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Fast and Effective Retrieval
of Medical Tumor Shapes

Philip (Flip) Korn, Nicholas Sidiropoulos, Member, IEEE,
Christos Faloutsos, Eliot Siegel, and Zenon Protopapas

Abstract—We investigate the problem of retrieving similar shapes from a large database; in particular, we focus on medical tumor
shapes (“Find tumors that are similar to a given pattern.”). We use a natural similarity function for shape-matching, based on
concepts from mathematical morphology, and we show how it can be lower-bounded by a set of shape features for safely pruning
candidates, thus giving fast and correct output. These features can be organized in a spatial access method, leading to fast indexing
for range queries and nearest-neighbor queries. In addition to the lower-bounding, our second contribution is the design of a fast
algorithm for nearest-neighbor search, achieving significant speedup while provably guaranteeing correctness. Our experiments
demonstrate that roughly 90 percent of the candidates can be pruned using these techniques, resulting in up to 27 times better

performance compared to sequential scan.

Index Terms—Content-based retrieval, multimedia indexing, mathematical morphology, pattern spectrum.

1 INTRODUCTION

URING the past 20 years, the development of new mo-
dalities, such as Computed Tomography (CT) and Mag-
netic Resonance Imaging (MRI), have substantially in-
creased the number and complexity of images presented to
radiologists and other physicians. Additionally, the recent
introduction of large scale Picture Archival and Communi-
cation Systems (PACS) has resulted in the creation of large
digital-image databases. A typical radiology department cur-
rently generates between 100, 000 and 10 million such images
per year. A filmless imaging department such as the Balti-
more Veterans Administration Medical Center (VAMC) gen-
erates approximately 1.5 terabytes of image data annually.
An algorithm that would be able to search for similar
shapes rapidly would have a number of useful applications
in diagnostic imaging. Both “experts” such as radiologists and
nonexperts could use such a system for the following tasks:

o Diagnosis/Classification: Distinguish between a primary
or metastatic (secondary) tumor based on shape and
degree of change in shape over time correlating this
with data about diagnoses and symptoms. Computer-
aided diagnosis will be especially useful in increasing
the reliability of detection of pathology, particularly
when overlapping structures create a distraction or in
other cases where limitations of the human visual
system hamper diagnosis [34].
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e Forecasting/Time Evolution Analysis: Predict the degree
of aggressiveness of the pathologic process or try to
distinguish a particular histology based on patterns of
change in shape. In this setting, we would like to find
tumors in the database with a similar history as the
current tumor. ;

o Data Mining: Detect correlations among shapes, diag-
noses, symptoms and demographic data, and thus
form and test hypotheses about the development and
treatment of tumors.

Some terminology is necessary. Following [16], we dis-
tinguish between

a) range queries (“Find shapes that are within distance €
from the desirable query shape.”), and

b) nearest-neighbor queries (“Find the first k closest
shapes to the query shape.”).

An orthogonal axis of classification distinguishes between
a) whole-matching and b) subpattern matching. In whole-
matching queries, the user specifies an S X 5 query image
and requires images of S x S that are similar; in subpattern
matching queries, the user specifies only a small portion
and requires all the (arbitrary-size) images that contain a
similar pattern.

In all of the above tasks, the central problem is similarity
matching: “Find tumors that are similar to a given pattern,”
including shape, shape changes, and demographic patient
data. In this paper we focus on whole-matching of similar
shapes only.

This paper is organized as follows: Section 2 reviews
some background material on spatial access methods and
shape representation for shape indexing. Section 3 gives the
problem definition. Section 4 gives the proposed solution.
Section 5 presents the experimental results in terms of both
effectiveness and efficiency. Section 6 examines why the
proposed method is successful. Section 7 lists the conslu-
sions and directions for future research.

1041-4347/98/$10.00 © 1998 IEEE
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2 BACKGROUND

The state-of-the-art in multimedia indexing is based on
feature extraction [33], [16]. The idea is to extract # numeri-
cal features from the objects of interest, mapping them into
points in an n-dimensional space. Then any multi-
dimensional indexing method can be used to organize,
cluster, and efficiently search the resulting points. Such
methods are traditionally called Spatial Access Methods
(SAMs). Using this framework, a query (in “object space”)
of the form, “Find objects similar to the query object Q,” be-
comes the query (in “feature space”), “Find points that are
close to the query point q,” and thus becomes a range query
or nearest-neighbor query in a reduced space. A SAM can
be used to quickly identify qualifying points and, from
them, the corresponding objects.

In Section 2.1, we review work on SAMs, shape repre-
sentation for shape-matching and feature extraction, and
then some work from the database literature on general
index design for scalability, drawing on the two latter top-
ics. As was pointed out in [13], work on shape-matching
falls into either of two camps:

a) one with an emphasis on the image processing and
pattern recognition aspects of shape-matching, and

b) one with an emphasis on indexing and scale-up is-
sues for large databases.

The focus of Section 2.2 is on the former, while the focus of
Section 2.3 is on the latter.

2.1 Spatial Access Methods

Spatial access methods are the prevailing mechanism be-
hind multimedia indexing. In a SAM, objects are repre-
sented by feature vectors in a multidimensional vector space,
and searching is made efficient by organizing the objects (or
decomposing the space) hierarchically. SAMs fall into one
of the following broad classes:

e methods that transform rectangles into points in a
higher dimensionality space [26};

e methods that use linear quadtrees [19];

o methods that use space-filling curves (e.g., z-ordering
[47], Hilbert curves [14], [31]); and

o methods based on trees (e.g., the R-tree [24], the
k-d-tree [5], the k-d-B-tree [51], and the hB-tree [39]).

One of the most promising apploaches is the R-tree [24]
and its numerous variants (e.g., the R-tree [56], the P-tree
[32], and the R*-tree [4]). Fig. 1 illustratec a space of ob-
jects and bounding rectangles, with its associated R-tree
representation.

2.2 Shape Representation

Shape representation is an interesting: enough problem to
have attracted many researchers and to have generated a
rich array of approaches [48]. There are two closely related
problems:

a) how to measure the difference between two shapes
so that it corresponds to the visually perceived dif-
ference, and

b) how to represent a single shape compactly.

Despite recognized limitations [53], [57], similarity
(rather, dissimilarity) is typically measured by a distance
function in a metric space (e.g., [29]) This is primarily be-
cause metric spaces are convenient to work with, due to
properties like the triangle inequality, which can be ex-
ploited for pruning candidates.

With respect to representations, the most popular meth-
ods are the following:

e Landmarks, such as in [3], where information about
the eyes, nose, etc., is extracted to represent a face.

¢ Simpler shapes, such as polygonalization [20] and
rectangularization [33].

e Numerical vectors, such as

a) samples of the ‘turning angle’ plot [27] (that is,
the slope of the tangent at each point of the pe-
riphery, as a function of the distance traveled on
the periphery from a designated starting point);

b) some coefficients of the 2-d Discrete Fourier
Transform (DFT) [13], [6] or the 2-d Discrete
Wavelet Transform [30];

¢) the first few moments of inertia [17], [13]; or

d) the pattern spectrum from Mathematical Morphol-
ogy [43], [40] (see Appendix A).

Next, we consider approaches from the database litera-
ture for indexing based on combining a given shape repre-
sentation with a SAM for fast searching in a large database.

2.3 Scalable Shape Matching v

The seminal paper of [33] introduced the idea of feature
extraction for indexing a large collection of shapes by de-
composing them into rectangular components, representing
the rectangularizations compactly as feature vectors, and
then organizing the vectors in a SAM. While this approach
is scalable, it is not guaranteed to be ‘correct’ in that the
method may miss some of the qualifying objects with re-
spect to the object distance function (i.e., it may allow false-
dismissals). Several other scalable shape indexing schemes
have been proposed (e.g., [45], [46], [6], but none of them
guarantee against false-dismissals. -

In [1], it was shown that a contractive mapping of multi-
media objects into points in feature space guarantees that a
range query issued in feature space must retrieve a superset
of the corresponding query issued in object space. Follow-
ing [15], we call the resulting index a GEMINL The lower-
bounding ensures that there are no false-negatives." Thus,
the GEMINI method is correct if the object distance is
lower-bounded by the distance in feature space.5

Mathematically, let O; and O; be two objects (e.g., time

‘sequences) with distance functlon Dpect (8., the sum of

squared errors). Let F (O;) and F (O)) be their feature vectors

1. The distance between objects in a metric space is given by a distance
function which is a metric, that is, for which reflexivity, symmetry, and the
triangle inequality holds.

" 2. See [57] for a consideration of alternative approaches to distance
metrics.

3. GEMINI stands for GEneric Multimedia INdexIng method.

4. False-positives are acceptable since they can be discarded in a post-
processing step.

5. This is known as an admissible heuristic in the Al literature.
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Fig. 1. An example of an R-tree built over rectangular objects: (a) objects and bounding rectangles; (b) R-tree.

(e.g., their first few Fourier coefficients), with distance
function Dy, (e.g., the Euclidean distance, again).

LEMMA 1 (Lower-Bounding). To guarantee no false dismissals
for range queries, the feature extraction function F should
satisfy the following formula:

Dfeature(P(Oi)r P(O])) < Dabject(oi/ O]) (l)
(m

Thus, for a query object Q with tolerance ¢, range query
searching involves two steps:

PROOF. In reference [1].

1) Discard quickly those objects whose fea-
ture vectors are too far away. That is, we
retrieve the objects X such that Dy, (F(Q),
FX))<e;

2) apply Dy() to discard the false alarms (the
clean-up stage).

This general framework has been used in several settings:

o for time series [1], [16], [22], [50],

o images [17], [23], and

e video [36].
To date, no other admissible feature extraction approach be-
sides CEMINI has been proposed in the databage literature.

An alternative approach to multimedia search that is
potentially both efficient and correct is to use metric trees
(e.g., the M-tree [11], , the mvp-tree [7], the GNAT-tree [8]).
Metric trees organize a collection of objects into hierarchical
‘clusters’ in a metric space for fast search that exploits the
triangle inequality. Metric trees are particularly useful when



892 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 1998

objects cannot be mapped well (as features) to a vector -

space. This is because they operate within the original ob-
ject space and require only the fact that the object distance
function be a metric.

SAMs have many of the same advantages as metric trees
(e.g., the triangle inequality), and have the following addi-
tional benefits due to feature extraction:

¢ The feature vectors can be plotted in 2-d or 3-d vector
space to visualize the data set (see Section 6);

o The feature vectors can be combined with other data
types (e.g., text, audio) for data mining; :

o As pointed out in [55], metric trees require the dis-
tance function to be fixed in advance, whereas SAMs
support distance functions which can be interactively
adapted at query time a la [54].

Moreover, ‘industrial-strength’ code for many SAM
implementations (e.g., the R*-tree) is widely available.
Regardless of whether we organize objects in a metric
tree or organize their associated features in a SAM, the
GEMINI method is applicable: it can be used in conjunc-
tion with metric trees to accelerate searching by pruning the
number of object distance computations. via the Lower-
Bounding Lemma.

3 PROBLEM DEFINITION

The first challenge that arises in content-based shape re-
trieval is that of finding a good measure of the ‘similarity’
between two shapes that is appropriate for the given do-
main. In medical tumor applications, as well as in many
other shape applications, the distance function should be
invariant to rigid motions (i.e., translations and rotations).
Note that scale-invariance is not a desired property in this
domain, as the size of a tumor contains critical informa-
tion.” Moreover, in our application we would like to distin-
guish between tumor or tumor-like shapes, called nodules,
based on the ‘jaggedness,” or ‘ruggedness,” of the periphery,
and thus would like a function that pays attention to de-
tails at several scales (see Fig. 2 for an example of a real
tumor). This multiscale characteristic is important, especially
for tumors, because the jaggedness of the periphery of a
tumor contains a lot of information about it [10]A7 Thus,

~ given two shapes, we would like to examine differences at
several scales before declaring the two shapes ‘similar.” In
Section 3.1, we present a multiscale distance function that
was proposed by domain experts in medicine (radiology)
and signal processing.

Given such a distance function, the database challenge

is to provide a method to access the desired shapes that
is significantly faster than sequentially scanning the entire
collection. This faster method, however, should not com-
promise the correctness of the output; rather, it should
return exactly the same response set that a sequential scan
would without false dismissals. We answer this chal-
* lenge in Section 4.2, where we propose an indexing
method, and in Section 4.3, where we prove its correctness.

6. Nonetheless, scale-invariance could be achieved by normalizing the
shapes (and feature vectors) such that the area of the original shape is 1.

7. It is reported in [10] that a tumor periphery with a high fractal dimen-
sion is likely to be malignant.

(@) (©)

Fig. 2. A real tumor: (a) in a mammogram X-ray; (b) magnified; and
(c) thresholded to black-and-white.

The experiments in Section 5 show that the method is in-
deed both effective and efficient.

3.1 Distance Function

Here, we describe a distance function between shapes,
called the morphological distance, defined by experts in signal
processing and medicine, which will be invariant to rigid
motions, and which will “give attention” to all levels of de-
tail. First we present a naive approach that satisfies the
translation/ rotation-invariance requirement.

Given two shapes X; and X;, a natural design for a dis-
tance function involves penalizing the noncommon areas.

DEFINITION 1. Let d(-,-) denote the area of the symmetric set dif-
ference distance measure. For X, Xj e X,

dX, X)= 1X\X;| = I UX| - 1XNX] ()

It is easily seen that d(,-) is a distance metric over
X x X. We want a distance function that is invariant to ro-
tations and translations. This is achieved by requiring that
the two shapes are first optimally aligned by allowable mo-
tions. The process of optimal alignment of two shapes is
called registration (see [28], [9]).8 Formally, we have a new
distance function:

DEFINITION 2. The floating shape distance d*() of two shapes
X;and X; is

d*(Xy Xj) = infre » d(X; R(X;)) )
where R is the set of rigid motions.

The d*() distance is very natural and intuitive; however,
it fails to consider details at several levels. Fig. 3 illustrates
the point: X is a square, X, is an identical square with a line
segment coming out of its left side, and X; is identical to X
with a line segment cutting into it. At the current scale, the
distance d*() among any pair of them is small. For example,
if X; and X, are optimally aligned, making the two squares
coincide, then the area of the disjoint part is the area of the
protruding line segment, which is zero in the continuum. .

8. An efficient way to do this is to translate the shapes to match centroids
and rotate the shapes to line up their axes of least inertia.
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X3

Fig. 3. Three different scales of shapes X, X5, and X3.

However, the visual difference between the two is nonzero.
The same is true for X; and X;. These counterintuitive re-
sults can be remedied by applying operators from mathe-
matical morphology: The closing smoothes the corners of a
shape; the opening fills the gaps of a shape (see Appendix A
for a more detailed description of these and other morpho-
logical operators). After applying a closing (see Fig. 3, col-
umn 3), we see that the protruding line segment in X,
makes its presence more obvious. Similarly, after applying
an opening (see Fig. 3, column 2), the ‘cut’ in X; becomes
more obvious.

Thus, given any two shapes, each opening and closing
will emphasize different details of their differences, result-
ing in a different value of d*(). The question is how to com-
bine all of these scale-dependent penalties to arrive at a
single number. A natural choice is to take an I, norm on the
differences, e.g., the Manhattan (p = 1), Euclidean (p = 2), or
max (p = «) norm. Formally, the distance between shapes is
defined as follows:

DEFINITION 3. The Morphological Distance

M " 1/p
Art(Xe X)) 2 ( > e (), £ (%) } ®)
m=—M
where
X omH 1<m<M
ME2) X =0 ()
X emH -M<m<-1

and H is some structuring element.

For the remainder of this paper, we assume some fixed
structuring element H (e.g., the unit circle) and drop these
indices.

The intuitive meaning of the Amorpn distance function is
the following:

1) Compute d*(X; X,); that is, take the two shapes X; and
X;, align them optimally, and compute the area of the
disjoint parts;

2) Take their closings using a disk of radius 1, 2, ... M; in
each case, compute d*(-, -) on the resulting shapes;

3) Do the same for openings, with a disk of radius
1,2 .., M

4) Compute the norm (e.g., Ly, Ly, or L) on the (vector
of) disjoint areas, and report it as the distance between
the two shapes.

LEMMA 2. d,,,,,y, is a distance metric on X.

PROOE. We have to verify the following properties:

o (X1, X3) 2 0: follows from “ . n >0 for any norm.
o dporpi(Xy, X) = 0 iff Xy = Xy trivial because m can

equal 0.
o Duorpn(Xy X2) = Gporpn(Xp, Xy): follows from symme-
try of R, and d(.,").

M dmorph(Xll X2) < dmorph(Xlr X) + dmorph(Xr XZ):

1/p
(X1, X,) = [Z || FuE)| =] £l HP] @)

H : 14 Y
B * XX X > R, ) _ [Z ‘(1 £ =] £ GO + (| £, - | fm(Xz)D' ] 8)
is defined as m
TABLE 1
SyMBOLS, DEFINITIONS, AND NOTATION USED IN THIS PAPER
symbol definition
|1 X area of a shape X
H structuring element
FHE(X) a smoothed version of X at scale m wrt I
y}Ig the size-distribution of X wrt H
d(-,+) set-difference distance between two shapes
d*(-,) the floating shape distance
dimorph (+,+) | morphological distance between two shapes
gran(®, ) granulometric distance between two shapes
N database size (number of images)
n number of features in feature space
m size of structuring element (= scale)
a response set size (number of actual hits)
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<[heesi-troep|

Up ©)
+ (2 |40} =| fm<Xz)H”]
= dmorph(Xll X) + dmurph(X/ XZ) (10)
Thus, the proof is complete. ’ O

4 PROPOSED SOLUTION

The problem we focus on is the design of fast and correct
searching methods that will operate on a tumor database to
locate the most similar shape to the query shape. The simi-
larity is measured by the translation/rotation-invariant,
multiscale distance function from Equation (5) in Section
3.1, namely, the morphological distance d,,,,;,. We focus on
both nearest-neighbor queries as well as on range queries.
More formally, we must solve the following problem:

Given: a collection of S x S black-and-white im-
ages, an S xS query image, and the mor-
phological distance function from (5),

Find: the k most ‘similar” images; or all shapes
within ‘distance’ € ‘

Such That:  there are no false dismissals.

The proposed solution involves feature extraction. We
design features such that the feature extraction mapping
is contractive, i.e., the distance between any two objects
in feature space is no greater than their actual distance
was in object space. This enables the use of the GEMINI
framework [1].

Given our approach, we must find answers to the fol-
lowing three challenges:

1) what features to use (i.e., how to map tumor-shapes
into n —d points);

2) how to prove that the above mapping is contractive,
that is, it obeys Lemma 1 (the Lower-Bounding Lem-
ma); and

3)how to use the resulting GEMINI on the feature
space to answer nearest-neighbor queries. with re-
spect to the object distance (as opposed to the distance
in feature space).

The proposed method is based on the pattern spectrum
[42] from mathematical morphology, which we discuss in
the next section. Following that, we present the proposed
solutions to these three challenges in Sections 4.2, 4.3, and
4.4, respectively.

4.1 Pattern Spectrum and Size Distribution

The concept of the pattern spectrum as a compact shape-size
descriptor has been developed in [42], based on earlier
seminal work on openings of sets in Euclidean spaces called
granulometries [44]. The importance of the pattern spectrum
is that it summarizes important shape characteristics in
the sense that it possesses high discriminatory power, as

reported in [2], [4:9].9 An equivalent compact shape-size
descriptor, which is more directly usable for our appli-
cation, is the size distribution. The size distribution con-
tains exactly the same information as the pattern spectrum.

DEFINITION 4. The Size Distribution yfg of a shape X e X,
with respect to a structuring element H is defined as

7

N e e lates
F Ao 5 oo) - e

with f7(X) defined in (6). By definition,

1)

, Ry

i (X)] is the
£ ) is

area of a smoothed version of X at scale m, i.e.,

the area of X,

le(X)‘ is the area of X o H, etc.

In other words, the vector yg , contains measurements
of the area of X at different scales, or degrees of shape
smoothing, thus constituting the size distribution. The pat-
tern spectrum, as discussed in [42], contains exactly the
same information. Its elements are backward differences of
the size distribution. In other words, the size distribution
can be thotight of as the “‘cumulative pattern spectrum.” The
intuitive meaning of the pattern spectrum is the amount of
detail (= additional area) that the next closing will add, or

‘that the next (larger-radius) opening will subtract.

Fig. 4 shows a circle and its corresponding size distribu-
tion, as well as a butterfly shape of roughly the same area
and its corresponding size distribution. Both are with re-
spect to a a unit disc structuring element H. Notice that,
while both shapes have roughly the same area at the first
scale, the size distribution of the butterfly begins to trail off
at higher scales (closings) while that of the circle remains
constant. It is at these scales that the ruggedness of the
butterfly shape, in contrast to the circle, can be detected.

4.2 Proposed Features

Our goal is to derive features that will capture a lot of the
shape information, that will be invariant to rigid motions,
and that will lead to a feature-distance function that fulfills
the Lower-Bounding Lemma. Given the success of the pat-
tern spectrum as a means to capture shape information [2],
[42], [41], [58], we start with an equivalent representation of
its coefficients as good features. More specifically, we use
the coefficients yy of the size distribution (11). The size dis-
tribution derives its translation and rotation invariance
from these invariants of the shape-area.

A natural choice for a feature-distance function involves
‘penalizing’ two shapes for differences at several scales. The
question is, what is the best way to combine the penalties of
each scale? We take an L, norm on the penalties (e.g., the
Manhattan (p = 1), Euclidean (p = 2), and max (p = )
norms). Formally, we define the distance between features
as follows:

9. It has been shown that, whereas linear operators such as Fourier analy-
sis shift and blur important shape features such as edges, the nonlinear
operators of the pattern spectrum better preserve edge information, which
is important for tumors.
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Fig. 4. Image and respective size distribution histograms of: (a) a circle; and (b) a butterfly shape of roughly the same area.

DEFINITION 5. The Granulometric Distance &,,,() of two
shapes X;, X is defined as

895
size distribution
“circle” —— |
J
i
S5 4 -3 -2 1 06 1 2 3 4 5
structuring element radius
(a)
size distribution
"butterfly” — |
5 -4 -3 -2 1 0 1 2 3 4 5
structuring element radius
(b)
PROOF. Observe that
X, X)) 2 11X =11 (14)

; 12

5;un,p(Xi’ X]) = ”YXi - YX]-

where ““v is, e.g., the Manhattan (p = 1), Euclidean
(p = 2), or max (p = o) norm.

4.3 Lower-Bounding Lemma
The next challenge is to show that the distance in feature

space (i.e.,, the granulometric distance d,,,) lower-bounds

gran
the actual distance d,,,;. This is necessary to guarantee
correctness.

LEMMA 3 [Morphological Distance Bounding]. The granu-
lometric distance 8,,,, lower-bounds the morphological dis-

gran
tance d that is,

morphs

0, (Xi/ X;) < dmorph(xir X]‘)/ VXir Xj e X

gran

(13)

with equality achieved if and only if there exists some
rigid motion R € R which brings all points in X,
(or X;) in registration with points in X; (X, respec-
tively). Then, for all m,

A (fulX0), (fulX) 2 T fuXD) T = XD (15)

and

(S (i), fm(Xg))\PJW

(Shatsi e |

Recall that the left-hand side is the definition of d,,,,,,
and the right-hand side is the definition of &, Thus,
the proof is complete.

(16)
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This guarantees the completeness of range queries. By
keeping the dimensionality of the spectra space small (say,
M=5—2M + 1 =11 features), we can use a SAM.

4.4 Nearest-Neighbor Algorithm

We have just described a good set of features, namely,
the 2M + 1 entries of the size distribution of an image,
as well as proved that the resulting feature space dis-
tance &, lower-bounds the actual distance. Thus, the re-
sulting GEMINI will guarantee no false dismissals for
range queries.

The next problem is to find the k-nearest neighbors of a
query image, given that the images of the collection have
already been mapped into zn-d points and organized in a
SAM. Algorithms to find the k-nearest neighbors of a given
point already exist, using a branch-and-bound algorithm [],
[18], and have been applied to R-trees recently [52].

However, the search in feature space will return the
k-nearest neighbors with respect to the granulometric dis-

tance J,,, as opposed to the morphological distance dp
that we really want. We propose a general nearest-neighbor
algorithm (Algorithm 1) that finds the actual k-nearest
neighbors from any GEMINI where the Lower-Bounding
Lemma (Lemma 1) holds. Fig. 5 presents the Algorithm 1.

Algorithm 1 (k-nn)

/*input: query object (); # of nn kx/
/*output: k-nearest objects X; to Xp*/

1. Search the SAM to find the k-nn wrt the
feature distance Df.gpure (Ogran in our
case).

2. Compute the actual distance Doyjeci(@, X)
(dmorph(@, X) in our case) for all the &
candidates X, and return the maximum €pgz -
3. Issue a range query with the feature
vector F(Q) of the query object @ and €mar
on the SAM, retrieve all the actual objects,
| compute their actual distances Dobject() from
@, and pick the nearest k.

Fig. 5. Algorithm 1 uses a GEMINI to return the k-nearest neighbors,
according to the object distance.

LEMMA 4. Algorithm 1 guarantees no false dismissals for k-nn
queries.

PROOF. Let X, be the shape returned as the kth nearest
neighbor by the algorithm (step 3); let Y be a object
that is the jth nearest neighbor (with j < k). Then

Dobject(Q/ Y) < Dobjeci(Q/ Xk)

Suppose for a moment that the algorithm fails to re-
turn Y. We will show that this leads to a contradiction:
After the range query is issued in step 3, all elimi-
nated shapes (including Y) must have feature distance
Dyyyiure greater than e,,,, that is

szature(Q/ Y) > €y

and, from the Lower-Bounding Lemma (Lemma 1),

17

(18)

(19)

Dobject (Q/ Y) 2 Dfeature (Q, Y) > Emax
However,
€nax = Dobject(Ql Xk) (20)

(since X; was obviously retrieved by step 3). Com-
bining the last two inequalities, we obtain

Dfeature(Q/ Y) > Dob/ect(Ql Xk) (21)
which contradicts (17). ‘ O

5 EXPERIMENTS

We tested both the effectiveness and efficiency of the pro-
posed method. Obtaining real tumor X-rays is not only la-
bor-intensive, requiring an ekpert to identify and segment
nodules, but also legally sensitive (patient privacy, etc.).
Thus, we used a popular stochastic model of tumor growth
for generating artificial, but realistic, tumor shapes (see
Appendix B for details). Our target class is a collection of
images of tumor-like shapes. More specifically, our data
consists of 128 x 128-pixel black-and-white images of en-
capsulated tumor shapes. Each image encapsulates a tumor
shape that either

» grows uniformly in all eight directions;

e is biased vertically and horizontally with slower growth
along the diagonals;

e is restricted along one direction (blocked by a barrier
such as a bone); or

* is restricted along two directions (cone-shaped).

Fig. 12 displays a representative from each of the four
classes. Within each of these four classes of growth, we
varied

e the number of iterations, which affects the size of
the tumor;

¢ the directional bias (pys/prw), which affects the ratio
of height to width.

To measure the effectiveness of the morphological dis-
tance function d,,,, a set of queries was posed to human
subjects. For each one of 10 query shapes, a total of 16 hu-
man subjects were asked to browse through a collection of
1, 000 tumor shapes and pick those which they judged to be
‘similar” to the query shape. The notion of similarity was
left up to each individual’s discretion.

The human subjects were partitioned into two disjoint
groups: a large group of 13 subjects and a small group of
the remaining three subjects. The large group, collectively
termed a ‘superhuman,” determined relevancy democrati-
cally; ie., only shapes that were picked by two or more
members are deemed relevant. These shapes constitute the
‘gold standard’ in our precision/recall evaluation.

The small group competed against d,,y,. Based on the re-
sults of the psychovisual experiments, a k-nearest-neighbor
list was ranked according to the number of votes for each
shape, for each of 10 queries.

Based on standard evaluation techniques for informa-
tion retrieval systems [25], Fig. 6 displays the preci-
sion/recall of d,,,; for three different norms:
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Fig. 6. Precision of dimgp, at 11 cutoff values of recall for Manhattan, Euclidean, and max norms.

e Manhattan (p=1),
¢ Euclidean (p = 2), and
e max (p =oo).

Recall is the ratio of relevant items retrieved to the total
number in the database; it measures the ability of a system to
present all relevant items. Precision is the ratio of relevant
items retrieved to the total number of items retrieved; it meas-
ures the ability of a system to present only relevant items.
Notice that our proposed distance function gives approxi-
mately 80 percent precision for 100 percent recall; that is, it
can return all of the proper items with only 20 percent false-
positive errors.

Because the three norms give approximately the same
results, we arbitrarily chose the max norm for the rest of
our experiments. Fig. 7 compares the precision/recall of the
small group with d... The graph illustrates the superiority
of d.., as the precision curve is above and to the right of the
group. Fig. 7 also presents the precision/recall of two other
small groups of three human subjects, whose members
were selected at random, to demonstrate that the first smail
group is not a special case.

To test the speed of our approach, we implemented the
proposed method and ran experiments. We performed ex-
periments for varying database sizes N, by choosing N im-
ages from among a total of 20, 000. Next we describe the set
up for measuring the performance of nearest-neighbor que-
ries and for range queries.

Competing methods:

¢ scan: Given a shape for a range query, the algorithm
sequentially scans the collection and computes its mor-

phological distance from the query shape, keeping track

of the shapes with the minimum distance. Because
each object distance computation is CPU-intensive, it
is extremely inefficient.

e GEMINI: Given a query shape, its size distribution is
computed and submitted for a range query in a SAM
which has been populated with the (n-dimensional)
size distribution features of the existing collection.
False-hits are discarded in a clean-up stage. In the
case of a k-nearest-neighbor query, Algorithm 1 (see
Fig. 5) is executed.

e G-scan: (A hybrid of scan and GEMINI) Given a
query shape, its size distribution is computed and the
results from a range query or k-nearest-neighbor
query in feature space is determined sequentially
from a list of feature vectors, without the aid of a SAM.
False-hits are discarded in a clean-up stage.

Measurements:

We are interested in the response time, that is, the time until
the last actual hit is returned to the user (after the system
has discarded possible false-hits). For some settings we re-
port actual (wall-clock) time, from the time utility of Unix.
However, the time t,, to compute the morphological dis-
tance between two images is high (¢, = 12.69 sec on aver-
age) and shows small variance (a standard deviation of
0.036 sec). Thus, to accelerate the execution of experiments
on large databases, we time all the other steps of the algo-
rithms involved, and simply add a delay of ¢, seconds for
each morphological distance computation that we omit.

Hardware and software:

The methods were implemented in C and ksh under Unix.
The experiments ran on a dedicated Sun SPARCstation 5
with 32 Mb of main memory, running SunOS 4.1.3. The disk
drive was a Fujitsu M22665-512 model ‘CRANEL-M2266SA’
with minimum positioning time of 8.3 ms and maximum
positioning time of 30 ms.
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5.1 Nearest-Neighbor Queries

To measure the speedup of using the GEMINT approach, we
examined the percentage of the original N images that were
pruned due to the Lower-Bounding Lemma. Table 2 pres-

ents the results for k-nearest-neighbor queries where k = 2,
3, 4, and 10, where

a) N=1,000,
b) N=10,000, and
¢) N =20,000.

In all of these data sets, GEMINI was able to eliminate
roughly 90 percent of the candidates.

TABLE 2
TABLE OF PERCENT DB PRUNED
FOR K-NEAREST-NEIGHBOR QUERIES FOR SEVERAL N

k || %pruned k || %opruned k || %pruned
2 91% 2 91% 2 92%
3 90% 3 90% 3 89%
4 86% 4 86% 4 87%
10 84% 10 84% 10 85%
(a) N =1,000 (b) N =10,000  (c) N = 20,000

Recall

For the same queries, we also recorded the average re-
sponse time to demonstrate the speedup achieved by
this pruning. For brevity, we do not present the results
from @-scan because its results were virtually the same as
those of GEMINT for data sets of the sizes we worked with."
Fig. 8 shows

a) the results of GEMINI compared to scan, for k-nearest-
neighbor queries with k = 10 and increasing N, and

b) the results of gEMINI only, for k =2, 3, 4, and 10.

Each data point represents the average response time (in
sec) for 100 random query images taken from the database.
The vatues of the data points for nearest- neighbor queries
with k =10 are given in Table 3. '

Fig. 9a shows response time of scan and GEMINI as a
function of k, for N = 10, 000 and N = 20, 000. Fig. 9b shows
these results for GEMINI only. Again, each data point repre-
sents the average response time over 100 queries.

The observations are the following:

10. For larger data set sizes, however, we would expect there to be an in-
creasing gap between the performance of GEMINI and G-scan.
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e The use of a GEMINI makes nearest-neighbor search
3-7 times faster than a sequential scan, even for a
large value of k (e.g., 10), due to 90 percent of the can-

didates being pruned.

TABLE 3
RESPONSE TIMES FOR 10-NEAREST-NEIGHBOR
QUERIES OVER VARYING N, FOR SCAN VS. GEMINI

db size scan GEMINI ratio
N time (sec) | time{sec) | (1) :(2)
200 2539.52 675.74 3.76
400 5079.04 1084.19 4.68
800 10158.08 2422.04 4.19
1000 12697.60 2375.44 5.35
2000 25395.20 4814.59 5.27
4000 50790.40 8855.21 5.74
8000 101580.80 14743.66 6.89
10000 126976.00 20002.95 6.35
12000 152371.20 33973.27 4.49
20000 253952.00 39340.32 6.46

o The savings of GEMINI compared to a scan seems to
increase with the database size N;
e Response time grows slowly with k.

We posed 20 range queries to a database of N = 1, 000
images, using scan and GEMINI. Fig. 10a plots the response
time for GEMINI as a function of the response-set size a (i.e.,
number of actual hits, after the false-hits have been elimi-
nated), for several values of the tolerance. It also shows the
response time for scan for comparison, which is estimated
to take 12697.6 sec. Fig. 10b shows GEMINI in more detail.
Table 4 displays the data points in a table. The performance
gap between the two methods is very large, with GEMINI
achieving a 15- to 27-fold savings.

6 DISCUSSION

Two factors are responsible for the speedup that a GEMINI
can achieve:

1) The use of feature vectors in a quick-and-dirty prun-
ing of the database;



900 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 1998
20 Range Queries 20 Range Queries
14000 u T T T T T T T T T
"rq. e . "rq.rtreet o
12RO 6% 6 TAOR T A o 800 }“ rartee 1
12000 b . "rq.rivee”  + . .
631.632 +x*( 0.18669 ) ~—- 700 L o R N ®

10000 ¢ . eoof M o
4 35
5 5 | L.
8 8000 |- g o0 .
o o
é ‘% 400 -
©
@ 6000 2
o [}
@ @ 300 -

4000 |

200
2000 100 |
b g
0 . 0 . . . .
15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

response-set size

response-set size

Fig. 10. Response time vs. response-set size a of GEMINT for range queries: (a) vs. scan, and (b) zoomed in.

TABLE 4
RESPONSE TIMES FOR RANGE QUERIES OVER
VARYING RESPONSE-SET SIZES &, SCAN VS. GEMINI

response-set size scan (1) GEMINI (2) ratio
a time (sec) | time(sec) (1) : (2)
2 12697.6 720.25 17.63
4 12697.6 660.83 19.21
7 12697.6 499.15 - 25.44
9 12697.6 613.03 20.71
12 12697.6 564.96 22.48
14 12697.6 705.85 17.99
15 12697.6 520.10 24.41
17 12697.6 528.76 24.01
20 12697.6 718.83 17.66
21 12697.6 803.25 15.81
24 12697.6 605.33 20.98
25 ‘ 12697.6 620.13 20.48
31 12697.6 720.00 17.64
46 12697.6 474.45 26.76
48 12697.6 576.88 22.01
50 12697.6 719.95 17.64

2) The use of a SAM to speed up nearest-neighbor search
time in feature space.

We investigate the former. We examine the discrimina-
tory power of the proposed features by visualizing their
clustering properties in feature space. For this, we use
Principal Component Analysis (PCA) [35] to project the size
distribution feature vectors into the plane. PCA finds the
optimal projection (in a least squares sense) by identifying

a) with some overlapping points removed to give a
general sense of the four separate classes of tu-
mors, and

b) with only points from the barrier and cone shape
classes remaining,.

Note how well the features discriminate between the four
classes of tumor shapes:

1) barrier,

the k axes (orthogonal directions) of maximum variance 2) biased,
among M-dimensional vectors (k < M), after centering 3) cone, and
the vectors about the origin. The M-dimensional vectors 4) uniform.

are then projected along these principal axes, resulting in
k-dimensional vectors. )

Fig. 11 shows a plot of the 11-d size distribution feature
vectors from the data set described in Section 5 projected
into the plane

Most of the members from each class are confined to mutu-
ally distinct clusters. This illustrates the high discriminatory
power of the size distribution. Indeed, mathematical mor-
phology seems to be an appropriate tool for this domain.
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Fig. 12. Blow-ups of the four highlighted points from Fig. 11.

7 CONCLUSIONS

We have focused on fast searching for similar shapes
with an emphasis on tumor-like shapes. To solve the prob-
lem, we used a multiscale distance function, the so-called
‘morphological’ distance. This distance function is based
on concepts from signal processing, specifically mathemati-
cal morphology. The distance is invariant to translations
and rotations, and gives attention to all levels (‘scales’) of
detail. Precision/recall experiments from Section 5 cross-
validate that the proposed distance function correlates
well with visual perception, giving 80 percent precision at
100 percent recall.

From the database end, we used the GEMINI approach
[15], [1], [16], which is the state-of-the-art in multimedia
indexing. The main contribution of this work is that it
manages to integrate the morphological distance into the
GEMINI framework. This is done by using the coefficients
of the size distribution as features, and by showing that any
L, distance in the resulting feature space lower-bounds the
morphological distance. Given the Lower-Bounding Lemma
(Lemma 1), this guarantees no false dismissals for range
queries. We then show how to use this machinery in an effi-
cient, general nearest-neighbor algorithm, and prove the
correctness of the algorithm. An additional contribution
is the implementation of the proposed method and the
experimentation on a synthetic, but realistic, database of
tumor-like shapes. The proposed method was shown to
achieve dramatic speed-ups (up to 27-fold) over a straight-
forward sequential scan.

APPENDIX A
INTRODUCTION TO MATHEMATICAL MORPHOLOGY

Mathematical Morphology is a rich quantitative theory of
shape which incorporates a multiscale component. Since
the 1980s, morphology and its applications have become
extremely popular. Fig. 13 gives picture definitions for
some important morphological operators. The formal defi-
nitions of the operators and the intuition behind them is
presented below. For a more detailed yet accessible intro-
duction, the reader is referred to [21].

In mathematical morphology, mappings are defined in
terms of a structuring element, a small, primitive shape, which
interacts with the input image to transform it and, in the
process, extract useful information about its geometrical
and topological structure. The basic morphological opera-
tors are dilation, erosion, opening, and closing.

Consider black-and-white images in 2-d space; the
‘white’ points of an image are a subset of the 2-d address
space, while the background is, by convention, black. More
formally, let X (the “shape space”) be a set of compact sub-
sets of R, and R be the group of rigid motions R: X — X.
Next, we present the definitions and concepts that we need
for our application. Table 5 lists the symbols and their
definitions.

Let X, denote the translation of shape X by the vector ,
and let H' denote the reflection of shape H with respect to
the origin:

H' ={-h | he H) (22)
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Fig. 13. Original image (top left), structuring element (top right), open-
ing, and closing.

TABLE 5
SYMBOLS FROM MATHEMATICAL MORPHOLOGY
symbol | definition
R the set of reals
Ry the set of non-negative reals
24 the set of non-negative integers
o, the operator for dilation
& the operator for erosion
o the operator for opening
° the operator for closing

DEFINITION 6. The dilation, X @ H°, of a shape X  R* by a
structuring element H, is defined as

XOH =X, =y e R*1Hy,y N X%} (23)
heH

Fig. 13 shows a ‘butterfly’ shape X, dilated by the unit
circle H. Intuitively, a dilation ‘blows-up’ the original shape
X by tracing its perimeter (and all the internal points) with
a ‘brush’ of foot H.

We alsouse mH, me &, todenote H® H® .- ® H
(m -1 times), ie., a structuring element of size m. Intui-
tively, if the structuring element H is the unit ball, then the
shape mH is a ball of radius m.

DEFINITION 7. The erosion, X © H®, of a shape X < R* by a
structuring element H, is defined as

XOH = [JX, ~{wye ®Hy,cX)  @4)

heH

Fig. 13 shows the butterfly shape X eroded by the
unit circle H, which is a dilation of the complement of X.

Intuitively, an erosion deletes part of the original shape X
by tracing its perimeter with an “eraser’ of foot H.

Erosion and dilation are dual operators, in the sense that
XO©H’=(X‘®H"), where ° stands for complementation
with respect to R,

Two important composite morphological operators are
opening and closing:

DEFINITION 8. The opening, X o H, of a shape X ¢ R* by a
structuring element H, is defined as an erosion followed by
a dilation:

XeH=XOH)Y®H (25)

* Fig. 13 shows the opening of shape X. Intuitively, the
opening is the set of points that a brush of foot H can reach,
when the brush is confined inside the shape, and is barely
allowed to touch the periphery of the shape.

DEFINITION 9. The closing, X  H, of a shape X = R* by a
structuring element H, is defined as a dilation followed by
an erosion:

XeH=(X®H)OH (26)

Fig. 13 shows the closing of shape X, which is the open-
ing of the complement of X. Intuitively, the closing is the set
of points that remain after an eraser of foot H sweeps the
outside of the dilated X.

Thus, the opening by a circle of radius 7 in effect ‘cuts
the corners’; that is, it eliminates the protruding details of
the shape X, with radius less than n. Symmetrically, the
closing “fills the concavities” of the appropriate scale.

APPENDIX B
Tumor GrRowTH MODEL

We use a discrete-time version of Eden’s tumor growth
model [12], which is illustrated in Fig. 14 and Fig. 15. At
time t = 0, only one grid-cell is ‘infected’; each infected
grid-cell may infect its four nondiagonal neighbors with
equal probability p at each time-tick.

On the basic model. we have added the notion of Fast-
West/North-South bias to capture the effects of anisotropic
growth patterns, due to anisotropies in the surrounding

Fig. 14. Lattice at t = 9. The infection time of each infected cell is
marked.
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t =50 t = 100

Fig. 15. Initial seed (left column) and snapshots of tumor at later time steps, with probability of infection pgyy = Pyg =0.7.

tissue (e.g., lesions shaped by their location within the lung,
breast, or liver.) Thus, in our model, an infected grid-cell
has probability pys to infect its North and South neighbors,
and probability pgy to infect its East/ West ones, with pys
not necessarily equal to ppy.
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