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application areas are error-free convolution or correlation whekdarkov models [2]-[10], classic nonlinear filters, e.g., the median,
the excessive input—output delay associated with ordinary blockupled with postfiltering detection [11]-[17], nonlinear regression
processing is prohibitive. The method proposed here can also [h8]-{21], nonlinear regularization, e.g., [1], [22]-[25], among others.
applied to other NTT’s when the transform lengthis a power of 2. Nonlinear regularization admits a Bayesian-Markovian interpreta-
tion; nonlinear regression admits a constrained maximum likelihood
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Organization

Il. BACKGROUND

A. Nonlinear Regularization

Weak Continuity with Structural Constraints For reference purposes, let us define regularization as the following
general problem:
N. D. Sidiropoulos, J. S. Baras, and C. A. Berenstein Problem 1-Regularization: Given y = {y(n)} =, find

% = {#(n)})Z' to minimize d(y,x) + g(x). Usually, d(y,x) =
N—1
. . : . om0 dn(y(n),z(n)).
Abstract—Nonlinear regression and nonlinear regularization are two Note that the ternmonlinearregularization has to do with whether
powerful approaches to segmentation and nonlinear filtering. In this

correspondence, we propose a hybrid approach that effectively combines O NOt the S.0|Ut.i0n to the apove optimizaltilon proble.m is a linear
the best of both worlds and can be efficiently implemented via the Viterbi  function of its inputy; nonlinear regularizing functionals (e.g.,

algorithm. quadratic)g(-) may well lead to a linear solution.
Weak continuity (WC), which was developed by Mumford and
l. INTRODUCTION Shah [22], [23] and Blake and Zisserman [1] (see also Morel and

Edge detection and its dual problem of segmentation are importaanIIrnInI [24]). is, in a sense, the next logical step beyond Tikhonov

regularization. WC attempts to fitiecewisesmooth candidate inter-

in low-level vision [1]. One may choose from a number of possi- . -
ble approaches, including statistical formulations, usually based %Set_atlon§ to the_observable data (thus, _th_e kc_ontmulty).
ince, in practice, we often deal with digital data, i.e., sequences of

Manuscript received October 15, 1995; revised May 13, 1997. This wofiite-alphabet variables, in order to avoid unnecessary complication,

was supported in part by core funds from the NSF ERC program, m present a digital version of discrete-time WC (following Blake
available through the Communications and Signal Processing Group od Zisserman [1])

the Institute for Systems Research of the University of Maryland, arfl! o .
industry through the Martin-Marietta Chair in Systems Engineering funds. Problem 2—Weak Continuity: leenr a (gene(ally real-valued)
The associate editor coordinating the review of this paper and approvingséquence of finite exteng = {y(n)}2-! € RY, find a finite-
for publication was Prof. Peter C. Doerschuk. alphabet sequence= {i(n)}\=' € A" (thereproduction process

N. D. Sidiropoulos was with _the I_nstltute_ for _Systems Research arﬂ%ually,A is, €.9.,{0.1,...,255}) and a sequence of boolean edge
the Department of Electrical Engineering, University of Maryland, College A N N1 N—1
Park, MD 20742 USA. He is now with the Department of Electrical EnMarkerse = {é(n)}, =" € {0,1} (the edge procegsso that the
gineering, University of Virginia, Charlottesville, VA 22903 USA (e-mail:following cost is minimized.
nikos@virginia.edu).

J. S. Baras is with the Institute for Systems Research and the Department _ ) 2 2 §
of Electrical Engineering, University of Maryland, College Park, MD 20742 Vwe(y.x,e) = Z (y(n) —2(n))” + Z [Mve(a(n)

N—1 N—1

USA n=0 n=1

C. A. Berenstein is with the Department of Mathematics and the Institute for —a(n—1)*(1—e(n)) + ae(n)].
Systems Research, University of Maryland, College Park, MD 20742 USA.

Publisher Item Identifier S 1053-587X(97)08555-3. Here, a is a nonnegative real.

1053-587X/97$10.00) 1997 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 12, DECEMBER 1997 3097

2 2
-\ My -] 0 1 \/a/kwc 1 0 1

Fig. 1. WC regularizing functional. Fig. 2. WC reg. functional: case ofjy > o.

If ((n) — x(n —1))? is too large, one has the option of declarind® postt_ariori (MAP) ?nference for Markov models and associated
an edge in between(n) andz(n — 1) by choosinge(n) = 1, and annealingtype algorithms [2}-[10], [35].
thus paying onlyy, instead of\2yc,(z(n) — z(n —1))%. One can first A related OptlmlzaFI().n has beeq a.dvocated by Lecl.erc. [36] (also
minimize with respect to the edge process and then minimize tfg [7]) Pased on theninimum description lengttMDL) principle of
resulting functional with respect to the reproduction process. Singessanen [37]. The MDL principle can be related to an instance of
the first sum in the combined cost does not depend on the edB@ MAR principle with acerte.ur? sgltable choice of prior. In Leclerc’s
process, it is easy to see [1, pp. 43, 112-114] that the optimizatiimulation, one seeks to minimize

above is equivalent to minimizing Ve (y,x)
! N—-1 , 2 N—1
o (v, y(n) —x(n)) )
Vwc(i’:‘) o = Z (y(n) = x(n))” — ( + Z Ampr[l = 6(x(n) — x(n — 1))]
5 n=0 n=1
= y(n) —z(n))” + harawe(2(n) —x(n —1 . . ) )
;(J( ) (n)) 2 Mo (@(n) ( ) by appropriate choice of reproduction processwhere § is the
_ _ _ Kronecker delta function, ang? is noise variance. Heréypy, > 0.
by appropriate choice of reproduction processwherefa.awe : We should note that this cost is only an approximation of the MDL
Z — R is defined as objective function obtained under certain assumptions. MDL, in
Maot?, < = general, need not take this form.
haawe (t) = o otherwise Leclerc pointed out that in the case of one-dimensional (1-D) data,

one can readily figure out a DP program to minimi¥g(p. and
This is depicted in Fig. 1. The associated optimal edge procem®vided a GNC-like algorithm for two-dimensional (2-D) data.
can be implicitly inferred, once the optimal reproduction process is Both WC and MDL seek to minimize a cost of the following
determined, by level tests on the first-order residaéls) —#(n—1) general form.

of the optimal reproduction process. Nt N1
From the form of Vi, one may readily see why WC is the  y(y, x) = Z dn(y(n),x(n)) + Z gn(x(n), x(n — 1)).
next logical step beyond Tikhonov regularization: WC replaces the =0 =l

guadratic regularizer in Tikhonov regularization with a hard-limited
guadratic. In general, classical optimization techniques, like steepg’s
descent, are not applicable to nonconvex problems like WC [2
even if these problems only involve continuous variables; this is d
to the existence of local minima [28].

There exist essentially two ways to go about solving WC: dynam
programming (DP) [29] and the so-callegaduated nonconvexity
(GNC) algorithm [1]. The GNC is suitable for optimization ove

gasex € A, |A| < oo, Leclerc’s MDL formulation is a special
se of WC. Indeed, iAwc is sufficiently large (i.e.  qc > a),
thent being an integerha aye (1) = a[l —8(t)]. This is depicted in
Fig. 2. If, in addition,a = Aupro?, then WC reduces to Leclerc’s
MDL approach.

Both WC, and Leclerc's MDL approach are powerful and meri-
rtorious paradigms; however, in the context of edge detection in the
% € RV, i.e., the continuous-valued case, and it does not lend itsBfffSence of impu_lsiw_a hoise, bOth exhibit a shortcoming; _they are
to discrete-valued problems, i.e&, € A" [28]. There are two DP susceptible to noise-induced outlitrhat are locally inconsistent

algorithms for WC: one that works by DP over “time” (in a manneYVith the dgta. ConsigeQr an input consisting of a single Kronecker
very similar to the Viterbi algorithm [30]-[32]) andequiresx to delta of heightA. If ()" > 2Avmr., then Leclerc’s MDL approach

be quantized [33] and another that works by DP over “edges” [24f!l Preserve this delta; similarly, i > pe A andA’ > 2a, then

and works for either continuous or discrete-valuedi.e., either WC will also preserve it. Thus, for each given choice of respective

% € RV or x € AV, The latter is much slower than the formerOPtimization parameter(s), one can find a sufficiently largeso

for moderatd.A|. Here, we consider the discrete-valued problem arfjat both WC and Leclerc’s MDL approach will preserve outliers

opt for the former; throughout, we use DP over “time” to solve wef magnitude> A.

in O(JA]>N). DP is exact, i.e., it provides a true minimizer; GNC WC and MDL are susceptible to these outliers because they both

has been proven to do so for a large class of inputs [1] but not felipulate a model that classifies powerful outliers as information-

an arbitrary input. The drawback of DP is that it does not easifjgaring signals. In the context of segmentation, this means that

generalize in higher dimensions (however, cf. [34]). The GNC, jgutliers are segmented as separate regions (which can later be merged

comparison, carries over quite effortlessly in higher dimensions. THéth other more significant regions). However, in the context of edge

GNC is a special case ohean field annealingB5]. detection in the presence of strong impulsive noise interference, this
As mentioned earlier, WC and the GNC can be interpreted from at|, the digital world, there is really no such thing as an impulse; a better

Bayesian estimation viewpoint; they are closely relatecheximum substitute term would beutlier, or outlying burst
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behavior is undesirable; these outliers are usually associated with theocally monotonic regression [18], [19] is another example. This
noise rather than the signal. regression is the optimal counterpart of iterated median filtering.
Of course, there is no universal agreement on what constitutesnvolves the concept ofocal monotonicity which we need to
an edge and what constitutes an outlier, and we will certainly steggfine. Local monotonicity is a property of sequences that appears
clear of offering a suggestion. Even though defining an edge or enthe study of the set of root signals of the median filter [11], [12],
outlier can be a delicate and potentially troublesome task, definifigt]-[17]; it constraints the roughness of a signal by limiting the
what distinguishes an edge from an outlisr arguably easier. The rate at which the signal undergoes changes of trend (increasing to
following axiom adopts a simple and intuitive viewpoint. decreasing or vice versa).
True edges in the data should be consistent in the sense that thelet x be a real-valued sequence (string) of length and let~y
should manifest themselves as jump level changes in between b@any integer less than or equal® A segmendf x of length~

locally approximately flat regions of sufficient breadth, and this i any substring ofy consecutive components af Let x.™" ™' =
what distinguishes an edge from an outlier. {x(i),...,z(i +v—=1)}, i > 0,i 4+~ < N be any such segment.
This leads to nonlinear regression ideas. %17~ is monotonic if eithere(i) < #(i +1) < -+ < (i +~v—1)
orx(i) > x(i+1)>--- > a(i+~v—1).
B. Nonlinear Regression Definition 1: A real-valued sequence of length NV is locally

m}onotonicof degreea < N (or lomo« or, simply, lomog, in case

Nonlinear regression exploits prior knowledge about the signal a . .
9 b P g 9 « is understood) if each and every one of its segments of length

the noise by picking a solution (estimate) fronstearacteristic setC

. . . . . . i§ monotonic.
of candidate solutions compatible with given prior knowledge abolit . N
the signal with the goal of minimizing a noise-induced distortion Throughout the following, we assume tilag o < N. A sequence

measure between the solution and the observation; see the follow)fng'%S §a|d t.o_ eXh,'b't an |'ncrea5|ng (resp' decrgasmg) tran3|_t|on at

problem coordinatei if x(i) < x(i + 1) (resp.xz(i) > z(i +1)). If x is
Problem 3—Nonlinear Regression: !ocall_y monotonic of degree, thenx has a constant segment (ru_n of
identical symbols) of length at least— 1 in between an increasing

i and a decreasing transition; the reverse is also true [11], [18]. If

minimize: | d, (y(n). () 3 < a < 3 < N, then a sequence of lengfi that is lomo# is
) n=0 N lomo- as well; thus, théomotonicityof a sequence is defined as the
subject toxx = {w(n)},= €C. highest degree of local monotonicity that it possesses [18].

Nonlinear regression may be interpreted as a generalized projection olln the 1-D flnlte-((jjlata cafseﬁ |terf_:1t|_onls_0f medlar(;flllterlng are kgolwn
as constrained maximum likelihood, provided that the noise sequeﬁ%&onverge' regardless of the orngma input (modulo some patholog-
can be assumed to be independénty(n),z(n)) = dn(y(n) — ical cases) to a locally monotonic signal of lomo-degree related to

2(n)) and equal to minus the logarithm of the noise marginal at tinf_gie Size th’_[he medlbaln window an(bj resemt_:‘l_lné‘; thed o_rlglnal |np|)utr.1
n evaluated ay(n) — a(n). owever, this resemblance cannot be quantified, and, in general, the

Observe that ifl, (-, ) is a distance for a (and even under milder result of iterated mediap filtering _is th the best (eg in_lthe)r l?
conditions [20], [21]’)’ then theoot set (or domain of invariance sense) locally monotonic approximation of the original input signal.

which is the class of signals that are invariant under the regressia—r#zs gave rise to the idea of Ioca[ly monotonic regression, which was
of nonlinear regression is precisely the characteristic set of tRE pased _by Restrepo an_d BO\_”k [18]. They_ developed an eleg_ant
regression. This kind of precise control over the root set is certair{ylthema“cal fs\gmework in which they stu_dled Ioca_lly monotonic
appealing, as is the closest nonlinear filtering arfatogcontroling regressions iR . The problem was that their regression algorithms

a linear filter’'s passband. Observe that this type of control is not, Wta'lefd ha compt:tatli/r:al_ comé)lte)xnﬁ_thagwas exponenéla:l«lm;he h
general, available in nonlinear regularization approaches, like ze of the sample). Motivated by this observation, and the fact that

whose input-output analysis is very difficult [1], [24]. One rnaymedian filtering of digital signals always results in digital signals,

work out results that exclude certain signals from the root set &?rogﬁulosgpposlel_d thﬁ f?\L:OV\"ng _proF?Iem. ion: 121
WC, and we will do this in the sequel. A full characterization of root roblem 5-Bigital Locally Monotonic Regression: [21]
signal structure for WC appears to be very difficult, and this difficulty

carries over, in part, to our proposed hybrid regression-regularization N-1
approach. minimize: >~ dn (y(n), z(n))
Specific instances of nonlinear regression can be found in n=0
[18]-[21]. These include the following problem. subject to:xx = {x(n)}22)' € A(a, N, A)
Problem 4—YORCA Filtering [20]:
N—1
minimize: Z dn(y(n), z(n)) whereA(a, N, A) is the set of all sequences af elements ofA,
n=0 which are locally monotonic of lomo-degree[21].
subject tox = {z(n)}=' € P} This latter problem can be efficiently solved via the Viterbi

algorithm in timeO(|A[*aN), i.e., linear in N [21].

where Pf} is the set of all sequences of elements ofA that are  Both approaches are robust in the sense of suppressing impulsive
piecewise constant of plateau (run) length A/. This regression noise while preserving salient edge signals. However, neither take
explicitly formalizes the axiom that edges should be consistent jifto accounkdge strengthi.e., the magnitude of jump level changes.
the sense of exhibiting sufficient breadth in both directions. Thighis often results in undesirable ripple in the solution, and it happens
regression can be efficiently implemented via the Viterbi algorithraxactly because pure nonlinear regression doesxiicitly account
in time O((]A]* + |A|(M — 1))N) [20]. for roughness/complexity, i.e., unlike WC, it does not incorporate

2Although the concept of a nonlinear filter's root signal set is far les? roughness/complexity penalty into the cost function: As long as a

powerful than the concept of passband for linear filters because the princilution remains within the characteristic set of the regression, it may
of superposition does not hold. follow relatively insignificant input features.
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I1l. WEAK CONTINUITY WITH STRUCTURAL CONSTRAINTS idempotent operation, i.e., it converges to an element of its root set

We have seen that nonlinear regression, by virtue of its reliance Bnjust one application. This is true for all characteristic sétand,
hard structural constraints, is robust in the presence of outliers, yagrefore, also for pure WC.
it may trace relatively insignificant edge features. On the other hand, Proof: Consider an arbitrary inpyt, and letx be a correspond-
nonlinear regularization (and WC in particular) ranks the importand@d WCSC solution computed in accordance with the tie-breaking
of edge features by means of their significance in terms of the incuri&iiatedy in the statement of the theorem. In addition,xlebe a
approximation error [1], yet it does not exhibit the same degree 8plution to the WCSC problerfor input x. Suppose thak, x are
robustness in the presence of outliers. It appears quite natural, tHéAtNCt. Clearly, bothx andx are necessarily id. Therefore, from
to endow WC with improved robustness by proposing the followingPtimality of x for inputy overC, it follows that

hybrid optimization. o . . d(y, %) + g(x) < d(y, %) + g(%X). 1)
Problem 6—Weak Continuity with Structural Constraints
(WCSC): On the other hand, from optimality &f for inputx over(, it follows
that
N—1
min: V(y,x) = Z dn(y(n), x(n)) d(%,%) + g(%) < d(%,%) + 9(%)
n=0
N_1 or, sinced(-,-) is a distance metric
+ 2 anal):an = 1) (%, %) + 9(%) < 9(%). @
subjecttox € C Add d(y, %) to both sides of this inequality to obtain
where C is the set of all sequences oV elements of A d(y,x) +d(x, %) + g(x) < d(y, %) + g(%X).
satisfying some local hard structural constraint. Here agai . . . . N oL
d(x,y) = Zf}:ol dn(y(n),z(n)) is a fidelity measure, and E%;}Zﬁ t;;?lg%\llz Thiclua“ty’ we have théty, %) < d(y, %) +d(%. %);
g(x) = YN lga(x(n),z(n — 1)) is a roughness-complexity

measure. ’ d(y. %) + g(%) < d(y. %) + g(%). ®3)
WhenC = P}, runlength-constrained weak continuifRC-WC)

results; similarly, ifC = A(«, N, A), thenlocally monotonic weak From (1) and (3), it follows that

cor_ninuity (LM-WC_Z)'_esuIts. VORCA is a_special cgse_of RC-WC, and d(y, %) + 9(%X) = d(y, %) + g(X)
so is WC, MDL. Digital locally monotonic regression is a special case ] ] ) )
of LM-WC, and so is WC, MDL. i.e., there exists a tie betweeh and x for input y. Given the
It should be noted that the incorporation of hard structural cofi€-breaking strategy in the statement of the theorem, it follows that
straints is not the only way to handle outliers in the context of 9(%) < 9(%) ()

nonlinear regularization, e.g., cf. [9].

It is not difficult to see that RC-WC and LM-WC can be solvedincex is a least roughness-complexity solution for inpatover C.
using exactly the same resources and computational structuresigwever, (2), combined with the fact thét-, -) is a distance metric,
VORCA and digital locally monotonic regression, respectively. Thand the assumption tha x are distinct, implies that
extension to weak continuity (i.e., the incorporation of the first-order - 5

_ , o g(x) < g(%). ©)
roughness-complexity measugéx) = 5> "~ gn(x(n), x(n — 1))
into the cost functional) essentially comes for free; we skip the detalfseequalities (4) and (5) constitute a contradiction,; it follows that the
and refer to [20] and [21]. One basically has to set up a suitabigpothesis thak, x are distinct is false. This deduction works for
Viterbi trellis and specify the cost of one-step state transitions. Tlagbitraryy; the proof is therefore complete. O
resulting complexity of RC-WC, LM-WC i) ((|A|* + |A|(M — This is a very useful result because it demonstrates that provided
1))N), O(JA|*aN), respectively. Observe that these algorithmelistortion is a distance metric, the root set of WCSC is well defined,
work for any choice of fidelity and roughness-complexity measureand, in fact, one application of WCSC is sufficient for convergence to
of the above general form. It should be noted that one could consigeroot signal, regardless of choice of roughness-complexity measure
roughness-complexity measures of order higher than one. Yet, this) and characteristic s€t This is a highly desirable property, both
entails a significant increase in computational complexity of thieom a theoretical and from a practical viewpoint [38].
resulting Trellis-type implementation. For this reason, we chose toWhat is the root set of WCSC? It is obvious that (provided

work with first-order roughness-complexity measures. distortion is a distance) the root set of WCSC is a subset of its
characteristic saf. Actually, it is possible to show that the root set
A. Existence of and Convergence to the WCSC Root Set is usually aproper subset ofC. We will provide some results in this

Observe that the WCSC problem above always has a solutic()jrllrecnon in the following section, although, in general, a complete

) . : - root signal analysis of WCSC appears to be very hard. Still, knowing
albeit not necessarily a unique ohé/e have the following important -
o that the root set is a subset @fis better than what we can currently
characterization theorem.

Theorem 1: If d(-,-) is a distance metrfcand we resolve ties by say about pure WC.
selecting a solution of least roughness-complekityen WCSC is an )
B. Design
3Nonuniqueness usually complicates the analysis of optimization problemsGiven the general WCSC formulation above, one needs to choose
e.g., cf. [20] and the proof of the next theorem. d., g, and the characteristic sétfor a particular problem in hand.

R : .
5Th!5 S usually t_he case 'n_praCt'cef ) ) From a Bayesian perspective, the formulation above is tantamount
This is easy to implement in a trellis computation by keeping track of tl}

roughness-complexity measure accrued so far by partial solutions using FQnMAP estimation of a signak in additive .n0|se, provided that
auxiliary state variable by virtue of the fact that roughness-complexity is®: (¥(n), 2(n)) = d.(y(n) — x(n)), the noise sequence can be
sum of state transition costs. assumed to be independent (and independent of the signal) with
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Fig. 3. Isolated outlying burst of widtkw. Fig. 4. Isolated constant segment of saliepcy= w - H.

marginal at time: given bye ("), and the signal prior is ¢*) = T

e >0 D gn(e(m)e(n—1)) overC, and zero elsewhere. Therefore, at 40k .
least in principled.., g, andC can be estimated from training data.
The choice ofd, is relatively easier; e.g.dn(y(n) — x(n))
proportional to|y(n) — «(n)| means one expects to be dealing with ot _
Laplacian (long-tailed) noise. The choice @f andC is far more
critical as it constitutes thesignal model which is usually much
harder to infer from limited training data. It is for this reason that |
for the purposes of segmentation and nonlinear filtering, we choose
to restrictC to be Piy or A(a, N, A), which have been proven to be 15F 1
useful characteristic sets from a pure regression viewpoint,gand ok
to A? times a WC-type hardlimited notch function. This suggests a 4f—\
useful class of signal models that is not apparent from a Bayesian st . .

perspective and reduces the choice of signal model down to selecting

two parameterg. 0 210 4I0 (;0 8|0 1(30 1é0 1;80 160 1;30 2(I)0 220
With these choices, what remains to be investigated is the interplay

betweenM or o and A?. We know that at least for some specific

choices, e.g.M = 1, leading to WC, MDL, orA\? = 0, leading

to VORCA, or digital locally monotonic regression, we may expect

good nonlinear filtering results. The point is, can we make even better .l i

choices? To see this, let us consider a concrete instance of RC-WC.

35 i

Fig. 5. Noise-free test data.

45 T T T T T T T T T T
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IV. A SPECIFIC INSTANCE OF RC-WC aor 1
Let d,(y(n).x(n)) = |y(n) — x(n)]. gu(x(n).2(n - 1)) = _
M1 = 6(x(n) —x(n —1))] for all n, and letC = Py, i.e., consider
20F
N-1
minimize V(y,x) = Z ly(n) — x(n)| 155
n=0 N 1ok ' 1
+ A Z[l —8(x(n) —ax(n —1))] s W
n=1
subject tox € Py 050 40 60 80 100 120 140 160 180 200 220

We will need the following definitions. Fig. 6. Noisy input data.

Definition 2: An isolated outlying burst of widthv < M is a
deviation from a plateau of the type depicted in Fig. 3. Claim 1: Assume that}/ is odd. RC-WC eliminates all isolated
Definition 3: An isolated profile of saliency (sum of absolute devipytlying bursts of widthw < M—1regardless oh?, and the same
ations, which here is simply the width-strength productr w- H is s true for A2 = 0, i.e., plain VORCA filtering with respect to the
an equidistant deviation from a plateau of the type depicted in Fig. ghove choice ofi,, (-, -).

In the strict sense, isolated means that the entire input consists of pygof: With reference to Fig. 3, sincer < M, the next best

the given feature; in practice, it means that the gFiven feature is aw@yndidate (modulo a shift that is irrelevant here) after just drawing a
from possible interactions with other input featu 2e'Ehe following  giraight line at the plateau level would be one consisting of just three
two clalms_prowd_e gwd_ellnes on how to choake \“. These claims constant segments, the middle of which is of width, as shown
apply tothis particular instance of RC-WC with a dotted line in Fig. 3. This is because any two-segment solution
6Note that other cl ¢ sianal models h b ) iated i would incur a cost that can be made as large as one wishes (this is
ote that otner classes Or sighal models have been investigated In . m
context of MRF’s, e.g., cf. [4] and references therein. Wﬁerel the Sssumhptl(l)n tTatf Or:],e d?;'j? wiblated fez;\]turﬁjs bcomhes
"This type of analysis of isolated features is typical of WC, and it ilsnto, play). OVY’ ,t ,e evel of this middle segment s OFI € chosen
necessitated by analytical difficulties in dealing with potential interaction§Ptimally to minimize the sum of absolute errors. This amounts to
e.g., cf. [1, pp. 58, 67, 100, 143, and 215]. constant regression ove¥/ symbols under a least absolute error
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Fig. 7. Output of WC,A? = 55. Fig. 8. Output of WC,A? = 50.

criterion, and it is well known [18] that the answer is provided by
the median of thes@/ symbols. However, since only < 2% of a0l 1
theseM symbols are potentially different from the plateau level (
in Fig. 3), it follows that the absolute majority of thedé symbols
is equal to the plateau level, and, therefore, the median produces this
level at its output: The best solution amounts to simply drawing a
straight line at the plateau level. (I 251 ( ]

Claim 2: RC-WC suppresses all isolated profiles of saliency
(width-strength product) = w - H < 2)?, i.e., mends the weak
edges at the endpoints of such profiles, and the same hold$ ter1, 154 1
i.e., plain WC with respect to the above choicedgf-, ), g.. (-, ).

Proof: In reference to Fig. 4, the next best candidate after just —f——\

drawing a straight line at the plateau level would be (if allowed sF
by the runlength constraint) one consisting of just three constant
segments exactly following the input in Fig. 4 (again, this is where O30 a0 60 80 100 120 140 160 180 200 220
the assumption that one deals with isolated features comes into play).
Such a candidate would incur a cost of at least, whereas the
straight line solution carries a cost pf= w - H < 2\2. (I

The overall conclusion is that this particular instance of RC-WC 45 T - ; y - ' - " - ;
suppresses features of either i) width< % (M: odd),regardless
of strength or ii) saliencyy = w - H < 2)\%. This allows us
to essentially separately fine tune two important aspects of filter ss- 1
behavior. Given an estimate of maximum outlying burst duration,
we pick M to eliminate outlying bursts. Given that we desire to

Fig. 9. Output of WC\? = 45.

40r

301

suppress insignificant profiles producing spurious weak edges, where ,| !’
significance is quantified by profile saliency, we pick In a nutshell,
M controls outlier rejection, whereas controls residual ripple. 2or ]

A. An lllustrative Simulation Experiment

Fig. 6 depicts a noisy input sequence. This input has been generated [ \
by adding noise on synthetic piecewise-constant data, which is 5}

depicted in Fig. 5. The noise is white Gaussian; a simulated error ‘ ) ‘ , , , , \ ) )
burst has also been added to test outlier rejection capability. The 20 40 60 &0 100 120 140 160 180 200 220
outlying burst in Fig. 6 has length 6 and saliency (here, sum of Fig. 10. Output of WCA2 = 20.

absolute burst errors) 120. The noiseless signal in Fig. 5 consists

of two rectangular pulses. The first has length 40 and saliency 120; | " N
the second has length 20 and saliency 60. choice does not appear to be critiéalVe selected” = Pjy since

In reality, one rarely has a precise noise model available, amjs is a n_atural parameterized constraint_sgt for piecewise constant
practitioners will opt for, e.g., tried-and-trie or I, distance metrics, Signals. Finally, we chgsgn to be a hardlimited MDL-type notch
depending on whether the noise appears to be closer to Gausé’i’a('i”.("),;z:(n — 1)) = AL — &(x(n) — x(n - 1))] for all n. .
(short-tailed) or Laplacian (long-tailed), respectively. If the noise With these choices, we may use the claims above to help us pick
appears to be mixed (as is the case here due to the simulR@gropriate values for the two optimization parameters. Accordingly,
outlying burst), this choice is not obvious. We chose themetric e Selected the values’ = 15 and M = 15. This way, we may
because it provides for improved outlier rejection, although this8Qualitatively comparable results have been obtained using,theetric.
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Fig. 11. Output of WCA? = 15. Fig. 13. Output of VORCAM = 40.
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Fig. 12. Output of VORCAM = 45. Fig. 14. Output of VORCAM = 30.

45 T T T T T T T

guarantee the suppression of any isolated outlying burst of length up

to 7 (which is just above what is required to suppress the simulated 4|

burst) and any isolated constant segment of saliency less than 30

(which is conservatively below the saliency of the weakest signal

feature). 3o0b
For M = 1, we obtain plain WC, and the results for =

55,50,45,20,15 are depicted in Figs. 7-11, respectively. Observe 25 ]

that even though the saliency of the outlying burst is the same as that

of the first signal pulse, WC first segments the burst (which lacks

sufficient consistency) rather than the pulse. Actually, as illustrated by 15¢

these figures, WC cannot properly segment the signal in this example

without also segmenting the burst, i.e., it cannot differentiate between _/—\ —

a consistent pulse and a relatively inconsistent outlying burst. This  sf \ f E

is because WC ranks features by saliency, and saliency is not an ‘ . ‘ . ‘ . . . . .

unambiguous indicator of consistency; what distinguishes the signal 20 40 0 80 100 120 140 160 180 200 220

in Fig. 5 from the burst is consistency but not saliency. In addition, Fig. 15. Output of VORCAM = 25.

observe that (even though we uskdinstead ofl, distance), WC

exhibits the so-calledniform localization propertyn scale-space. As

A% is reduced, new edges may be introduced, but previously deteckégducing ripple artifacts due to the burst and the Gaussian noise.

edges remain stable (lines in scale-space are vertical) [1]. This iJlese artifacts become progressively significant)asis reduced.
desirable property [1]. Notice that even at/ = 45, the effect of the burst is neveompletely

For A? = 0, we obtain plain VORCA, and the results faf = eliminated due to the end-transient effect. In addition, observe that
45,40, 30,25, 15 are depicted in Figs. 12—-16, respectively. Obser"dORCA does not enjoy the uniform localization property of WC,
that as expected, VORCA first segments out the stronger signal pudidsough edges appear to be stable over wide ranges of valugs of
while virtually eliminating the outlying burst. It then proceeds to For A* = 15, and M = 15, we have hybrid RC-WC, and the
segment the second (weaker) signal pulse, whereas at the same tesalt is depicted in Fig. 17. RC-WC effectively combines the power

35 q

201 q
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WCSC does not incorporate axplicit blur model. It may restore
blurred and noisy edges but in a somewddhocmanner. If the data
is blurred and the blur is, e.g., asymmetric, restoration may fail to
properly localize edges. The incorporation of an explicit blur model
into the present paradigm may be worthwhile in cases where the

301 q

25F q

201 k!

0 L L L : L ' L L 1 L
20 40 60 80 100 120 140 160 180 200 220

Fig. 16. Output of VORCAM = 15. [2]

45 - . . . : . . : . [3]
404 p
[4]
351 B
sor 1 [5]
25+ 4
wl | [6]
o 1 7]
o l [8]
[9]

0 L I y 2 L 1 L L L :
20 40 80 80 100 120 140 160 180 200 220

Fig. 17. RC-WCM = 15, A? = 15, combines the power of both methods.

[10]

of both methods. The notable exception relative to WC is the loss
of the uniform localization property (in RC-WC, “scale” depends oifL1]
both A? and M; varying M does not necessarily lead to a stable
scale space).

The overall run time is about 2 s ford| = 50 levels on a SUN [1]
SPARC 10 using simple C-code. Much better benchmarks may be
expected for smaller alphabets and/or by implementing the algorithm
in dedicated Viterbi hardware (cf. [32] and references therein).

V. CONCLUSION [14]

We proposed WCSC, which is a hybrid nonlinear regression-
regularization approach for segmentation and nonlinear filtering. THib]
proposed approach draws on earlier work in WC and nonlinear
regression, effectively combines the best of both worlds (with t
notable exception of the uniform localization property of WC), and
can be efficiently implemented via the Viterbi algorithm. [a7

Two types of WCSC have been discussed: RC-WC and LM-
WC. Due to space limitations, the emphasis here was on R
WC. Depending on the kind of roughness-complexity regularizin
functional used, LM-WC can be very different from RC-WC. In[19]
particular, the characteristic set of RC-WC is a proper subset of that
of LM-WC. The latter, e.g., includes ramp signals and all monotonig0!
signals. For relatively mild roughness-complexity penalties, LM-WC
may follow ramp edges, whereas RC-WC will convert these to step]
edges. LM-WC is computationally more complex than RC-WC.

8]

13] B. 1.

present approach fails.
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