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Fast Digital Locally Monotonic Regression

Nicholas D. SidiropoulosMember, IEEE

Abstract—tocally monotonic regression is the optimal counter- penalized but not disqualified. This alternative approach is an
part of iterated median filtering. In a previous paper, Restrepo interesting one, but it addresses a different problem.
and Bovik developed an elegant mathematical framework in | oe4)ly monotonic regression provides a median root that
which they studied locally monotonic regressions inR"™. The . timal | itabl | t to the ob bl
drawback is that the complexity of their algorithms is exponen- IS optimal in a suitable sense, e.g., closest {o he Ouser.va e
tial in N. In this paper, we consider digital locally monotonic data in some metric or semimetric. It is meant as an “optimal
regressions, in which the output symbols are drawn from a median,” while iterating the median may be thought of as a
finite alphabet and, by making a connection to Viterbi decoding, - suboptimal “regression” that trades optimality for simplicity.
provide a fast O(|.A["a.V) algorithm that computes any such |y practice, one usually deals with digital (finite-alphabet)
regression, where|.A| is the size of the digital output alphabet,« data. If the i t (ob ble data) is finite alphabet th
stands for lomo degree, andV is sample size. This idinear in N, ata. e input (observable 1a a) IS Tinite alphabet, then
and it renders the technique app|icab|e in practicel the Output Of a.ny number Of Iiterations Of the med|an IS
also finite-alphabet and, in fact, of the same alphabet as
the input; it is therefore natural to consider digital locally
|. INTRODUCTION monotonic regression in which the output symbols are drawn
OCAL MONOTONICITY is a property that appears inf_rom_ a f|n|te_ qlpha_bet as the o_ptlmal counterpart of med|an
. . ... filtering of digital signals. Even if the observable data is real
the study of the set of root signals of the median fIIteralued one would probably still be interested in digital locall
[2]-[8]; it constrains the roughness of a signal by limiting the ' P y 9 y

rate at which the signal undergoes changes of trend (increasrin notonic regression because, on one hand, by proper choice

to decreasing or vice versa). In effect/iinits the frequency 0? uantization, it may provide an answer that is sufficiently

. . N
of oscillations without limiting the magnitude of jump IevegIose o the underlying regre.ssmnR] , and that may We".
. i e all that one cares about; on the other hand, it provides
changes that the signal exhibif].

A classic problem in the true spirit of nonlinear filteringa way to perform simultaneous smoothing, quantization, and

is the recovery of a piecewise smooth signal embedded compression of noisy discontinuous signals. In this paper, we

impulsive noise. In this paradigm, it is natural to model th%onsr:(:]er g'gr:t?l I&(;alrlgi gono;?%crrigi]éess?n g‘dx;y ]rcakmg
signal as locally monotonic and ask for optimal smoothin connection to vite ecodinigprovide a fas(|.A|*aN)

Lo L o . Igorithm that computes any such regression, where

under an approximation or estimation criterion. This oftefi _ o
amounts to picking a signal from a given class of locally M| Size of the digital output alphabet N
monotonic signals, which minimizes a distortion measure @ l0omo degree (usually, the assumiedhotonicityof the
between itself and the observation, and it is referred to as ~ Signal, i.e., the highest degree of local monotonicity
locally monotonic regressionin [1], Restrepo and Bovik that the signal possesses)
developed an elegant mathematical framework in which they!V ~Size of the sample.
studied locally monotonic regressionsR™ (throughout this This is linear (as opposed texponentialin the work of
work, R denotes the set of real numbers, anjdstands for set Restrepo and Bovik) inV, and it renders the technique
cardinality). Unfortunately, the complexity of their algorithmspplicable in practice.
is exponential inV. The authors admit that their algorithms are In more consice terms, we provide a faS{|.A[?alN)
computationally very expensive, even for signals of relativeNjiterbi-type algorithm that solves the following problem.
short duration; this hampers potential applications of tHeiven a sequence of finite extest = {y(n)} 5 € RY,
method. find a finite-alphabet sequende = {i(n)}"-} € AV that

Recently, a related nonlinear filtering technique has beerinimizesd(x,y) = Eﬁ:‘:ol d,(y(n), z(n)) subject tax being
proposed [9] that attempts to overcome the complexity &fcally monotonic of degreex.
earlier algorithms by considering instead a “soft” constraint
formulation in which non-locally monotonic solutions area. Organization

The rest of this paper is structured as follows. In Section II,

Manuscript received September 8, 1995; revised July 26, 1996. This woghs provide some necessary definitions and a formal statement
was supported in part by the NSF ERC program through the Communication .
and Signal Processing Group of the Institute for Systems Research Qffthe problem. The reader is referred to [1] and [11] and the

the University of Maryland and industry through Martin-Marietta Chair irreferences therein for additional background and motivation.

Systems Engineering. The associate editor coordinating the review of t@%r fast solution is presented in Section III. A discussion on
paper and approving it for publication was Dr. A. Lee Swindlehurst.
The author is with the Institute for Systems Research, University of
Maryland, College Park, MD 20742 USA (e-mail: nikos@glue.umd.edu). 1Such a connection between optimal nonlinear filtering under local syntactic
Publisher ltem Identifier S 1053-587X(97)01169-0. constraints and Viterbi decoding algorithms has first been made in [10].

1053-587X/97$10.00] 1997 IEEE



390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

implementation complexity is also included. Some propertié® interpreted liberally; it turns out that it can be replaced by
of locally monotonic regression are discussed in Section '¥.“max” operation to accommodate a minimax (minimize sup-
A complete simulation experiment is presented in Section ¥ror) problem formulation without affecting the structure of

and conclusions are drawn in Section VI. the fast computational algorithm, which is developed below.
Observe that if3 < o < g < N, then A(3,N, A) C
II. THE PROBLEM A(a, N, A); thus, the above optimization is defined over an
element of a sequence of nested “approximation” spaces.
A. Background This means that the achievable minimum is a nondecreasing

. . . function of a.
If x is a real-valued sequence (string) of lengfhand~ is “

any integer less than or equal 16, then asegmenbf x of
lengthy is any substring ofy consecutive components &f 1. SoLuTION
Letx;" ! = {(4),...,x(i +v—1)},i>0,i+~v< Nbe  We show how a suitable reformulation of the problem
any such segment.™ ! is monotonic if either:(i) < z(i+ naturally leads to a simple and efficient Viterbi-type optimal
1)< <zli+y=Dorz() > z(i+1) > --- > z(i+y—1). algorithmic solution.

Definition 1: A real-valued sequence& of length NV is Definition 2: Given any sequence = {z(n)}. 2}, z(n) €

locally monotonicof degreea < N (or lomo« or simply A,n = 0,1,...,N — 1, define its associatestate sequence
lomo in casea is understood) if each and every one of its, = {[z(n),l(n)]T} X2, where [z(-1),5(-1)]T =
segments of lengthy is monotonic. [, —1]T,¢ € A and, forn = —1,...,N =2, Ix(n + 1)

Throughout the following, we assume thatk oo < N. A is given by
sequence is said to exhibit an increasing (resp. decreasing)

transition at coordinaté if (i) < x(i + 1) (resp.z(i) > $grlx(n)) - min{abgly(n)) +1,a - 1}
2(i + 1)). ya(n+1) = x(n)

The following property (cf. [1]-[3]) is key in the subsequent 1, z(n+1)>a(n)
development of our fast algorithm. ¥ is locally monotonic —Lz(n+1) <xz(n)

of degreeq, thenx has a constant segment (run of identicg|ere sgf) stands for the sign function, and @bsstands

symbols) of length at least — 1 in between an increasing andg, apsolute valuefz(n), L(n)]* is the state at time, and,

a decreasing transition. The reverse is also true. for n = 0,1,...,N — 1, it takes values ind x {—(a —
If 3 <o < pB <N, then a sequence of length that is e =11, a— 1)

lomo 3 is lomo « as well; thus, théomotonicityof a sequence *

is defined as the highest degree of local monotonicity that;if iarms of the associated state sequence.

possesses [1]. _ _ Definition 3: A subsequence of state variabld$z(n),
An interesting property of locally monotonic regression WTY.__,, v < N — 1, is admissible (with respect

is that it admits a maximum likelihood (ML) interpretationtg constraint (2)) if and only if there exists a suffix

[1], [11]. In particular, if one chooses, (y(n),z(n)) = sying of state variables{[z(n), l(n)]F} 5L, such that

—log pn(y(n) — z(n)), wherep,(-) is the (independent) ad- ¢ ..\ ; (1w followed b TYN-1
o ; ; . 2 lx = Y {lz(n), lx(n)]* },2pp1 1S
ditive noise pdf or pmf, then locally monotonic regreSS'Oﬁge(ag,soc(iazv]ed}statel sequence of E,E)r(ne)secgui]mmm\;r;l).
of degreea may be viewed as ML over the set of all ’

Let x = {#(n)})-} be a solution (one always exists,

!ocally monotonic signals of de_:gn_sze er_nbedde_d i_n additive_although it may not necessarily be unique) of (1) and (2),
independent (yet not necessarily identically distributed) noige 4 let{[#(n) l*(n)]T}N—l be its associated state sequence.

. . n=-—1
[, [11]. This means th.at one magdapt the regression to Clearly, {[#(n),lx(n)]T}2-2, is admissible, and so is any
the noise characteristics: locally monotonic regression is much "

A . T\v _ H
more flexible than the median. _subsequenc@[a:(n).,lx(n)] Yn=-1,v < N—1.The following
is a key observation.

Claim 1: Optimality of {[#(n),lx(n)]T}) =1, implies op-
timality of {[z(n),lk(n)]*}%__,, v < N — 1, among all

Giveny(n) € R, n = 0,1,...,N — 1 and A, which is admissible subsequences of the same length that lead to the
a finite subset ofR(|.A| < oc). Let A(a, N, A) denote the same state at time, i.e., all admissiblg[#(n), lz(n)] }4__;
space of all sequences of elements ofA that are locally satisfying[#(v),lx(¥)]* = [2(»), lx(¥)]*

learly, we can equivalently pose the optimization (1), (2)

B. Digital Locally Monotonic Regression

monotonic of degreer. Digital locally monotonic regression Proof: The argument goes as follows. Suppose that
is the following constrained optimization: {[z(n),lx(n)]* }2__, is an admissible subsequence satisfying
N1 W), zW)]F = [2(v),lx()]*. It is easy to see that
minimize " d, (y(n), x(n)) @) {E®), &)}, followed by {[&(n), l(m)]"}0 0,
=0 is also admissible. The key point is that any suffix string
subject to x = {z(n)} V! € Ala, N, A). @) of state variables making{[z(n),lx(n)]* }4__; admissi-

ble will also make {[#(n),lx(n)]*}%__, admissible. If
Here, d,.(-,+) is any per-letter distortion measure; it caf[z(n),lx(n)]¥}4__, has a smaller cost (distortion) than
be a—possibly inhomogeneous in—metric, semimetric, or {[z(n),lx(n)]* }2__;, then by virtue of the fact that the cost
arbitrary bounded per-letter cost measure. The “sum” may alisoa sum of per-letter costd[z(n),lz(n)]*'}%__, followed
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) - w TABLE |
2 \ NUMBER OF DISTANCE CALCULATIONS AND ADDITIONS PER SymBoL
‘E’ ‘E’ (i.e., FER TRELLIS STAGE). THE NUMBER OF COMPARISONS IS ALWAYS
\ LEss THAN THis NUMBER, AND THE COMPUTATIONAL COMPLEXITY
O, \ // 0,-1> PER TRELLIS STAGE Is Atways LEss THAN Twice THis NUMBER
S —/
A3 A D a=5 [a=10|a=15| a=20 | a=25 | a=30
A2 /"./ A, |4 =2 26 56 86 116 146 176
‘ AY
A V4 [A|=16 | 1328 | 2688 | 4048 5408 6768 8128
A=) (D
R |A] =32 | 5216 | 10496 | 15776 | 21056 | 26336 | 31616
.15 ‘AA @ |A] =64 | 20672 | 41472 | 62272 | 83072 | 103872 | 124672
d,2D>, ,.V 1,2> lAl =128 | 82304 | 164864 | 247424 | 329984 | 412544 | 495104
AA ‘AA AN |A| = 256 | 328448 | 657408 | 986368 | 1315328 | 1644288 | 1973248
@15 \ 2,15
/, 22> * | A| state pairs of the fornifv, —1]%, [v,1]%),v € A. One
, 2,3 can easily check that the combined fun-in of each such

pair (i.e., the number of states at the previous time instant
Fig. 1. Two stages of the resulting trellis far = 4, A = {0,1,2}. from which such a pair can be reached)(jsl| — l)a.
Some states are unreachable and, therefore, not shown. Absence of an arrow Th délA di lculati d
indicates infinite transition cost; otherwise, the transition cost is the distance U_S_, one nee $| | — e distance calcu atlpns an
of the first variable of the receiving state from the corresponding observed ~additions per pair, for a subtotal ofl|(|.4| — 1)« distance
symbol at this stage. Observe that the graph is sparse and regular. calculations and additions per stage, for this class of
states.
by {[#(n),lx(n)|*}25L, will have a smaller cost than ° |A[2(e —3) states of the fornfu, IJT,v € A, 1 <1 <
{[£(n), le(m)]TYV=L,, and this violates the optimality of ~ @— 1, 0r —(a—1) <! < —1. Each such state can only
the latter. 0 be reached by one state, namely,/ — 1]7 if I > 0
or [v,l + 1]7 otherwise. Thus, one needs!|2(a — 3)
distance calculations and additions per stage for this class
of states.
* |A| state pairs of the form([v, —(a — D)]*,[v, a0 —
1]%),v € A. One can easily check that the combined fun-
in of each such pair is 4. Indeed, a state of tjper—1]7

This corollary leads to an efficient Viterbi-type [15]-[17] ~ can only be reached from either itself [‘Z’FT(O‘_ 1)-1]%,
algorithmic implementation of any digital locally monotonic ~ @nd Similarly, a state of typfy, —(a —1)] Lo only be
regression. The costs associated with one-step state transitions 'eached from either itself 4o, —(a—1)+1]". Therefore,
need to be specified in a way that forces one-step optimality ©n€ needsi|A| distance calculations and additions per
and admissibility. This specification appears in the Appendix. Stage for this class of states.

A formal proof can be easily constructed and is hereby omitted.The total is| A« + |A|(a — 2) distance calculations and

This is a particular instance of the principle of optimality
of dynamic programming [12]-[14]. The following is an
important corollary.

Corollary 1: An optimal admissible path to any given state
at timen + 1 must be an admissible one-step continuation of
an optimal admissible path womestate at timen.

C-code is available at additions per stage; this is tabulated in Table | for some typical
parameter values, and it is 6f(].4|?«), for a grand total of
http : //www.glue.und.edu/ nikos. O(|A*aN) for the entire regression. Clearly4] (i.e., the

size of the output alphabet) is the dominating factor.

A simple example of the structure and connectivity of two '€ Worst-case storage requirements of digital locally
stages of the resulting trellis is given in Fig. 1. Observe thgtonotonic regression ar@(|AlaN), but actual storage

the trellis is sparse and regular. As explained below, this fd&duirements are much more modest (que to path merging.
is exploited to reduce implementation complexity. ‘Computational complexity bein@(|.Al“aN) means (as we
will soon see in the simulation section) that in a serial software

implementation, one may obtain an exact optimal solution
in the order of a couple of minutes for long observation
Any Viterbi-type algorithm has computational complexitysequences. In addition, the algorithm, being a Viterbi-type
that is linear in the number of observations, i.ey. The technique, has strong potential for hardware implementation.
number of computations per observation symbol depends Bhe availability of VLSI Viterbi decoding chips, as well
the number of states as well as state connectivity in the trell&s several dedicated multiprocessor architectures for Viterbi-
In the following, we derive the required number of distancype decoding, makes fast digital locally monotonic regression
(branch metric) calculations and additions per observati@nrealistic alternative to standard nonlinear (e.g., median)
symbol (trellis stage) (the number of comparisons requirdittering, at least for moderate values 4|, «. In the binary
per trellis stage is always less than this number). Each stagese, current Viterbi technology [18]-[23] can handl¥ 2
in the trellis has a total of.A|2(«c — 1) states, which can be states. Hardware capability is continuously improving at a
classified as follows: rather healthy pace. Viterbi-type filtering techniques, like the

A. Complexity
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one described here, will certainly benefit from these develop-7o
ments.

60
IV. SOME PROPERTIES OFLOCALLY MONOTONIC REGRESSION

From the viewpoint of nonlinear filtering theory, digital °°]

locally monotonic regression is not technically a filter due to
the possibility of multiple minima. However, all these minima 40
are equivalent in terms of distortion cost, and it is standard
practice in Viterbi decoding to invoke some tie-breaking 3¢
strategy to obtain a unique solution. This way, we also obtain
a unique input/output operator, and we may refer to digital2o
locally monotonic regression as fdter. From a traditional
nonlinear filtering perspective, it is of interest to investigate 1of .
whether this filter iSdempoten{converges to a fixed point in
one step) [24]self-dual(in the binary case, it treats an “object” o
and its “background” in a balanced fashion) [24], and/or
increasing (order-preserving) [24]. The median is self-duafig- 2. Portion of human ECG from the signal processing information base.
and increasing but not idempotent. Idempotence is obviously

a desirable property.Self-duality is usually desirable. The 70 - " - T
increasing property facilitates mathematical analysis, yet it
may often be hard to justify. One may easily show (along so
the lines of [10]) the following proposition:

Proposition 1: If d,(-,-) is a distance metric, then digital so
locally monotonic regression is idempotent. The result is also
true under the relaxed condition théat € {0,1,..., N — 1}, o}
d,(-,-) achieves its minimum value if and only if its arguments
are equal. 30

Proposition 2: If d,.(y,z) = dn(ly—2|),n=10,1,...,N—
1,Vy, z, then, without loss of optimality, digital locally mono- ,,
tonic regression can be designed to be self-dual by means of
special choice of tie-breaking strategy [10]. In particular, the , |
result holds fori, [, distance metrics.

However, the most interesting observation has to do with o , , , , )
whether or not digital locally monotonic regression is in- © 100 200 300 400 500 600
creasing. To see this, it is convenient to reproduce a fewig. 3. Output of digital locally monotonic regression of degeee: 5.
definitions.

Definition 4: y; < y» if and only if y1(n) < y2(n), ¥n €
{0,1,...,N —1}.

Definition 5: A filter f is increasingif and only if y; <
y2 = f(y1) < f(y2), Vy1,y2 € RV,

Proposition 3: Regardless of choice of tie-breaking strat
egy, digital locally monotonic regression is not increasing.

L

L ) L I
100 200 300 400 500 600

Nonlinear smoothing of edge signals embedded in noise is
one of the prime applications of median-type filtering. There-
fore, it is of interest to present simulation results on locally
monotonic regression applied to synthetic noisy edge-ramp
signals. Fig. 5 depicts such an input signal. This particular

Proof: Counter-examples can be constructed for bina jgnal hgs been generated b_y a_dding_i.i.d. _nois_e on synthetic
variables, in which case, a signal is locally monotonic O‘rue” noise-free test data, which is depicted in Fig. 4. Observe

degreen if and only if it is piecewise-constant and the lengtfiat the noise-free test data is almost everywhere locally

of its smallest piece is greater than or equahte 1. Such a Monotonic up to a certain degree but not purely locally
counterexample (for = 6) can be found in [25]. monotonic; therefore, the true signal itself will suffer some

Therefore, under mild conditions, digital locally monotonidistortion when subjected to locally monotonic regression. As

regression is idempotent and self-dual but not increasing. POte? earlfier, the degree of this distortion is an increasing
unction of .

The noise has been generated according to a uniform distri-
bution, and most of the data points are contaminated. Our goal
~ An experiment with a real human ECG signal is giveRere is to present a balanced experiment that is not overly in
in Figs. 2 and 3. Fig. 2 depicts a portion of a human ECEyor of the approach; thus, we do not use our prior knowledge
signal from the Signal Processing Information Base (SPIB} the noise model to match the regression to the noise
at spib.rice.edu. Fig. 3 ericts the result of locally mO“OtO”iﬁwaracteristics, which is certainly a possibility (cf. [1], [11]
regression under the distance and forv = 5. and our earlier discussion. By proper choicelgf-, -), locally

2Note that although the median is not idempotent, the median root is. monotonic regression can be tailored to provide maximum

V. SIMULATION
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Fig. 4. “True” noise-free test data.
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Fig. 5. Input sequencéy(n)}>!!,.
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Fig. 6. Output of digital locally monotonic regression of degree- 5.

likelihood (ML) estimates). This is consistent in spirit with

393
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Fig. 7. Output of digital locally monotonic regression of degree- 10.
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Fig. 8. Output of digital locally monotonic regression of degree- 15.

has complete knowledge of noise statistics, and therefore, the
user community will probably opt for using e.g., tried-and-true
l1,1y distance metrics.

The noise-free test data of Fig. 4 is also overlaid on sub-
sequent plots. This is meant to help the reader judge filtering
quality. For this example, we blindly choodg(y(n),x(n)) =
ly(n) — z(n)|, ¥n € {0,1,...,N =1}, A = {0,...,99},
and N = 512. The resulting optimal approximation fer =
5,10,15,20, and 25 is depicted in Figs. 6-10, respectively.
The results are very good. The overall run time is approxi-
mately equal to 2 min forx = 15, N = 512, |.A| = 100,
on a SUN SPARC 10, using simple C-code developed by
the author. Much better benchmarks may be expected for
smaller alphabets and/or by implementing the algorithm in
dedicated Viterbi hardware, e.g., fod| = 32 and everything
else as above, the overall run time is approximately 12 s for
a throughput of 42 32-ary symbols/s.

VI. CONCLUSION AND FURTHER RESEARCH

our earlier choice of noise-free test signal, which is not purely Motivated in part by the work of Restrepo and Bovik
locally monotonic, and the fact that in practice, one rarefil], our own earlier work in [10], and the fact that in
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100 ; . . ; . This key element certainly deserves further investigation, and
several threads are currently being pursued.

90

sol ! e , APPENDIX

\ ' ! SPECIFICATION OF ONE-STEP STATE TRANSITION COSTS
or \ 1 FOR DIGITAL LOCALLY MONOTONIC REGRESSION
I
I
I
I
1

sor Here, c(sx(n) — sx(n + 1)) denotes the cost of a one-

step state transitions,(n) = [z(n),x(n)]¥, andV, A denote
logical orR and AND, respectively. The required specification

50

T ] follows:
30 4
20 i if .
10 LJ_L _ (k(n+ D) =D A(z(n) <z(n+1) A
0 : . . . . [(Ix(n) > 0) V (Ix(n) = —(a — 1))]
° 10 200 800 400 500 600 /* To make an increasing transition, one of two things must

Fig. 9. Output of digital locally monotonic regression of degree- 20.  hold: either you're currently in the midst of an increasing
trend, or, if in the midst of a decreasing trend, you've just
completed a constant run of at least- 1 symbols following
the latest decreasing transition. */

- | Y

8or t, [ 1 (lx(n+1) = =) A(z(n) >z(n+ 1)) A

! 1 [(1x(n) <0) V (Ix(n) = = 1)]

| ] /* Similarly, to make a decreasing transition, one of two things
\ must hold:either you're currently in the midst of a decreasing

' trend, or, if in the midst of an increasing trend, you've just

completed a constant run of at least- 1 symbols following
the latest increasing transition/ *

100 T T T T T

90

70

60

50

40

30

v
20F
: I<ikin+l)<a-A(zHn)=x(n+1)A
10 I 4
(e(n+1) =lx(n) + 1)
% 100 200 300 400 500 500 /* If you are in a constant run following an increasing

transition, and you receive one more identical symbol, then the
only thing you are allowed to do is increment your countgr *

Vv

Fig. 10. Output of digital locally monotonic regression of degree- 25.

practice, one usually deals with digital (finite-alphabet) data,

we have posed the problem of digital locally monotonic (—(—1) <lx(n+1) <-1)A(z(n) = z(n+1)) A
regression in which the output symbols are drawn from a finite (lx(n+1)=1x(n)—1)

alphabet as a natural optimal counterpart of median filtering @f simjlarly, if you are in a constant run following a decreas-

nonlinear filtering under local syntactic constraints and Viterien the only thing you are allowed to do is decrement your
decoding algorithms, which has first been made in [10], wgunter %

have provided a fagP(|.A|?aNV) algorithm that computes any

such regression, where v
|A| size of the digital output alphabet (be(n+1) =a-DA () =2+ 1) A
o lomo-degree [(Ix(n) =a—=1)V (x(n) = (a—1)—1)]
N sample size. /* The only way you can reach a positive full count@f- 1

This is linear (as opposed taexponentialin the work of is to either have a positive full count or be just one sample
Restrepo and Bovik) inV, and it renders the techniqueshort of a positive full countind receive one more identical
applicable in practice. symbol */

The connection between optimal nonlinear filtering under V.
local syntactic constraints and Viterbi decoding algorithms

o e Ux(n+1)=—(a=1) A(z(n) =z(n+1)) A

seems to be strong and pervasive; it appears to provide
a unifying framework for the efficient computation of a [(Ix(n) = —(a = 1)) V (Ix(n) = —(ar = 1) + 1)]
rich class of nonlinear filtering techniques, some of whicj* The only way you can reach a negative full count of
were oftentimes deemed impractical, due to their complexity.(o« — 1) is to either have a negative full count or be just
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one sample short of a negative full cousmd receive one
more identical symbol /

(1]
(2]

then :c([z(n), lx(n)]" — [z(n+1),k(n + 1]")
=dpt1(y(n + 1), 2(n+1))
else :c([z(n), l(n)]" = [x(n + 1), L(n+ D]F)

= Q.

3)
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