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application areas are error-free convolution or correlation where
the excessive input–output delay associated with ordinary block
processing is prohibitive. The method proposed here can also be
applied to other NTT’s when the transform lengthN is a power of 2.
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Weak Continuity with Structural Constraints

N. D. Sidiropoulos, J. S. Baras, and C. A. Berenstein

Abstract—Nonlinear regression and nonlinear regularization are two
powerful approaches to segmentation and nonlinear filtering. In this
correspondence, we propose a hybrid approach that effectively combines
the best of both worlds and can be efficiently implemented via the Viterbi
algorithm.

I. INTRODUCTION

Edge detection and its dual problem of segmentation are important
in low-level vision [1]. One may choose from a number of possi-
ble approaches, including statistical formulations, usually based on

Manuscript received October 15, 1995; revised May 13, 1997. This work
was supported in part by core funds from the NSF ERC program, made
available through the Communications and Signal Processing Group of
the Institute for Systems Research of the University of Maryland, and
industry through the Martin-Marietta Chair in Systems Engineering funds.
The associate editor coordinating the review of this paper and approving it
for publication was Prof. Peter C. Doerschuk.

N. D. Sidiropoulos was with the Institute for Systems Research and
the Department of Electrical Engineering, University of Maryland, College
Park, MD 20742 USA. He is now with the Department of Electrical En-
gineering, University of Virginia, Charlottesville, VA 22903 USA (e-mail:
nikos@virginia.edu).

J. S. Baras is with the Institute for Systems Research and the Department
of Electrical Engineering, University of Maryland, College Park, MD 20742
USA

C. A. Berenstein is with the Department of Mathematics and the Institute for
Systems Research, University of Maryland, College Park, MD 20742 USA.

Publisher Item Identifier S 1053-587X(97)08555-3.

Markov models [2]–[10], classic nonlinear filters, e.g., the median,
coupled with postfiltering detection [11]–[17], nonlinear regression
[18]–[21], nonlinear regularization, e.g., [1], [22]–[25], among others.

Nonlinear regularization admits a Bayesian-Markovian interpreta-
tion; nonlinear regression admits a constrained maximum likelihood
interpretation (although both were conceived starting from nonstatis-
tical perspectives). Both have unique strengths and some drawbacks.
The purpose of this correspondence is to propose and investigate
a hybrid nonlinear regression-regularization approach, effectively
combining the best of both worlds.

The idea of combining nonlinear regression and regularization
is related in spirit to the idea of combining deterministic (rule-
based) and statistical prior knowledge about a source one is trying to
estimate; cf. the important work of Grenanderet al. [26], [27].

A. Organization

The rest of this correspondence is organized as follows. In Section
II, we review some important background. Our hybrid approach is in-
troduced in Section III; an important result concerning idempotence of
the proposed hybrid filter and, therefore, existence of and convergence
to root signals is also presented in this section. A specific instance of
our hybrid approach is presented in Section IV, which includes two
useful design-oriented results and a detailed illustrative simulation
experiment, highlighting the features of the proposed hybrid approach
and the prior art. Conclusions are drawn in Section V.

II. BACKGROUND

A. Nonlinear Regularization

For reference purposes, let us define regularization as the following
general problem:

Problem 1—Regularization: Given y = fy(n)gN�1
n=0

, find
x̂ = fx̂(n)gN�1

n=0
to minimize d(y;x) + g(x). Usually, d(y;x) =

N�1

n=0
dn(y(n); x(n)).

Note that the termnonlinearregularization has to do with whether
or not the solution to the above optimization problem is a linear
function of its input y; nonlinear regularizing functionals (e.g.,
quadratic)g(�) may well lead to a linear solution.

Weak continuity (WC), which was developed by Mumford and
Shah [22], [23] and Blake and Zisserman [1] (see also Morel and
Solimini [24]), is, in a sense, the next logical step beyond Tikhonov
regularization. WC attempts to fitpiecewise-smooth candidate inter-
pretations to the observable data (thus, the termweakcontinuity).

Since, in practice, we often deal with digital data, i.e., sequences of
finite-alphabet variables, in order to avoid unnecessary complication,
we present a digital version of discrete-time WC (following Blake
and Zisserman [1]).

Problem 2—Weak Continuity: Given a (generally real-valued)
sequence of finite extenty = fy(n)gN�1

n=0
2 RN , find a finite-

alphabet sequencêx = fx̂(n)gN�1
n=0

2 AN (thereproduction process;
usually,A is, e.g.,f0; 1; . . . ; 255g) and a sequence of boolean edge
markersê = fê(n)gN�1

n=1
2 f0; 1gN�1 (the edge process) so that the

following cost is minimized.

VWC(y; x; e) =

N�1

n=0

(y(n)� x(n))
2
+

N�1

n=1

�
2

WC(x(n)

� x(n� 1))
2
(1� e(n)) + �e(n) :

Here,� is a nonnegative real.
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Fig. 1. WC regularizing functional.

If (x(n)�x(n� 1))2 is too large, one has the option of declaring
an edge in betweenx(n) andx(n � 1) by choosinge(n) = 1, and
thus paying only�, instead of�2WC(x(n)�x(n�1))2. One can first
minimize with respect to the edge process and then minimize the
resulting functional with respect to the reproduction process. Since
the first sum in the combined cost does not depend on the edge
process, it is easy to see [1, pp. 43, 112–114] that the optimization
above is equivalent to minimizing

V
0

WC(y;x)

=

N�1

n=0

(y(n)� x(n))
2
+

N�1

n=1

h�;� (x(n)� x(n� 1))

by appropriate choice of reproduction processx, whereh�;� :

Z 7! R is defined as

h�;� (t) =
�2WCt

2; t2 < �

�

�; otherwise

This is depicted in Fig. 1. The associated optimal edge process
can be implicitly inferred, once the optimal reproduction process is
determined, by level tests on the first-order residualsx̂(n)� x̂(n�1)

of the optimal reproduction process.
From the form ofV 0WC, one may readily see why WC is the

next logical step beyond Tikhonov regularization: WC replaces the
quadratic regularizer in Tikhonov regularization with a hard-limited
quadratic. In general, classical optimization techniques, like steepest
descent, are not applicable to nonconvex problems like WC [28],
even if these problems only involve continuous variables; this is due
to the existence of local minima [28].

There exist essentially two ways to go about solving WC: dynamic
programming (DP) [29] and the so-calledgraduated nonconvexity
(GNC) algorithm [1]. The GNC is suitable for optimization over
x̂ 2 RN , i.e., the continuous-valued case, and it does not lend itself
to discrete-valued problems, i.e.,x̂ 2 AN [28]. There are two DP
algorithms for WC: one that works by DP over “time” (in a manner
very similar to the Viterbi algorithm [30]–[32]) andrequiresx to
be quantized [33] and another that works by DP over “edges” [28]
and works for either continuous or discrete-valuedx, i.e., either
x̂ 2 RN or x̂ 2 AN . The latter is much slower than the former
for moderatejAj. Here, we consider the discrete-valued problem and
opt for the former; throughout, we use DP over “time” to solve WC
in O(jAj2N). DP is exact, i.e., it provides a true minimizer; GNC
has been proven to do so for a large class of inputs [1] but not for
an arbitrary input. The drawback of DP is that it does not easily
generalize in higher dimensions (however, cf. [34]). The GNC, in
comparison, carries over quite effortlessly in higher dimensions. The
GNC is a special case ofmean field annealing[35].

As mentioned earlier, WC and the GNC can be interpreted from a
Bayesian estimation viewpoint; they are closely related tomaximum

Fig. 2. WC reg. functional: case of�2
WC

> �.

a posteriori (MAP) inference for Markov models and associated
annealing-type algorithms [2]–[10], [35].

A related optimization has been advocated by Leclerc [36] (also
cf. [7]) based on theminimum description length(MDL) principle of
Rissanen [37]. The MDL principle can be related to an instance of
the MAP principle with a certain suitable choice of prior. In Leclerc’s
formulation, one seeks to minimize

VMDL(y;x)

=

N�1

n=0

(y(n)� x(n))2

�2
+

N�1

n=1

�MDL[1� �(x(n)� x(n� 1))]

by appropriate choice of reproduction processx, where � is the
Kronecker delta function, and�2 is noise variance. Here,�MDL � 0.
We should note that this cost is only an approximation of the MDL
objective function obtained under certain assumptions. MDL, in
general, need not take this form.

Leclerc pointed out that in the case of one-dimensional (1-D) data,
one can readily figure out a DP program to minimizeVMDL and
provided a GNC-like algorithm for two-dimensional (2-D) data.

Both WC and MDL seek to minimize a cost of the following
general form.

V(y; x) =

N�1

n=0

dn(y(n); x(n)) +

N�1

n=1

gn(x(n); x(n� 1)):

In casex 2 AN ; jAj <1, Leclerc’s MDL formulation is a special
case of WC. Indeed, if�WC is sufficiently large (i.e.,�2WC > �),
thent being an integer,h�;� (t) = �[1��(t)]. This is depicted in
Fig. 2. If, in addition,� = �MDL�

2, then WC reduces to Leclerc’s
MDL approach.

Both WC, and Leclerc’s MDL approach are powerful and meri-
torious paradigms; however, in the context of edge detection in the
presence of impulsive noise, both exhibit a shortcoming; they are
susceptible to noise-induced outliers1 that are locally inconsistent
with the data. Consider an input consisting of a single Kronecker
delta of height�. If (�

�
)2 > 2�MDL, then Leclerc’s MDL approach

will preserve this delta; similarly, if�2 > �

�
and�2 > 2�, then

WC will also preserve it. Thus, for each given choice of respective
optimization parameter(s), one can find a sufficiently large� so
that both WC and Leclerc’s MDL approach will preserve outliers
of magnitude� �.

WC and MDL are susceptible to these outliers because they both
stipulate a model that classifies powerful outliers as information-
bearing signals. In the context of segmentation, this means that
outliers are segmented as separate regions (which can later be merged
with other more significant regions). However, in the context of edge
detection in the presence of strong impulsive noise interference, this

1In the digital world, there is really no such thing as an impulse; a better
substitute term would beoutlier, or outlying burst.
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behavior is undesirable; these outliers are usually associated with the
noise rather than the signal.

Of course, there is no universal agreement on what constitutes
an edge and what constitutes an outlier, and we will certainly steer
clear of offering a suggestion. Even though defining an edge or an
outlier can be a delicate and potentially troublesome task, defining
what distinguishes an edge from an outlieris arguably easier. The
following axiom adopts a simple and intuitive viewpoint.

True edges in the data should be consistent in the sense that they
should manifest themselves as jump level changes in between two
locally approximately flat regions of sufficient breadth, and this is
what distinguishes an edge from an outlier.

This leads to nonlinear regression ideas.

B. Nonlinear Regression

Nonlinear regression exploits prior knowledge about the signal and
the noise by picking a solution (estimate) from acharacteristic set, C
of candidate solutions compatible with given prior knowledge about
the signal with the goal of minimizing a noise-induced distortion
measure between the solution and the observation; see the following
problem.

Problem 3—Nonlinear Regression:

minimize:
N�1

n=0

dn(y(n); x(n))

subject to:x = fx(n)gN�1n=0 2 C:

Nonlinear regression may be interpreted as a generalized projection or
as constrained maximum likelihood, provided that the noise sequence
can be assumed to be independentdn(y(n); x(n)) = dn(y(n) �
x(n)) and equal to minus the logarithm of the noise marginal at time
n evaluated aty(n) � x(n).

Observe that ifdn(�; �) is a distance for alln (and even under milder
conditions [20], [21]), then theroot set (or domain of invariance,
which is the class of signals that are invariant under the regression)
of nonlinear regression is precisely the characteristic set of the
regression. This kind of precise control over the root set is certainly
appealing, as is the closest nonlinear filtering analog2 to controling
a linear filter’s passband. Observe that this type of control is not, in
general, available in nonlinear regularization approaches, like WC,
whose input–output analysis is very difficult [1], [24]. One may
work out results that exclude certain signals from the root set of
WC, and we will do this in the sequel. A full characterization of root
signal structure for WC appears to be very difficult, and this difficulty
carries over, in part, to our proposed hybrid regression-regularization
approach.

Specific instances of nonlinear regression can be found in
[18]–[21]. These include the following problem.

Problem 4—VORCA Filtering [20]:

minimize:
N�1

n=0

dn(y(n); x(n))

subject tox = fx(n)gN�1n=0 2 P
N
M

wherePNM is the set of all sequences ofN elements ofA that are
piecewise constant of plateau (run) length� M . This regression
explicitly formalizes the axiom that edges should be consistent in
the sense of exhibiting sufficient breadth in both directions. This
regression can be efficiently implemented via the Viterbi algorithm
in time O((jAj2 + jAj(M � 1))N) [20].

2Although the concept of a nonlinear filter’s root signal set is far less
powerful than the concept of passband for linear filters because the principle
of superposition does not hold.

Locally monotonic regression [18], [19] is another example. This
regression is the optimal counterpart of iterated median filtering.
It involves the concept oflocal monotonicity, which we need to
define. Local monotonicity is a property of sequences that appears
in the study of the set of root signals of the median filter [11], [12],
[14]–[17]; it constraints the roughness of a signal by limiting the
rate at which the signal undergoes changes of trend (increasing to
decreasing or vice versa).

Let x be a real-valued sequence (string) of lengthN , and let
be any integer less than or equal toN . A segmentof x of length
is any substring of consecutive components ofx. Let xi+�1i =
fx(i); . . . ; x(i +  � 1)g; i � 0; i +  � N be any such segment.
x
i+�1
i is monotonic if eitherx(i) � x(i+1) � � � � � x(i+ � 1)

or x(i) � x(i + 1) � � � � � x(i +  � 1).
Definition 1: A real-valued sequencex of length N is locally

monotonicof degree� � N (or lomo-� or, simply, lomo, in case
� is understood) if each and every one of its segments of length�

is monotonic.
Throughout the following, we assume that3 � � � N . A sequence

x is said to exhibit an increasing (resp. decreasing) transition at
coordinatei if x(i) < x(i + 1) (resp.x(i) > x(i + 1)). If x is
locally monotonic of degree�, thenx has a constant segment (run of
identical symbols) of length at least� � 1 in between an increasing
and a decreasing transition; the reverse is also true [11], [18]. If
3 � � � � � N , then a sequence of lengthN that is lomo-� is
lomo-� as well; thus, thelomotonicityof a sequence is defined as the
highest degree of local monotonicity that it possesses [18].

In the 1-D finite-data case, iterations of median filtering are known
to converge, regardless of the original input (modulo some patholog-
ical cases) to a locally monotonic signal of lomo-degree related to
the size of the median window and resembling the original input.
However, this resemblance cannot be quantified, and, in general, the
result of iterated median filtering is not the best (e.g., in thel1, or l2
sense) locally monotonic approximation of the original input signal.
This gave rise to the idea of locally monotonic regression, which was
proposed by Restrepo and Bovik [18]. They developed an elegant
mathematical framework in which they studied locally monotonic
regressions inRN . The problem was that their regression algorithms
entailed a computational complexity that was exponential inN (the
size of the sample). Motivated by this observation, and the fact that
median filtering of digital signals always results in digital signals,
Sidiropoulos proposed the following problem.

Problem 5—Digital Locally Monotonic Regression: [21]

minimize:
N�1

n=0

dn(y(n); x(n))

subject to:x = fx(n)gN�1n=0 2 �(�;N;A)

where�(�;N;A) is the set of all sequences ofN elements ofA,
which are locally monotonic of lomo-degree� [21].

This latter problem can be efficiently solved via the Viterbi
algorithm in timeO(jAj2�N ), i.e., linear in N [21].

Both approaches are robust in the sense of suppressing impulsive
noise while preserving salient edge signals. However, neither take
into accountedge strength, i.e., the magnitude of jump level changes.
This often results in undesirable ripple in the solution, and it happens
exactly because pure nonlinear regression does notexplicitly account
for roughness/complexity, i.e., unlike WC, it does not incorporate
a roughness/complexity penalty into the cost function: As long as a
solution remains within the characteristic set of the regression, it may
follow relatively insignificant input features.
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III. W EAK CONTINUITY WITH STRUCTURAL CONSTRAINTS

We have seen that nonlinear regression, by virtue of its reliance on
hard structural constraints, is robust in the presence of outliers, yet
it may trace relatively insignificant edge features. On the other hand,
nonlinear regularization (and WC in particular) ranks the importance
of edge features by means of their significance in terms of the incurred
approximation error [1], yet it does not exhibit the same degree of
robustness in the presence of outliers. It appears quite natural, then,
to endow WC with improved robustness by proposing the following
hybrid optimization.

Problem 6—Weak Continuity with Structural Constraints
(WCSC):

min: V(y;x) =
N�1

n=0

dn(y(n); x(n))

+

N�1

n=1

gn(x(n); x(n� 1))

subject to: x 2 C

where C is the set of all sequences ofN elements of A
satisfying some local hard structural constraint. Here again,
d(x;y) =

N�1

n=0
dn(y(n); x(n)) is a fidelity measure, and

g(x) =
N�1

n=1
gn(x(n); x(n � 1)) is a roughness-complexity

measure.
WhenC = PNM , runlength-constrained weak continuity(RC-WC)

results; similarly, ifC = �(�;N;A), then locally monotonic weak
continuity (LM-WC)results. VORCA is a special case of RC-WC, and
so is WC, MDL. Digital locally monotonic regression is a special case
of LM-WC, and so is WC, MDL.

It should be noted that the incorporation of hard structural con-
straints is not the only way to handle outliers in the context of
nonlinear regularization, e.g., cf. [9].

It is not difficult to see that RC-WC and LM-WC can be solved
using exactly the same resources and computational structures as
VORCA and digital locally monotonic regression, respectively. The
extension to weak continuity (i.e., the incorporation of the first-order
roughness-complexity measureg(x) =

N�1

n=1
gn(x(n); x(n � 1))

into the cost functional) essentially comes for free; we skip the details
and refer to [20] and [21]. One basically has to set up a suitable
Viterbi trellis and specify the cost of one-step state transitions. The
resulting complexity of RC-WC, LM-WC isO((jAj2 + jAj(M �

1))N); O(jAj2�N ), respectively. Observe that these algorithms
work for any choice of fidelity and roughness-complexity measures
of the above general form. It should be noted that one could consider
roughness-complexity measures of order higher than one. Yet, this
entails a significant increase in computational complexity of the
resulting Trellis-type implementation. For this reason, we chose to
work with first-order roughness-complexity measures.

A. Existence of and Convergence to the WCSC Root Set

Observe that the WCSC problem above always has a solution,
albeit not necessarily a unique one.3 We have the following important
characterization theorem.

Theorem 1: If d(�; �) is a distance metric4 and we resolve ties by
selecting a solution of least roughness-complexity,5 then WCSC is an

3Nonuniqueness usually complicates the analysis of optimization problems,
e.g., cf. [20] and the proof of the next theorem.

4This is usually the case in practice.
5This is easy to implement in a trellis computation by keeping track of the

roughness-complexity measure accrued so far by partial solutions using an
auxiliary state variable by virtue of the fact that roughness-complexity is a
sum of state transition costs.

idempotent operation, i.e., it converges to an element of its root set
in just one application. This is true for all characteristic setsC and,
therefore, also for pure WC.

Proof: Consider an arbitrary inputy, and letx̂ be a correspond-
ing WCSC solution computed in accordance with the tie-breaking
strategy in the statement of the theorem. In addition, let~x be a
solution to the WCSC problemfor input x̂. Suppose that~x; x̂ are
distinct. Clearly, botĥx and ~x are necessarily inC. Therefore, from
optimality of x̂ for input y over C, it follows that

d(y; x̂) + g(x̂) � d(y; ~x) + g(~x): (1)

On the other hand, from optimality of~x for input x̂ overC, it follows
that

d(x̂; ~x) + g(~x) � d(x̂; x̂) + g(x̂)

or, sinced(�; �) is a distance metric

d(x̂; ~x) + g(~x) � g(x̂): (2)

Add d(y; x̂) to both sides of this inequality to obtain

d(y; x̂) + d(x̂; ~x) + g(~x) � d(y; x̂) + g(x̂):

By the triangle inequality, we have thatd(y; ~x) � d(y; x̂)+d(x̂; ~x);
it then follows that

d(y; ~x) + g(~x) � d(y; x̂) + g(x̂): (3)

From (1) and (3), it follows that

d(y; ~x) + g(~x) = d(y; x̂) + g(x̂)

i.e., there exists a tie between~x and x̂ for input y. Given the
tie-breaking strategy in the statement of the theorem, it follows that

g(x̂) � g(~x) (4)

sincex̂ is a least roughness-complexity solution for inputy over C.
However, (2), combined with the fact thatd(�; �) is a distance metric,
and the assumption that~x; x̂ are distinct, implies that

g(~x) < g(x̂): (5)

Inequalities (4) and (5) constitute a contradiction; it follows that the
hypothesis that~x; x̂ are distinct is false. This deduction works for
arbitraryy; the proof is therefore complete.

This is a very useful result because it demonstrates that provided
distortion is a distance metric, the root set of WCSC is well defined,
and, in fact, one application of WCSC is sufficient for convergence to
a root signal, regardless of choice of roughness-complexity measure
g(�) and characteristic setC. This is a highly desirable property, both
from a theoretical and from a practical viewpoint [38].

What is the root set of WCSC? It is obvious that (provided
distortion is a distance) the root set of WCSC is a subset of its
characteristic setC. Actually, it is possible to show that the root set
is usually aproper subset ofC. We will provide some results in this
direction in the following section, although, in general, a complete
root signal analysis of WCSC appears to be very hard. Still, knowing
that the root set is a subset ofC is better than what we can currently
say about pure WC.

B. Design

Given the general WCSC formulation above, one needs to choose
dn, gn, and the characteristic setC for a particular problem in hand.
From a Bayesian perspective, the formulation above is tantamount
to MAP estimation of a signalx in additive noise, provided that
dn(y(n); x(n)) = dn(y(n) � x(n)), the noise sequence can be
assumed to be independent (and independent of the signal) with
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Fig. 3. Isolated outlying burst of widthw.

marginal at timen given bye�d (�), and the signal prior ise�g(x) =

e
� g (x(n);x(n�1)) over C, and zero elsewhere. Therefore, at

least in principle,dn, gn, andC can be estimated from training data.
The choice ofdn is relatively easier; e.g.,dn(y(n) � x(n))

proportional tojy(n)� x(n)j means one expects to be dealing with
Laplacian (long-tailed) noise. The choice ofgn and C is far more
critical as it constitutes thesignal model, which is usually much
harder to infer from limited training data. It is for this reason that
for the purposes of segmentation and nonlinear filtering, we choose
to restrictC to bePN

M or �(�;N;A), which have been proven to be
useful characteristic sets from a pure regression viewpoint, andgn
to �2 times a WC-type hardlimited notch function. This suggests a
useful class of signal models that is not apparent from a Bayesian
perspective and reduces the choice of signal model down to selecting
two parameters.6

With these choices, what remains to be investigated is the interplay
betweenM or � and �2. We know that at least for some specific
choices, e.g.,M = 1, leading to WC, MDL, or�2 = 0, leading
to VORCA, or digital locally monotonic regression, we may expect
good nonlinear filtering results. The point is, can we make even better
choices? To see this, let us consider a concrete instance of RC-WC.

IV. A SPECIFIC INSTANCE OF RC-WC

Let dn(y(n); x(n)) = jy(n) � x(n)j; gn(x(n); x(n � 1)) =

�2[1� �(x(n)� x(n� 1))] for all n, and letC = PN
M , i.e., consider

minimize: V(y; x) =
N�1

n=0

jy(n)� x(n)j

+ �
2

N�1

n=1

[1� �(x(n)� x(n� 1))]

subject to: x 2 P
N
M :

We will need the following definitions.
Definition 2: An isolated outlying burst of widthw < M is a

deviation from a plateau of the type depicted in Fig. 3.
Definition 3: An isolated profile of saliency (sum of absolute devi-

ations, which here is simply the width-strength product)� = w �H is
an equidistant deviation from a plateau of the type depicted in Fig. 4.

In the strict sense, isolated means that the entire input consists of
the given feature; in practice, it means that the given feature is away
from possible interactions with other input features.7 The following
two claims provide guidelines on how to chooseM; �2. These claims
apply to this particular instance of RC-WC.

6Note that other classes of signal models have been investigated in the
context of MRF’s, e.g., cf. [4] and references therein.

7This type of analysis of isolated features is typical of WC, and it is
necessitated by analytical difficulties in dealing with potential interactions,
e.g., cf. [1, pp. 58, 67, 100, 143, and 215].

Fig. 4. Isolated constant segment of saliency� = w � H.

Fig. 5. Noise-free test data.

Fig. 6. Noisy input data.

Claim 1: Assume thatM is odd. RC-WC eliminates all isolated
outlying bursts of widthw � M�1

2
, regardless of�2, and the same

is true for �2 = 0, i.e., plain VORCA filtering with respect to the
above choice ofdn(�; �).

Proof: With reference to Fig. 3, sincew < M , the next best
candidate (modulo a shift that is irrelevant here) after just drawing a
straight line at the plateau level would be one consisting of just three
constant segments, the middle of which is of widthM , as shown
with a dotted line in Fig. 3. This is because any two-segment solution
would incur a cost that can be made as large as one wishes (this is
where the assumption that one deals withisolated features comes
into play). Now, the level of this middle segment should be chosen
optimally to minimize the sum of absolute errors. This amounts to
constant regression overM symbols under a least absolute error
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Fig. 7. Output of WC,�2 = 55.

criterion, and it is well known [18] that the answer is provided by
the median of theseM symbols. However, since onlyw �

M�1

2
of

theseM symbols are potentially different from the plateau level (l

in Fig. 3), it follows that the absolute majority of theseM symbols
is equal to the plateau level, and, therefore, the median produces this
level at its output: The best solution amounts to simply drawing a
straight line at the plateau level.

Claim 2: RC-WC suppresses all isolated profiles of saliency
(width-strength product)� = w � H < 2�2, i.e., mends the weak
edges at the endpoints of such profiles, and the same holds forM = 1,
i.e., plain WC with respect to the above choice ofdn(�; �); gn(�; �).

Proof: In reference to Fig. 4, the next best candidate after just
drawing a straight line at the plateau level would be (if allowed
by the runlength constraint) one consisting of just three constant
segments exactly following the input in Fig. 4 (again, this is where
the assumption that one deals with isolated features comes into play).
Such a candidate would incur a cost of at least2�2, whereas the
straight line solution carries a cost of� = w �H < 2�2.

The overall conclusion is that this particular instance of RC-WC
suppresses features of either i) widthw �

M�1

2
(M : odd),regardless

of strength, or ii) saliency � = w � H < 2�2. This allows us
to essentially separately fine tune two important aspects of filter
behavior. Given an estimate of maximum outlying burst duration,
we pick M to eliminate outlying bursts. Given that we desire to
suppress insignificant profiles producing spurious weak edges, where
significance is quantified by profile saliency, we pick�2. In a nutshell,
M controls outlier rejection, whereas�2 controls residual ripple.

A. An Illustrative Simulation Experiment

Fig. 6 depicts a noisy input sequence. This input has been generated
by adding noise on synthetic piecewise-constant data, which is
depicted in Fig. 5. The noise is white Gaussian; a simulated error
burst has also been added to test outlier rejection capability. The
outlying burst in Fig. 6 has length 6 and saliency (here, sum of
absolute burst errors) 120. The noiseless signal in Fig. 5 consists
of two rectangular pulses. The first has length 40 and saliency 120;
the second has length 20 and saliency 60.

In reality, one rarely has a precise noise model available, and
practitioners will opt for, e.g., tried-and-truel2 or l1 distance metrics,
depending on whether the noise appears to be closer to Gaussian
(short-tailed) or Laplacian (long-tailed), respectively. If the noise
appears to be mixed (as is the case here due to the simulated
outlying burst), this choice is not obvious. We chose thel1 metric
because it provides for improved outlier rejection, although this

Fig. 8. Output of WC,�2 = 50.

Fig. 9. Output of WC,�2 = 45.

Fig. 10. Output of WC,�2 = 20.

choice does not appear to be critical.8 We selectedC = PNM since
this is a natural parameterized constraint set for piecewise constant
signals. Finally, we chosegn to be a hardlimited MDL-type notch
gn(x(n); x(n � 1)) = �2[1� �(x(n)� x(n � 1))] for all n.

With these choices, we may use the claims above to help us pick
appropriate values for the two optimization parameters. Accordingly,
we selected the values�2 = 15 andM = 15. This way, we may

8Qualitatively comparable results have been obtained using thel2 metric.
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Fig. 11. Output of WC,�2 = 15.

Fig. 12. Output of VORCA,M = 45.

guarantee the suppression of any isolated outlying burst of length up
to 7 (which is just above what is required to suppress the simulated
burst) and any isolated constant segment of saliency less than 30
(which is conservatively below the saliency of the weakest signal
feature).

For M = 1, we obtain plain WC, and the results for�2 =

55; 50; 45; 20; 15 are depicted in Figs. 7–11, respectively. Observe
that even though the saliency of the outlying burst is the same as that
of the first signal pulse, WC first segments the burst (which lacks
sufficient consistency) rather than the pulse. Actually, as illustrated by
these figures, WC cannot properly segment the signal in this example
without also segmenting the burst, i.e., it cannot differentiate between
a consistent pulse and a relatively inconsistent outlying burst. This
is because WC ranks features by saliency, and saliency is not an
unambiguous indicator of consistency; what distinguishes the signal
in Fig. 5 from the burst is consistency but not saliency. In addition,
observe that (even though we usedl1 instead ofl2 distance), WC
exhibits the so-calleduniform localization propertyin scale-space. As
�2 is reduced, new edges may be introduced, but previously detected
edges remain stable (lines in scale-space are vertical) [1]. This is a
desirable property [1].

For �2 = 0, we obtain plain VORCA, and the results forM =

45; 40; 30; 25; 15 are depicted in Figs. 12–16, respectively. Observe
that as expected, VORCA first segments out the stronger signal pulse
while virtually eliminating the outlying burst. It then proceeds to
segment the second (weaker) signal pulse, whereas at the same time

Fig. 13. Output of VORCA,M = 40.

Fig. 14. Output of VORCA,M = 30.

Fig. 15. Output of VORCA,M = 25.

producing ripple artifacts due to the burst and the Gaussian noise.
These artifacts become progressively significant asM is reduced.
Notice that even atM = 45, the effect of the burst is nevercompletely
eliminated due to the end-transient effect. In addition, observe that
VORCA does not enjoy the uniform localization property of WC,
although edges appear to be stable over wide ranges of values ofM .

For �2 = 15, andM = 15, we have hybrid RC-WC, and the
result is depicted in Fig. 17. RC-WC effectively combines the power
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Fig. 16. Output of VORCA,M = 15.

Fig. 17. RC-WC,M = 15; �2 = 15, combines the power of both methods.

of both methods. The notable exception relative to WC is the loss
of the uniform localization property (in RC-WC, “scale” depends on
both �2 andM ; varying M does not necessarily lead to a stable
scale space).

The overall run time is about 2 s forjAj = 50 levels on a SUN
SPARC 10 using simple C-code. Much better benchmarks may be
expected for smaller alphabets and/or by implementing the algorithm
in dedicated Viterbi hardware (cf. [32] and references therein).

V. CONCLUSION

We proposed WCSC, which is a hybrid nonlinear regression-
regularization approach for segmentation and nonlinear filtering. The
proposed approach draws on earlier work in WC and nonlinear
regression, effectively combines the best of both worlds (with the
notable exception of the uniform localization property of WC), and
can be efficiently implemented via the Viterbi algorithm.

Two types of WCSC have been discussed: RC-WC and LM-
WC. Due to space limitations, the emphasis here was on RC-
WC. Depending on the kind of roughness-complexity regularizing
functional used, LM-WC can be very different from RC-WC. In
particular, the characteristic set of RC-WC is a proper subset of that
of LM-WC. The latter, e.g., includes ramp signals and all monotonic
signals. For relatively mild roughness-complexity penalties, LM-WC
may follow ramp edges, whereas RC-WC will convert these to step
edges. LM-WC is computationally more complex than RC-WC.

WCSC does not incorporate anexplicit blur model. It may restore
blurred and noisy edges but in a somewhatad hocmanner. If the data
is blurred and the blur is, e.g., asymmetric, restoration may fail to
properly localize edges. The incorporation of an explicit blur model
into the present paradigm may be worthwhile in cases where the
present approach fails.
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An Adaptive Matched Filter that
Compensates for I, Q Mismatch Errors

Karl Gerlach and M. J. Steiner

Abstract—An approach to adaptively match filter the I and Q compo-
nents of complex-valued inputs consisting of a desired signal embedded
in correlated external noise is presented. This approach is tolerant of I,
Q mismatch errors, i.e., the external noise is effectively rejected and the
desired signal enhanced in the presence of significant receiver I, Q errors.
I, Q adaptive weighting removes many of the deleterious effects of I, Q
quadrature detection imbalance, which can severely limit the adaptive
matched filter (AMF) performance. However, for the I, Q AMF, the
unknown desired signal’s initial phase complicates the design procedure
and even for a reasonable design criterion, the AMF performance can
fluctuate significantly as a function of this phase. An I, Q AMF technique
whose performance is almost phase invariant is developed, and an
example of its utility is shown.

I. INTRODUCTION

A quadrature detector uses two distinct channels to form the
in-phase (I) and quadrature phase (Q) components of a received
narrowband signal. Each channel consists of a mixer, lowpass filter,
and A/D converter. Quadrature detector I and Q errors can severely
limit the performance of adaptive cancellers and matched filters [1].
These errors are caused by amplitude and phase imbalances in the
mixers when there are multiple received channels or in a given mixer
over time when the mixer oscillator is noisy. In addition, a noisy
transmitter oscillator can cause I, Q errors. Other sources of I, Q errors
are unbalanced lowpass filters (which follow the mixing operation),
A/D sampling errors, dc bias, nonlinearities, and intermods. The
outputs of the I, Q detection process are often represented as complex
numbers.

If a desired signal is embedded in unknown external noise (such as
clutter or jamming), an adaptive canceller or adaptive matched filter
(AMF) can significantly enhance the signal-to-noise ratio (SNR). The
inputs to the AMF (or canceller) can be spatial and/or temporal. In any
case, if the noise components of the inputs are significantly correlated
and the desired signal components of the inputs are different in
character from the noise components, then the SNR can be greatly
improved by the AMF. However, if complex weighting (multiplying
a distinct complex weight times each complex input) is used to
implement the AMF, the I, Q errors can severely limit the AMF gain.

A technique that removes I, Q phase and amplitude imbalances
and equalizes the I, Q quadrature filters while at the same time
performing the adaptive matched filter function is to individually
adaptively weight (with real valued weights) the real and imaginary
parts (the I and Q) of each complex input. We refer to this technique
as I, Q weighting. It has been found that adaptive I, Q weighting can
significantly improve adaptive canceller performance [1]. However,
how to adaptively match filter using I, Q weighting has not been
addressed in the literature. The difficulty of adaptively matched
filtering using the I, Q samples results from the fact that the desired
signal’s steering vector is a function of the unknown initial phase of
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