNR to achieve throughput close to
perfect CSIT zero-forcing [9] (closely related results aregiven
in [10]). However, the resulting feedback requirements canbe
quite large in even moderate sized systems. Thus motivated,
we show that a small number of antennas at each mobile can be
used to improve CSIT quality and thereby reduce the required
feedback rate [11]. Finally, we summarize the results of [12].
in which systems with many users are considered, and it is
shown that the transmitter must additionally be provided with
information on the magnitude of the quantization error in order
to realize multi-user diversity.

Notation: We use lower-case boldface to denote vectors,
upper-case boldface for matrices, and the symbol(·)H for the
conjugate transpose. The norm of vectorx is denoted||x||.

II. SYSTEM MODEL

We consider aK receiver multiple antenna broadcast chan-
nel in which the transmitter (access point or AP) hasM
antennas, and each of the receivers has a single receive
antenna1. The received signal at thei-th mobile is given by:

yi = hH
i x + ni, i = 1, . . . , K (1)

where h1,h2, . . . ,hK are the channel vectors (withhi ∈
CM×1), the vectorx ∈ CM×1 is the transmitted signal, and
n1, . . . , nK are independent complex Gaussian noise terms
with unit variance. There is a transmit power constraint ofP ,
i.e., the input must satisfyE[||x||2] ≤ P . In Sections III and
IV we assume the number of mobiles is equal to the number of
antennas, i.e.,K = M . Note that randomly selectingM users
from a pool of more thanM users is equivalent toK = M .
In Section V, however, we explicitly consider systems with
K > M and consider the problem of selecting users.

We consider a block fading channel, with independent
Rayleigh fading from block to block (i.e., the components of
the channel vectors are iid unit variance complex Gaussian).

1We consider multiple receive antennas in Section IV, but theproposed
method simplifies the channel to a single receive antenna downlink channel
equivalent to that described here.



Each of the receivers is assumed to have perfect and instan-
taneous knowledge of its own channelhi. Notice it is not
required for mobiles to know the channel of other mobiles.

A. Finite Rate Feedback Model

At the beginning of each block, each receiver quantizes
its channel (withhi assumed to be known perfectly at the
i-th receiver) toB bits and feeds back the bits perfectly
and instantaneously to the access point. Vector quantization
is performed using a codebookC that consists of2B M -
dimensional unit norm vectorsC , {w1, . . . ,w2B}. Each
receiver quantizes its channel vector to the beamforming
vector that forms the minimum angle to it, or equivalently that
maximizes the inner product [4] [5]. Thus, useri quantizes its
channel toĥi, chosen according to:

ĥi = arg max
w=w1,...,w

2B

|hH
i w| (2)

= arg min
w=w1,...,w

2B

sin2 (∠(hi,w)) . (3)

and feeds the index of the quantization back to the transmitter.
It is important to notice that only the direction of the channel
vector is quantized, and no magnitude information is conveyed
to the transmitter.

In this work we userandom vector quantization(RVQ), in
which each of the2B quantization vectors is independently
chosen from the isotropic distribution on theM -dimensional
unit sphere [13]. To simplify analysis, each receiver is assumed
to use a different and independently generated codebook, and
we analyze performance averaged over the distribution of
random codebooks.

B. Zero-Forcing Beamforming

After receiving the quantization indices from each of the
mobiles, the AP can use zero-forcing beamforming (ZFBF)
to transmit data to theM users. Since the transmitter does
not have perfect CSI, ZFBF must be performed based on the
quantizations instead of the channel realizations. When ZFBF
is used, the transmit vector is defined asx =

∑M

i=1 xivi,
where eachxi is a scalar (chosen complex Gaussian with
power P/M ) intended for thei-th receiver, andvi ∈ CM is
the beamforming vector for thei-th receiver. The beamforming
vectorsv1, . . . ,vM are chosen as the normalized rows of the
matrix [ĥi · · · ĥM ]−1, and thus they satisfy||vi|| = 1 for all
i and ĥH

i vj = 0 for all j 6= i. No interference cancellation is
performed, and the resulting SINR at thei-th receiver is:

SINRi =
P
M
|hH

i vi|
2

1 +
∑

j 6=i
P
M
|hH

i vj |2
. (4)

Note that the interference terms in the denominator are strictly
positive becausehi 6= ĥi, i.e., due to the quantization error.
The long-term average rate achieved is the expectation of
log(1+SINRi) over the distribution of the fading and RVQ.

III. T HROUGHPUTANALYSIS

In this section we summarize results from [9] on the sum
rate performance of single receive antenna downlink channels
with finite rate feedback, both for a fixed number of feedback
bits as well as for an increasing (with SNR) amount of
feedback. In this section we assume the number of receivers
is equal to the number of transmit antennas, i.e.K = M . We
are generally interested in comparing the long-term average
rates achieved with finite rate feedback to those achieved with
perfect CSIT zero-forcing beamforming.

If the transmitter has perfect CSIT, the beamforming vectors
(denotedvZF,i) can be chosen perfectly orthogonal to all other
channels, thereby eliminating all multi-user interference. Thus,
the SNR of each user is as in (4), but with zero interference
terms in the denominator. The resulting average rate (per
mobile) is:

RZF (P ) = EH

[

log

(

1 +
P

M
|hH

i vZF,i|
2

)]

. (5)

Since the beamforming vectorvZF,i is chosen orthogonal to
the (M − 1) other channel vectors{hj}j 6=i, each of which
is an iid isotropic vector, the beamforming vector is also an
isotropic vector,independentof the channel vectorhi.

With limited feedback, ZFBF is performed based on the
quantization vectors, and thus multi-user interference cannot
be completely eliminated. The resulting average rate is:

RFB(P ) = EH,W

[

log

(

1 +
P
M
|hH

i vi|
2

1 +
∑

j 6=i
P
M
|hH

i vj |2

)]

. (6)

Due to the isotropic nature of the channel realizations and
the quantization vectors, the channel quantization vectors
ĥ1, . . . , ĥM are also independent isotropic vectors. As a result,
the beamforming vectorvi is isotropically distributed and is
independent of the corresponding channelhi, as it is with
perfect CSIT. Thus, the denominator in the SINR expression
in (6) is the only difference between the rates achieved with
perfect CSIT and with limited feedback. This observation
motivates the following theorem, which approximates the SNR
degradation due to finite rate feedback:

Theorem 1:Finite rate feedback with random vector quan-
tization incurs an SNR degradation of approximately

∆SNRdB ≈ 10 log10

(

1 + P · 2−
B

M−1

)

whereB is the number of feedback bits per mobile.

This approximation is arrived at by utilizing statistics of
RVQ [14] to upper bound the expectation of the denominator
of the SINR with feedback:

EH,W



1 +
∑

j 6=i

P

M
|hH

i vj |
2



 ≤ 1 + P · 2−
NF B

M−1 .

The most important feature to notice is that the SNR loss
is an increasing function of the system SNR as well as the
number of AP antennas. As a result of this, a system with a
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Fig. 1. Downlink Channel withM = K = 6, N = 1

fixed number of feedback bits per mobile (B) will become
interference-limited at high SNR. This is intuitive because
the residual quantization error causes both the multi-user
interference to grow linearly with the transmit powerP , and
thus leads to a bounded SINR.

In order to prevent this interference-limited behavior, the
feedback quality must improve as the SNR is increased. It
is desirable to achieve the full multiplexing gain (i.e., a rate
curve with the same slope as perfect CSIT) as well as achieve
rates that are measurably close to those achieved with perfect
CSIT. We define the rate gap∆(P ) between perfect CSIT and
limited feedback as:

∆(P ) , RZF (P ) − RFB(P ). (7)

The following theorem quantifies the scaling of feedback
needed to keep the rate gap∆(P ) bounded by an arbitrary
constantr > 0 at all SNR’s. Note that also ensures the full
multiplexing gain is achieved.

Theorem 2:A rate gap∆(P ) no larger than a constantr >
0 is maintained at all SNR’s by scaling the number of feedback
bits per mobileB according to:

B ≈
M − 1

3
PdB − (M − 1) log2(2

r − 1). (8)

This result is proven by setting the upper bound to the SNR
degradation in Theorem 1, which can be shown to be an
upper bound to∆(P ), equal tor and solving forB as a
function of the SNR. Note that the feedback rate must be
scaled approximately linearly with the number of transmit
antennasM as well as the system SNR. Note that the feedback
need only be scaled linearly with the number of antennas in
point-to-point MIMO systems in order to maintain a constant
rate gap [13].

Since the per user rateRZF (P ) has a slope of1 bps/Hz/3
dB at asymptotically high SNR (due to the multiplexing gain
of M in the system), a rate offset ofr bps/Hz corresponds
to a 3r dB shift of either the per user rate curve or the total
throughput curve. Thus,r = 1 corresponds to a 3 dB offset,

1H

∑∑∑∑
1,1γγγγ

2,1γγγγ

effy1

∑∑∑∑
1,2γγγγ

2,2γγγγ

effy2

∑∑∑∑
1,3γγγγ

2,3γγγγ

effy3

2H

3H

Fig. 2. Effective Channel forM = K = 3, N = 2 System

and the resulting scaling takes on a particularly simple form:

B =
M − 1

3
PdB bits/mobile (9)

when a 3 dB gap is desired. In Fig. 1, achievable rates vs. SNR
are shown for a 6 antenna, 6 user system, for perfect CSIT
zero-forcing, finite rate feedback with 15 bits per mobile, and
finite rate feedback with rate scaled according to (9). Note that
the fixed feedback curve is bounded, while the rates achieved
with scaled feedback perform within 3 dB of perfect CSI zero-
forcing.

Note that regularized zero-forcing, in which the beamform-
ing vectors are chosen to be the normalized rows of of the
matrix (M

P
I+[ĥi · · · ĥM ])−1, can be used instead of standard

zero-forcing. Though ZF and regularized ZF are equivalent
at high SNR, there can be a considerable advantage to using
regularization at low and moderate SNR’s [15]. Due to the high
SNR equivalence, note that Theorem 2 applies to regularized
ZF at asymptotically high SNR[16].

IV. REDUCED FEEDBACK WITH MULTIPLE MOBILE

ANTENNAS

In this section we describe a method that utilizesN > 1
antennas at each mobile to reduce the quantization error, and
therefore reduces the required feedback load per mobile [11].
Each mobile linearly combines itsN antenna outputs, thereby
creating a single antenna output denotedyeff

i . Furthermore,
only the effective channel output is used when receiving
transmissions, and thus the channel is eq1uivalent to a single
antenna downlink channel. A 3 user channel withM = 3
and N = 2 is shown in Fig. 2. The advantage of such a
system comes from intelligent selection of the linear combiner
coefficients, which are chosen to yield an effective channelthat
can be quantized with minimal error. Note that the multiple
receive antennas are only used to reduce quantization error, but
effectively only a single antenna is used for reception. Thus,
standard ZFBF can be used, and the transmitter need not even
be aware of the number of antennas per mobile.

The N -dimensional received vector at thei-th receiver is
described byyi = HH

i x + ni, where theM × N matrix
Hi and the noise vectorni have iid unit variance complex
Gaussian components. For simplicity of exposition, we focus



on the received channel at user1. Denote theN columns ofH1

by g1, . . . ,gN (each inCM×1), i.e., H1 = [g1 · · ·gN ]. Thus
gi describes the vector channel to mobile 1’si-th antenna.

A. Effective Channel Quantization

We now describe the quantization procedure performed
at each mobile. Consider the linear combination of
the N -dimensional received signals by weightsγ1 =
(γ1,1, . . . , γ1,N ) satisfying|γ1| = 1:

yeff
1 , γ

H
1 yi =

N
∑

k=1

γH
1,k(gH

k x + nk)

= (heff
1 )Hx + n,

whereheff
1 =

∑N

k=1 γ1,kgk = H1γ1 andn =
∑N

k=1 γH
1,knk is

unit variance complex Gaussian noise because|γ1| = 1. Since
any set of weights satisfying the unit norm can be chosen,heff

1

can be inanydirection in the subspace spanned byg1, . . . ,gN .
Quantization error is minimized by choosingheff

1 to be in
the direction that can be quantized best, or equivalently the
direction which is closest to one of the quantization vectors.
The corresponding channel quantization vector is the vector
that forms the minimum angle with span(g1, . . . ,gN ):

ĥ1 = arg min
w=w1,...,w

2B

|∠(w, span(g1, . . . ,gN ))| (10)

Denote the normalized projection ofĥ1 onto span(g1, . . . ,gN )
by the vectorsproj

1 . The corresponding weighting vectorγ1,
which givesheff

1 = H1γ1 in the direction ofsproj
1 , is found

using the pseudo-inverse ofH1:

γ1 =

(

HH
1 H1

)−1
HH

1 s
proj
1

||
(

HH
1 H1

)−1
HH

1 s
proj
1 ||

. (11)

Each mobile computes its channel quantization and linear
combination weights according to this procedure, and feeds
back the quantization index to the transmitter. The weighting
vector is then used to linearly combines theN received
signals to yield a scalar outputyeff

i = (heff
i )Hx + n with

heff
i = Hiγi. Note that the norm of the effective channel is

given by ||heff
i || = 1/||

(

HH
i Hi

)−1
HH

i s
proj
i ||.

B. Throughput Analysis

The effective channel quantization procedure converts the
multiple transmit, multiple receive antenna downlink channel
into a multiple transmit, single receive antenna downlink
channel with channel vectorsheff

1 , . . . ,heff
M and channel quanti-

zationsĥi · · · ĥM . After receiving the quantization indices, the
transmitter performs ZFBF based on the channel quantization
vectorsĥi · · · ĥM .

The resultant system has many of the same properties as the
single antenna channel analyzed in Section III. It can be shown
that theM effective channels are independent isotropicM -
dimensional vectors, as are theM channel quantizations. The
primary difference is the reduced quantization error: in a single
antenna system, the quantization error is the angle betweenthe
quantization vector and a one-dimensional subspace, whilefor

N > 1 the error is the angle between the quantization and an
N -dimensional subspace [11].

Similar to Theorem 1, we can derive a simple approximation
for the SNR degradation relative tosingle receive antenna
downlink channels with perfect CSIT, which is the same
benchmark used in Theorem 1.

Theorem 3:Finite rate feedback withN receive antennas
per mobile incurs an SNR degradation of approximately

∆SNRdB ≈ 10 log10

(

1 + P · 2−
B

M−N ·

(

M−1

N−1

)− 1
M−N

)

.

Though the SNR loss is considerably smaller than withN =
1, the quantization error is still strictly positive with probability
one ifN < M , and thus the system is also interference limited
at high SNR. Using the same framework as in Theorem 2, the
required feedback scaling to achieve performance close to that
of perfect CSIT zero-forcing can be quantified:

Theorem 4:A rate gap∆(P ) no larger thanr between
zero forcing with perfect CSI and zero forcing with limited
feedback can be achieved at asymptotically high SNR by
scaling the feedback rate according to:

B =
M − N

3
PdB − (M − N) log2 c (12)

−(M − N) log2

(

M

M−N +1

)

− log2

(

M−1

N−1

)

,

wherec = 2r · e−(
P

M−1

l=M−N+1
1
l
) − 1.

The resulting feedback savings is the difference between
equations (12) and (8). For a 3 dB gap, the feedback reduction
relative to a single receive antenna system can be accurately
approximated as:

∆FB(N) ≈
N − 1

3
PdB + log2

(

M−1

N−1

)

− (N − 1) log2 e.

The sum rate of a 6 transmit antenna downlink channel
is plotted in Fig. 3. The perfect CSIT zero-forcing curve
is plotted along with the rates achieved using finite rate
feedback with the feedback load scaled as specified in (12)
for N = 1, 2 and 3 and a 3 dB gap. Notice that the rates
achieved for different numbers of transmit antennas are nearly
indistinguishable, and all three curves are approximately3 dB
shifts of the perfect CSIT curve. Here the feedback reduction
at 20 dB is 7 and 12 bits, respectively, for2 and 3 receive
antennas.

V. EXPLOITING MULTI -USERDIVERSITY

In this section we summarize results from [12] on finite-
rate feedback multiple antenna downlink channels with many
users. When there are more users than transmit antennas (K >
M ), throughput can be further increased in by intelligently
selecting a set of up toM users and performing ZFBF
on the selected set. Note that the multiple receive antenna
quantization technique described in the previous section can
be used in conjunction with these methods.
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Clearly, the ideal set of users for ZFBF would have mutually
orthogonal channels as well as large channel magnitudes.
Although ZFBF is not capacity-achieving, ZFBF (with perfect
CSIT) has been shown to asymptotically achieve the sum
capacity in the limit of a large number of users [17][18]. The
throughput achieved with ZFBF as well as the sum capacity
grow on the order ofM log log K as the number of users is
taken to infinity (while keepingM and P fixed), where the
double-logarithmic growth is the so-calledmulti-user diversity
benefit.

User selection can also be performed when the transmitter
has imperfect CSIT via the feedback channel, but somewhat
surprisingly this diversity benefit is not achievable [12].Since
the transmitter only has access to the channel quantizations,
the ideal scenario is finding a set ofM users with orthogonal
channel quantization vectors. The resulting ZFBF vectors
would then be perfectly aligned with these quantizations (i.e.,
vi = ĥi), but there is residual multi-user interference even in
this ideal scenario due to the imperfect quantizations. As are-
sult of this interference, the achievable throughput is bounded
asK → ∞. In fact, the same bounded behavior occurs even
if the transmitter is provided with perfect knowledge of the
channel magnitudes in addition to the channel quantizations,
again due to lingering effects of the quantization error [12].

In order to realize multi-user diversity effects, the transmit-
ter must also be provided information regarding the quanti-
zation error, so that, intuitively, users with small quantization
error can be selected. In fact, it is sufficient for each mobile
to feed back the following scalar quantity in addition to the
channel quantization index:

αi =
P
M
||hi||

2 cos2 θi

1 + P
M
||hi||2 sin2 θi

, (13)

whereθi is the angle betweenhi and its quantization̂hi [12].
Note thatαi is the received SINR at thei-th mobile if the
transmitter is able to find a set (includinĝhi) of M orthogonal
quantizations. Furthermore, the optimalM log log K through-
put growth can be achieved using efficient user selection
algorithms based on the channel quantizations and this SINR
feedback [12].

VI. CONCLUSION

While tremendous capacity benefits can be gained by utiliz-
ing multiple transmit antennas in downlink channels, accurate
CSIT is generally required. We have described how a finite rate
feedback channel from each mobile can be used to provide
the transmitter with sufficiently accurate CSI. However, the
feedback requirements are generally considerably higher than
in comparable point-to-point MIMO channels, even when
multiple mobile antennas are used to improve the quantization
accuracy. Thus, the practical viability of these techniques will
depend on the availability of a relatively high rate and low
latency feedback channel from mobiles to the access point, as
well as on the time scaling of fading, which determines the
frequency of feedback. In addition, it is necessary to extend
these feedback mechanisms to wideband channels, as most
current wireless systems utilize large bandwidths.
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