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Abstract— We consider a two transmitter two receiver channel
where independent data is sent on each communication link of the
system. We consider a three-link system, termed the “Z” channel,
in which one transmitter is connected to both receivers while
the other transmitter is only connected to one of the receivers.
Thus, the “Z” channel has a three dimensional capacity region.
We characterize the capacity region of a special class of degraded
“Z” channels and establish an achievable region for the Gaussian
“Z” channels. Finally, we use genie-aided techniques previously
used for the interference and broadcast channels to obtain an
outer bound for general “Z” channels.

I. INTRODUCTION

Historically, the study of information theory has been pri-
marily motivated by wireline systems and cellular systems.
Since interference channels are a common occurrence in such
systems, they have been the primary two transmit two receive
systems investigated in the past [1], [4], [5]. As the importance
of non-centralized (“ad-hoc”) wireless networks increases,
there are many new multiuser channel configurations that are
of increasing importance. In this paper, we define the two
transmitter, two-receiver “Z” channels that is relevant in the
ad-hoc wireless network scenario. We obtain the capacity re-
gion of the “Z” channel for the degraded, discrete-memoryless
“Z” channel and we establish an achievable region for a special
case of the Gaussian version of this channel. Lastly, we find
an outer bound on the capacity region of the general, non-
degraded “Z” channel.

II. SYSTEM MODEL

The “Z” channel has two transmitters, labeled T1 and T2,
and two receivers R1 and R2. The channel is characterized
by input alphabets X1 ×X2, channel p.d.f.s p(y1|x1, x2) and
p(y2|x2), and output alphabets Y1 × Y2, where x1 and x2 are
transmitted from T1 and T2 respectively, and y1 and y2 are
received at the receivers R1 and R2.

An ((2nR11 , 2nR21 , 2nR22), n) code for a two user chan-
nel consists of three sets of message indices i, j, k, i ∈
1, 2, . . . , 2nR11 ; j ∈ 1, 2, . . . , 2nR21 ; k ∈ 1, 2, . . . , 2nR22 , two
encoding functions xn

1 (i) and xn
2 (j, k), and two decoding

functions (̂i, ĵ) = g1(yn
1 ) and k̂ = g2(yn

2 ). An error is made
if any of î �= i, ĵ �= j, or k̂ �= k.

The capacity region for this “Z” channel is a three dimen-
sional region, which contains the capacity region of the “Z”
interference channel, the broadcast channel and the multiple
access channel as some of its bounding planes. The “Z” chan-
nel is a special case of the “X” channel. In the “X” channel,
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Fig. 1. The “Z” Channel

x1 affects both y1 and y2, and there is a message from T1 to
R2 corresponding to R12. For simplicity, we consider only the
“Z” channel in this paper. Note that similar to the broadcast
channel, the capacity region of both the “X” and “Z” channels
depends only on the marginals p(y1|x1, x2) and p(y2|x2), and
not on the joint channel distribution p(y1, y2|x1, x2).

III. DEGRADED “Z” CHANNEL

We consider a discrete memoryless “Z” channel in which
the received signal at R2 is a degraded version of the received
signal at R1. This degraded condition must be satisfied for all
input distributions p(x1) at transmitter 1, i.e. for every p(x1),
p(y2|x2) equals

∑
p(y1|x2)p(y2|y1) for some p(y2|y1). We

term such a “Z” channel a degraded “Z” channel. For this
case, the capacity region is the closure of the convex hull of
all (R11, R21, R22) satisfying

R11 ≤ I(X1;Y1|X2)
R21 ≤ I(X2;Y1|U,X1) (1)

R11 + R21 ≤ I(X1,X2;Y1|U)
R22 ≤ I(U ;Y2).

for some distribution p(x1)p(u)p(x2|u). Achievability of this
region is described in Appendix A and the converse is pre-
sented in Appendix B.

The degraded nature of the channel allows R1 to decode
the signal intended for R2. Thus, the rates of transmission
to R1 must lie in the multiple-access capacity region (given
the message for R2, which is the auxiliary random variable
U ) defined by p(y1|x1, x2). The structure of these equations
is quite similar to the degraded broadcast channel capacity
region, but the channel corresponding to the stronger user (R1)
is a multiple-access channel instead of a single-user channel.
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As a special case, we can also obtain the capacity region
of the interference channel embedded in the degraded “Z”
channel as

R11 ≤ I(X1;Y1|X2) (2)

R22 ≤ I(X2;Y2).

for some distribution p(x1)p(x2). Again, the degraded nature
of the channel allows R1 to decode the intended for R2. The
two pairs T1, R1 and T2, R2 thus act as independent parallel
channels, with the resulting capacity region given by (2).

IV. GAUSSIAN “Z” CHANNEL

The “Z” channel can be simplified in the Gaussian case
and represented as in Figure 2 with power constraints P1

and P2 on the two transmitters. When α > 1 + P1, the

n1 ∼ N (0, 1)

n2 ∼ N (0, 1)
√

α

1

1
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Fig. 2. The Gaussian “Z” Channel

channel is degraded for Gaussian inputs. In this special case,
an achievable region can be obtained by using Gaussian inputs
and successive decoding at R2. Transmitter 2 generates two
independent Gaussian codebooks, one intended for R1 with
average power βP2 and one intended for R2 with average
power (1−β)P2. Transmitter 2 chooses a codeword from each
codebook and sends the sum of these codewords. Transmitter
1 generates one Gaussian codebook with average power P1.
Receiver 2 decodes its intended message while treating the
codeword intended for R1 as noise. Due to the degraded nature
of the channel, R1 can also decode the message intended for
R2 while treating all other signals as noise. Receiver 1 then
subtracts this message off, leaving a Gaussian multiple-access
channel from T1 (with power P1) and T2 (with power βP2).
The corresponding achievable region is:

R11 ≤ C(P1)
R21 ≤ C(αβP2)

R11 + R21 ≤ C(P1 + αβP2)

R22 ≤ C

(
(1 − β)P2

βP2 + 1

)
,

for β varying between 0 and 1.
Note that this region is simply that of (1) with Gaussian

inputs. The achievable region is a combination of a Gaussian
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Fig. 3. Achievable Region for the Gaussian “Z” channel

broadcast channel (between R21 and R22) and a Gaussian
multiple-access channel (between R11 and R21). When R21 =
0, the channel becomes a “Z” interference channel. The con-
ditions α > 1+P1 corresponds to the very strong interference
case. This is why both R11 and R22 can simultaneously
achieve their single-user capacities (when β = 0).

The achievable region for a Gaussian “Z” channel with P1 =
P2 = 1 and a =

√
3 is illustrated in Figure 3. The optimality

of Gaussian inputs is still an open problem. It can easily be
seen that α > 1 + P1 is a necessary condition for the “Z”
channel to be degraded, but a sufficient condition is not yet
known.

V. GENIE AIDED OUTER BOUNDS FOR THE “Z” CHANNEL

Along the lines of the outer bounds for the interference
[8] and the broadcast channels [9], we can obtain genie
aided bounds for the non-degraded “Z” channel. In this outer
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Fig. 4. The “Zupper”” Channel

bound, the channel output of receiver 2 y2 is made available
to receiver 1, as seen in Figure 4. Thus, we obtain a new
“Z” channel (which we call the “Zupper” channel), where the
received word at receiver 1 is a vector [y1 y2] while that at
receiver 2 is y2. The “Zupper” channel clearly is degraded for
every choice of p(x1). Thus, from our earlier results we know
that the capacity region of “Zupper” is given by the closure of
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the convex hull of:

R11 ≤ I(X1;Y1|X2)
R21 ≤ I(X2;Y1, Y2|U,X1)

R11 + R21 ≤ I(X1,X2;Y1, Y2|U)
R22 ≤ I(U ;Y2).

over distributions p(x1)p(u)p(x2|u).
As mentioned earlier, the capacity region of the “Z” channel

depends only on the marginals and not on the joint distribution
of the channel p(y1, y2|x1, x2). However, the capacity region
of the “Zupper” channel depends on the joint distribution.
Thus, we can tighten this upper bound by minimizing over
all joint distributions while retaining the same marginals
p(y1|x1, x2) and p(y2|x2). An achievable region for the
general “Z” channel can be constructed by extending the
arguments of Marton [6], [7], but we defer this to a later paper.

VI. CONCLUSION

In this paper we defined a new two transmit, two receive
channel - the “Z” channel. We find the capacity region of
the degraded “Z” channel and we use this capacity region
to construct an outer bound to the general “Z” channel. We
also considered the Gaussian version of the Z channel and
established an achievable region which is a combination of
broadcast and multiple-access channel capacity regions.

APPENDIX

A. Achievability of (1)

Fix p(u)p(x2|u) and p(x1). Generate 2nR11 independent
codewords of length n, xn

1 (w11), according to p(x1), and
2nR22 independent codewords of length n, un

1 (w22), according
to p(u). For each codeword un(w22), generate 2nR21 indepen-
dent codewords xn

2 (w21, w22) according to p(x2|u(w22)).
Decoding: Receiver 1 declares (ŵ11, ŵ21) to be the received

message if it, along with some ˆ̂w22 is the only set such that
(un( ˆ̂w22), xn

1 (ŵ11), xn
2 (ŵ21, ˆ̂w22), yn

1 ) is jointly typical.
Receiver 2 declares ŵ22 was sent if there exists a unique

ŵ22 such that (un(ŵ22), yn
2 ) is jointly typical.

Let us define the events:

E2i = {(Un(i), Y n
2 ) ∈ An

ε }
E1i = {(Un(i), Y n

1 ) ∈ An
ε }

E1ijk = {(Un(i),Xn
2 (j, i),Xn

1 (k), Y n
1 ) ∈ An

ε }.
As usual, we assume i = j = k = 1 was sent. Similar to
the degraded broadcast channel achievability, R22 < I(U ;Y2)
implies that the probability of error at receiver 2 goes to zero.
Notice that

P
(n)
1 ≤ P (Ec

1111) +
∑
i �=1

P (E1i) +
∑
j �=1

P (E11j1)

+
∑
k �=1

P (E111k) +
∑

j �=1,k �=1

P (E11jk)

since E1ijk implies E1i. The first term goes to zero by the
A.E.P. and from degradedness we have I(U ;Y1) ≥ I(U ;Y2)

for all p(x1), and thus the second term goes to zero. Thus,
we need to concentrate only on the events E111k, E11j1, and
E11jk for j �= 1 and k �= 1. Now,

P (E111k) = P{(Un(1),Xn
2 (1, 1),Xn

1 (k), Y n
1 ) ∈ An

ε

=
∑

(un,xn
1 ,xn

2 ,yn
1 )∈Aε

p(xn
1 )p(un, xn

2 , yn
1 )

≤ 2−n(H(X1)+H(U,X2,Y1)−H(U,X1,X2,Y1)−3ε)

= 2−nI(X1;Y1,X2,U)−3ε

= 2−nI(X1;Y1|X2,U)−3ε

Thus if R11 < I(X1;Y1|X2, U),
∑

k �=1 P (E111k) → 0.
Similarly,

P (E11j1) = P{(Un(1),Xn
2 (j, 1),Xn

1 (1), Y n
1 ) ∈ An

ε

=
∑

(un,xn
1 ,xn

2 ,yn
1 )∈Aε

p(xn
1 , un, yn

1 )p(xn
2 |un)

≤ 2−n(H(X1,U,Y1)+H(X2|U)−H(U,X1,X2,Y1)−5ε)

= 2−n(H(Y1|X1,U)+H(X2|X1,U)−H(Y1,X2|X1,U)−5ε)

= 2−nI(X2;Y1|X1,U)−5ε

Thus if R21 < I(X2;Y1|X1, U),
∑

j �=1 P (E11j1) → 0. Lastly,
we have

P (E11jk) = P{(Un(1),Xn
2 (j, 1),Xn

1 (k), Y n
1 ) ∈ An

ε

=
∑

(un,xn
1 ,xn

2 ,yn
1 )∈A

(
εn)

p(xn
1 )p(xn

2 |un)p(un, yn
1 )

≤ 2−n(H(X1)+H(X2|U)+H(U,Y1)−H(U,X1,X2,Y1)−5ε)

≤ 2−n(H(X1,X2|U)+H(Y1|U)−H(X1,X2,Y1|U)−5ε)

= 2−nI(X1,X2;Y1|U)−5ε

Thus if R11 + R21 < I(X1,X2;Y1|U),∑
j �=1,k �=1 P (E11jk) → 0. As usual, time-sharing allows for

achievability of the convex hull.

B. Converse for (1)

In this section we prove that the region given in (1) is the
actual capacity region for the “Z” channel where for all input
distributions p(x1) the output y2 is a stochastically degraded
version of the output y1.

By Fano’s inequality we clearly have the following:

H(W11|Y n
1 ) ≤ nε11

H(W21|Y n
1 ) ≤ nε21

H(W22|Y n
2 ) ≤ nε22.

We first bound R11 using the same argument as used in the
MAC converse proof. Following the MAC converse proof in
[2, p. 400] where we replace X2(W2) with X2(W22,W21),
we get

nR11 ≤
n∑

i=1

I(X1i;Y1i|X2i) + nε11
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We bound R11 + R21 by

n(R11 + R21) = H(W11,W21)
= I(W11,W21;Y n

1 ) + H(W11,W21|Y n
1 )

≤ I(W11,W21;Y n
1 ) + nε21

≤ I(W11,W21;Y n
1 |W22) + nε21

=
n∑

i=1

I(W11,W21;Y1i|W22, Y
i−1
1 ) + nε21

=
n∑

i=1

I(W11,W21;Y1i|Ui) + nε21

≤
n∑

i=1

I(X1i,X2i,W11,W21;Y1i|Ui) + nε21

=
n∑

i=1

I(X1i,X2i;Y1i|Ui) + nε21 (3)

where Ui = (W22, Y
i−1
1 ), and we get (3) from the memoryless

nature of the channel.

Now we bound R22 by the following:

nR22 = H(W22)
= I(W22;Y n

2 ) + H(W22|Y n
2 )

≤ I(W22;Y n
2 ) + nε22

=
n∑

i=1

I(W22;Y2i|Y i−1
2 ) + nε22

=
n∑

i=1

(H(Y2i|Y i−1
2 ) − H(Y2i|Y i−1

2 ,W22)) + nε22

≤
n∑

i=1

(H(Y2i) − H(Y2i|Y i−1
1 , Y i−1

2 ,W22)) + nε22

=
n∑

i=1

(H(Y2i) − H(Y2i|Y i−1
1 ,W22)) + nε22 (4)

=
n∑

i=1

I(Ui;Y2i) + nε21

where we used the degraded property of the channel to get
(4).

We bound R21 by

nR21 = H(W21)
= I(W21;Y n

1 ) + H(W21|Y n
1 )

≤ I(W21;Y n
1 ) + nε21

Note that I(W21;Y n
1 ) can be bounded above by

I(W21;Y n
1 |W22)

≤ I(Xn
2 ;Y n

1 |W22)
= H(Xn

2 |W22) − H(Xn
2 |W22, Y

n
1 )

≤ H(Xn
2 |W22,X

n
1 ) − H(Xn

2 |W22, Y
n
1 ,Xn

1 ) (5)

= I(X2;Y n
1 |W22,X

n
1 )

= H(Y n
1 |Xn

1 ,W22) − H(Y n
1 |W22,X

n
1 ,Xn

2 )

=
n∑

i=1

H(Y1i|Y i−1
1 ,W22,X

n
1 )

−
n∑

i=1

H(Y1i|Y i−1
1 ,W22,X

n
1 ,Xn

2 )

=
n∑

i=1

H(Y1i|Ui,X
n
1 ) −

n∑
i=1

H(Y1i|Ui,X
n
1 ,Xn

2 )

=
n∑

i=1

H(Y1i|Ui,X
n
1 ) −

n∑
i=1

H(Y1i|Ui,X1i,X2i) (6)

≤
n∑

i=1

H(Y1i|Ui,X1i) −
n∑

i=1

H(Y1i|Ui,X1i,X2i)

=
n∑

i=1

I(X2i;Y1i|Ui,X1i)

where (5) follows from the independence of Xn
2 and Xn

1 , and
(6) follows from the memoryless nature of the channel.

Thus, we have

nR11 ≤
n∑

i=1

I(X1i;Y1i|X2i) + nε11

nR21 ≤
n∑

i=1

I(X2i;Y1i|Ui,X1i) + nε21

n(R11 + R21) ≤
n∑

i=1

I(X1i,X2i;Y1i|Ui) + nε21

nR22 ≤
n∑

i=1

I(Ui;Y2i) + nε21

with Ui = (W22, Y
i−1
1 ), which satisfies the property that

U → X2 → (Y1, Y2) be a Markov chain. Using a time-sharing
variable Q (similar to the MAC converse), we finally get

R11 ≤ I(X1;Y1|X2, Q)
R21 ≤ I(X2;Y1|U,X1, Q)

R11 + R21 ≤ I(X1,X2;Y1|U,Q)
R22 ≤ I(U ;Y2|Q)

for some p(q)p(u|q)p(x1|q)p(x2|u, q).
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