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Fast Digital Locally Monotonic Regression
Nicholas D. Sidiropoulos,Member, IEEE

Abstract—Locally monotonic regression is the optimal counter-
part of iterated median filtering. In a previous paper, Restrepo
and Bovik developed an elegant mathematical framework in
which they studied locally monotonic regressions inRN . The
drawback is that the complexity of their algorithms is exponen-
tial in N . In this paper, we consider digital locally monotonic
regressions, in which the output symbols are drawn from a
finite alphabet and, by making a connection to Viterbi decoding,
provide a fast O(jAj2�N ) algorithm that computes any such
regression, wherejAj is the size of the digital output alphabet,�
stands for lomo degree, andN is sample size. This islinear in N ,
and it renders the technique applicable in practice.

I. INTRODUCTION

L OCAL MONOTONICITY is a property that appears in
the study of the set of root signals of the median filter

[2]–[8]; it constrains the roughness of a signal by limiting the
rate at which the signal undergoes changes of trend (increasing
to decreasing or vice versa). In effect, itlimits the frequency
of oscillations without limiting the magnitude of jump level
changes that the signal exhibits[1].

A classic problem in the true spirit of nonlinear filtering
is the recovery of a piecewise smooth signal embedded in
impulsive noise. In this paradigm, it is natural to model the
signal as locally monotonic and ask for optimal smoothing
under an approximation or estimation criterion. This often
amounts to picking a signal from a given class of locally
monotonic signals, which minimizes a distortion measure
between itself and the observation, and it is referred to as
locally monotonic regression. In [1], Restrepo and Bovik
developed an elegant mathematical framework in which they
studied locally monotonic regressions in (throughout this
work, denotes the set of real numbers, andstands for set
cardinality). Unfortunately, the complexity of their algorithms
is exponential in . The authors admit that their algorithms are
computationally very expensive, even for signals of relatively
short duration; this hampers potential applications of the
method.

Recently, a related nonlinear filtering technique has been
proposed [9] that attempts to overcome the complexity of
earlier algorithms by considering instead a “soft” constraint
formulation in which non-locally monotonic solutions are
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penalized but not disqualified. This alternative approach is an
interesting one, but it addresses a different problem.

Locally monotonic regression provides a median root that
is optimal in a suitable sense, e.g., closest to the observable
data in some metric or semimetric. It is meant as an “optimal
median,” while iterating the median may be thought of as a
suboptimal “regression” that trades optimality for simplicity.
In practice, one usually deals with digital (finite-alphabet)
data. If the input (observable data) is finite alphabet, then
the output of any number of iterations of the median is
also finite-alphabet and, in fact, of the same alphabet as
the input; it is therefore natural to consider digital locally
monotonic regression in which the output symbols are drawn
from a finite alphabet as the optimal counterpart of median
filtering of digital signals. Even if the observable data is real
valued, one would probably still be interested in digital locally
monotonic regression because, on one hand, by proper choice
of quantization, it may provide an answer that is sufficiently
close to the underlying regression in , and that may well
be all that one cares about; on the other hand, it provides
a way to perform simultaneous smoothing, quantization, and
compression of noisy discontinuous signals. In this paper, we
consider digital locally monotonic regression and, by making
a connection to Viterbi decoding,1 provide a fast
algorithm that computes any such regression, where

size of the digital output alphabet
lomo degree (usually, the assumedlomotonicityof the
signal, i.e., the highest degree of local monotonicity
that the signal possesses)
size of the sample.

This is linear (as opposed toexponential in the work of
Restrepo and Bovik) in , and it renders the technique
applicable in practice.

In more consice terms, we provide a fast
Viterbi-type algorithm that solves the following problem.
Given a sequence of finite extent ,
find a finite-alphabet sequence that
minimizes subject to being
locally monotonic of degree .

A. Organization

The rest of this paper is structured as follows. In Section II,
we provide some necessary definitions and a formal statement
of the problem. The reader is referred to [1] and [11] and the
references therein for additional background and motivation.
Our fast solution is presented in Section III. A discussion on

1Such a connection between optimal nonlinear filtering under local syntactic
constraints and Viterbi decoding algorithms has first been made in [10].
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implementation complexity is also included. Some properties
of locally monotonic regression are discussed in Section IV.
A complete simulation experiment is presented in Section V,
and conclusions are drawn in Section VI.

II. THE PROBLEM

A. Background

If is a real-valued sequence (string) of lengthand is
any integer less than or equal to, then asegmentof of
length is any substring of consecutive components of.
Let be
any such segment. is monotonic if either

or .
Definition 1: A real-valued sequence of length is

locally monotonicof degree (or lomo- or simply
lomo in case is understood) if each and every one of its
segments of length is monotonic.

Throughout the following, we assume that . A
sequence is said to exhibit an increasing (resp. decreasing)
transition at coordinate if (resp.

).
The following property (cf. [1]–[3]) is key in the subsequent

development of our fast algorithm. If is locally monotonic
of degree , then has a constant segment (run of identical
symbols) of length at least in between an increasing and
a decreasing transition. The reverse is also true.

If , then a sequence of length that is
lomo is lomo as well; thus, thelomotonicityof a sequence
is defined as the highest degree of local monotonicity that it
possesses [1].

An interesting property of locally monotonic regression
is that it admits a maximum likelihood (ML) interpretation
[1], [11]. In particular, if one chooses

, where is the (independent) ad-
ditive noise pdf or pmf, then locally monotonic regression
of degree may be viewed as ML over the set of all
locally monotonic signals of degree embedded in additive
independent (yet not necessarily identically distributed) noise
[1], [11]. This means that one mayadapt the regression to
the noise characteristics: locally monotonic regression is much
more flexible than the median.

B. Digital Locally Monotonic Regression

Given and , which is
a finite subset of . Let denote the
space of all sequences of elements of that are locally
monotonic of degree . Digital locally monotonic regression
is the following constrained optimization:

minimize (1)

subject to (2)

Here, is any per-letter distortion measure; it can
be a—possibly inhomogeneous in—metric, semimetric, or
arbitrary bounded per-letter cost measure. The “sum” may also

be interpreted liberally; it turns out that it can be replaced by
a “max” operation to accommodate a minimax (minimize sup-
error) problem formulation without affecting the structure of
the fast computational algorithm, which is developed below.

Observe that if , then
; thus, the above optimization is defined over an

element of a sequence of nested “approximation” spaces.
This means that the achievable minimum is a nondecreasing
function of .

III. SOLUTION

We show how a suitable reformulation of the problem
naturally leads to a simple and efficient Viterbi-type optimal
algorithmic solution.

Definition 2: Given any sequence
, define its associatedstate sequence

, where
and, for

is given by

sgn abs

where sgn stands for the sign function, and absstands
for absolute value. is the state at time , and,
for , it takes values in

.
Clearly, we can equivalently pose the optimization (1), (2)

in terms of the associated state sequence.
Definition 3: A subsequence of state variables

, is admissible (with respect
to constraint (2)) if and only if there exists a suffix
string of state variables such that

followed by is
the associated state sequence of some sequence in .

Let be a solution (one always exists,
although it may not necessarily be unique) of (1) and (2),
and let be its associated state sequence.
Clearly, is admissible, and so is any
subsequence . The following
is a key observation.

Claim 1: Optimality of implies op-
timality of , among all
admissible subsequences of the same length that lead to the
same state at time, i.e., all admissible
satisfying

Proof: The argument goes as follows. Suppose that
is an admissible subsequence satisfying

. It is easy to see that
followed by

is also admissible. The key point is that any suffix string
of state variables making admissi-
ble will also make admissible. If

has a smaller cost (distortion) than
, then by virtue of the fact that the cost

is a sum of per-letter costs, followed
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Fig. 1. Two stages of the resulting trellis for� = 4; A = f0; 1; 2g.
Some states are unreachable and, therefore, not shown. Absence of an arrow
indicates infinite transition cost; otherwise, the transition cost is the distance
of the first variable of the receiving state from the corresponding observed
symbol at this stage. Observe that the graph is sparse and regular.

by will have a smaller cost than
, and this violates the optimality of

the latter.
This is a particular instance of the principle of optimality

of dynamic programming [12]–[14]. The following is an
important corollary.

Corollary 1: An optimal admissible path to any given state
at time must be an admissible one-step continuation of
an optimal admissible path tosomestate at time .

This corollary leads to an efficient Viterbi-type [15]–[17]
algorithmic implementation of any digital locally monotonic
regression. The costs associated with one-step state transitions
need to be specified in a way that forces one-step optimality
and admissibility. This specification appears in the Appendix.
A formal proof can be easily constructed and is hereby omitted.
C-code is available at

˜

A simple example of the structure and connectivity of two
stages of the resulting trellis is given in Fig. 1. Observe that
the trellis is sparse and regular. As explained below, this fact
is exploited to reduce implementation complexity.

A. Complexity

Any Viterbi-type algorithm has computational complexity
that is linear in the number of observations, i.e., . The
number of computations per observation symbol depends on
the number of states as well as state connectivity in the trellis.
In the following, we derive the required number of distance
(branch metric) calculations and additions per observation
symbol (trellis stage) (the number of comparisons required
per trellis stage is always less than this number). Each stage
in the trellis has a total of states, which can be
classified as follows:

TABLE I
NUMBER OF DISTANCE CALCULATIONS AND ADDITIONS PER SYMBOL

(i.e., PER TRELLIS STAGE). THE NUMBER OF COMPARISONSIS ALWAYS

LESS THAN THIS NUMBER, AND THE COMPUTATIONAL COMPLEXITY

PER TRELLIS STAGE IS ALWAYS LESS THAN TWICE THIS NUMBER

• state pairs of the form . One
can easily check that the combined fun-in of each such
pair (i.e., the number of states at the previous time instant
from which such a pair can be reached) is .
Thus, one needs distance calculations and
additions per pair, for a subtotal of distance
calculations and additions per stage, for this class of
states.

• states of the form
or . Each such state can only

be reached by one state, namely, if
or otherwise. Thus, one needs
distance calculations and additions per stage for this class
of states.

• state pairs of the form
. One can easily check that the combined fun-

in of each such pair is 4. Indeed, a state of type
can only be reached from either itself or ,
and similarly, a state of type can only be
reached from either itself or . Therefore,
one needs distance calculations and additions per
stage for this class of states.

The total is distance calculations and
additions per stage; this is tabulated in Table I for some typical
parameter values, and it is of , for a grand total of

for the entire regression. Clearly, (i.e., the
size of the output alphabet) is the dominating factor.

The worst-case storage requirements of digital locally
monotonic regression are , but actual storage
requirements are much more modest due to path merging.

Computational complexity being means (as we
will soon see in the simulation section) that in a serial software
implementation, one may obtain an exact optimal solution
in the order of a couple of minutes for long observation
sequences. In addition, the algorithm, being a Viterbi-type
technique, has strong potential for hardware implementation.
The availability of VLSI Viterbi decoding chips, as well
as several dedicated multiprocessor architectures for Viterbi-
type decoding, makes fast digital locally monotonic regression
a realistic alternative to standard nonlinear (e.g., median)
filtering, at least for moderate values of . In the binary
case, current Viterbi technology [18]–[23] can handle 212

states. Hardware capability is continuously improving at a
rather healthy pace. Viterbi-type filtering techniques, like the
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one described here, will certainly benefit from these develop-
ments.

IV. SOME PROPERTIES OFLOCALLY MONOTONIC REGRESSION

From the viewpoint of nonlinear filtering theory, digital
locally monotonic regression is not technically a filter due to
the possibility of multiple minima. However, all these minima
are equivalent in terms of distortion cost, and it is standard
practice in Viterbi decoding to invoke some tie-breaking
strategy to obtain a unique solution. This way, we also obtain
a unique input/output operator, and we may refer to digital
locally monotonic regression as afilter. From a traditional
nonlinear filtering perspective, it is of interest to investigate
whether this filter isidempotent(converges to a fixed point in
one step) [24],self-dual(in the binary case, it treats an “object”
and its “background” in a balanced fashion) [24], and/or
increasing (order-preserving) [24]. The median is self-dual
and increasing but not idempotent. Idempotence is obviously
a desirable property.2 Self-duality is usually desirable. The
increasing property facilitates mathematical analysis, yet it
may often be hard to justify. One may easily show (along
the lines of [10]) the following proposition:

Proposition 1: If is a distance metric, then digital
locally monotonic regression is idempotent. The result is also
true under the relaxed condition that

achieves its minimum value if and only if its arguments
are equal.

Proposition 2: If
, then, without loss of optimality, digital locally mono-

tonic regression can be designed to be self-dual by means of
special choice of tie-breaking strategy [10]. In particular, the
result holds for distance metrics.

However, the most interesting observation has to do with
whether or not digital locally monotonic regression is in-
creasing. To see this, it is convenient to reproduce a few
definitions.

Definition 4: if and only if

Definition 5: A filter is increasing if and only if
.

Proposition 3: Regardless of choice of tie-breaking strat-
egy, digital locally monotonic regression is not increasing.

Proof: Counter-examples can be constructed for binary
variables, in which case, a signal is locally monotonic of
degree if and only if it is piecewise-constant and the length
of its smallest piece is greater than or equal to . Such a
counterexample (for ) can be found in [25].

Therefore, under mild conditions, digital locally monotonic
regression is idempotent and self-dual but not increasing.

V. SIMULATION

An experiment with a real human ECG signal is given
in Figs. 2 and 3. Fig. 2 depicts a portion of a human ECG
signal from the Signal Processing Information Base (SPIB)
at spib.rice.edu. Fig. 3 depicts the result of locally monotonic
regression under the distance and for .

2Note that although the median is not idempotent, the median root is.

Fig. 2. Portion of human ECG from the signal processing information base.

Fig. 3. Output of digital locally monotonic regression of degree� = 5.

Nonlinear smoothing of edge signals embedded in noise is
one of the prime applications of median-type filtering. There-
fore, it is of interest to present simulation results on locally
monotonic regression applied to synthetic noisy edge-ramp
signals. Fig. 5 depicts such an input signal. This particular
signal has been generated by adding i.i.d. noise on synthetic
“true” noise-free test data, which is depicted in Fig. 4. Observe
that the noise-free test data is almost everywhere locally
monotonic up to a certain degree but not purely locally
monotonic; therefore, the true signal itself will suffer some
distortion when subjected to locally monotonic regression. As
noted earlier, the degree of this distortion is an increasing
function of .

The noise has been generated according to a uniform distri-
bution, and most of the data points are contaminated. Our goal
here is to present a balanced experiment that is not overly in
favor of the approach; thus, we do not use our prior knowledge
of the noise model to match the regression to the noise
characteristics, which is certainly a possibility (cf. [1], [11]
and our earlier discussion. By proper choice of , locally
monotonic regression can be tailored to provide maximum
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Fig. 4. “True” noise-free test data.

Fig. 5. Input sequencefy(n)g511
n=0

.

Fig. 6. Output of digital locally monotonic regression of degree� = 5.

likelihood (ML) estimates). This is consistent in spirit with
our earlier choice of noise-free test signal, which is not purely
locally monotonic, and the fact that in practice, one rarely

Fig. 7. Output of digital locally monotonic regression of degree� = 10.

Fig. 8. Output of digital locally monotonic regression of degree� = 15.

has complete knowledge of noise statistics, and therefore, the
user community will probably opt for using e.g., tried-and-true

distance metrics.
The noise-free test data of Fig. 4 is also overlaid on sub-

sequent plots. This is meant to help the reader judge filtering
quality. For this example, we blindly choose

,
and . The resulting optimal approximation for

and is depicted in Figs. 6–10, respectively.
The results are very good. The overall run time is approxi-
mately equal to 2 min for ,
on a SUN SPARC 10, using simple C-code developed by
the author. Much better benchmarks may be expected for
smaller alphabets and/or by implementing the algorithm in
dedicated Viterbi hardware, e.g., for and everything
else as above, the overall run time is approximately 12 s for
a throughput of 42 32-ary symbols/s.

VI. CONCLUSION AND FURTHER RESEARCH

Motivated in part by the work of Restrepo and Bovik
[1], our own earlier work in [10], and the fact that in
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Fig. 9. Output of digital locally monotonic regression of degree� = 20.

Fig. 10. Output of digital locally monotonic regression of degree� = 25.

practice, one usually deals with digital (finite-alphabet) data,
we have posed the problem of digital locally monotonic
regression in which the output symbols are drawn from a finite
alphabet as a natural optimal counterpart of median filtering of
digital signals. Capitalizing on a connection between optimal
nonlinear filtering under local syntactic constraints and Viterbi
decoding algorithms, which has first been made in [10], we
have provided a fast algorithm that computes any
such regression, where

size of the digital output alphabet
lomo-degree
sample size.

This is linear (as opposed toexponential in the work of
Restrepo and Bovik) in , and it renders the technique
applicable in practice.

The connection between optimal nonlinear filtering under
local syntactic constraints and Viterbi decoding algorithms
seems to be strong and pervasive; it appears to provide
a unifying framework for the efficient computation of a
rich class of nonlinear filtering techniques, some of which
were oftentimes deemed impractical, due to their complexity.

This key element certainly deserves further investigation, and
several threads are currently being pursued.

APPENDIX

SPECIFICATION OF ONE-STEP STATE TRANSITION COSTS

FOR DIGITAL LOCALLY MONOTONIC REGRESSION

Here, denotes the cost of a one-
step state transition, , and denote
logical OR and AND, respectively. The required specification
follows:

* To make an increasing transition, one of two things must
hold: either you’re currently in the midst of an increasing
trend, or, if in the midst of a decreasing trend, you’ve just
completed a constant run of at least symbols following
the latest decreasing transition. */

* Similarly, to make a decreasing transition, one of two things
must hold:either you’re currently in the midst of a decreasing
trend, or, if in the midst of an increasing trend, you’ve just
completed a constant run of at least symbols following
the latest increasing transition. *

* If you are in a constant run following an increasing
transition, and you receive one more identical symbol, then the
only thing you are allowed to do is increment your counter *

* Similarly, if you are in a constant run following a decreas-
ing transition, and you receive one more identical symbol,
then the only thing you are allowed to do is decrement your
counter *

* The only way you can reach a positive full count of
is to either have a positive full count or be just one sample
short of a positive full countand receive one more identical
symbol *

* The only way you can reach a negative full count of
is to either have a negative full count or be just
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one sample short of a negative full countand receive one
more identical symbol *

(3)
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