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Abstract—This paper links the direct-sequence code-division
multiple access (DS-CDMA) multiuser separation-equaliza-
tion-detection problem to the parallel factor (PARAFAC) model,
which is an analysis tool rooted in psychometrics and chemo-
metrics. Exploiting this link, it derives a deterministic blind
PARAFAC DS-CDMA receiver with performance close to non-
blind minimum mean-squared error (MMSE). The proposed
PARAFAC receiver capitalizes on code, spatial, and temporal
diversity-combining, thereby supporting small sample sizes, more
users than sensors, and/or less spreading than users. Interestingly,
PARAFAC does not require knowledge of spreading codes, the
specifics of multipath (interchip interference), DOA-calibration
information, finite alphabet/constant modulus, or statistical inde-
pendence/whiteness to recover the information-bearing signals.
Instead, PARAFAC relies on a fundamental result regarding the
uniqueness of low-rank three-way array decomposition due to
Kruskal (and generalized herein to the complex-valued case) that
guaranteesidentifiability of all relevant signals and propagation
parameters. These and other issues are also demonstrated in
pertinent simulation experiments.

I. INTRODUCTION

B LIND separation of signals impinging on an antenna array
is of paramount importance in commercial and military

applications, including source localization, sensor calibration,
blind signal copy, mitigation of co-channel interference, and
eavesdropping, just to name a few. Existing self-recovering ap-
proaches separate the inaccessible sources from their mixtures
within a scale and permutation ambiguity (which is inherently
nonidentifiable from output data only). Depending on modeling
assumptions and tools adopted, the resulting algorithms can be
classified into

i) those that assume narrowband sources and rely on known
manifolds to estimate directions of arrival using subspace
techniques (which are also capable of handling wideband
sources per frequency bin) [22];

ii) those that assume a special property of the sources, such
as finite-alphabet (FA), constant-modulus (CM), or cy-
clostationarity, and attempt to restore it at the receiver
[1], [35], [42];
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iii) those that assume spatial independence of non-Gaussian
sources and exploit cumulant statistics for separation [8],
[12], [31], [36];

iv) those that assume known signatures that the inaccessible
sources are coded with, and capitalize on, their orthog-
onality to remove multiuser interference and unknown
multipath effects [17], [39].

Direct-sequence code-division multiple access (DS-CDMA) is
the major motivation behind iv) because it offers a promising
alternative to traditional time- and frequency-division commu-
nications.

Blind multiuser detection of DS-CDMA signals is dealt with
in this paper both for downlink as well as for uplink multi-
point transmissions through frequency-selective fading chan-
nels that arise due to multipath propagation in wireless environ-
ments. Blind receivers target the ultimate CDMA goal for min-
imal cooperation among users and are well motivated because
they mitigate unknown multipath effects while obviating band-
width-consuming training sequences (which are source signals
known to both transmitters and receivers). Following [38], sub-
space methods for blind multichannel estimation and equaliza-
tion of CDMA signals were proposed in [2], [27], [37], [39], and
[48], all assuming that the underlying transfer function matrix
is irreducible. In a recent contribution, [14] proposes antenna
diversity to alleviate the irreducibility assumption and trade-off
performance for receiver complexity. Existing approaches re-
quire knowledge of the spreading codes (at least of a “user of
interest”) that may not be available in nonco-operative scenarios
and, most importantly, do not fully exploit all available forms
of diversity (in time, space, and code domains) in identifying
the underlying channels and reliably recovering the information
bearing signals of interest. We explore herein a novel approach
for blind DS-CDMA multiuser detection that relies onparallel
factor (PARAFAC) analysis.

PARAFAC analysis is a tool with roots in psychometrics and
chemometrics. PARAFAC is a subset ofmulti-way analysis,
which can be viewed as linear algebra formulti-way arrays(a
matrix is a two-way array). Our work links the DS-CDMA mul-
tiuser separation-equalization-detection problem to PARAFAC
analysis and derives a deterministic blind PARAFAC re-
ceiver whose performance is close to nonblind minimum
mean-squared error (MMSE). The proposed blind receiver
supports small sample sizes, more users than sensors, and/or
less spreading than users, while obviating the need to resort
to space/time statistical independence/whiteness, FA/CM
constraints, or DOA and array calibration information. Most
notably, it does not require knowledge of the spreading codes
(not even for a “user of interest”), or the specifics of the
(interchip interference) multipath channels. Instead, PARAFAC
relies on a fundamental result of Kruskal [24] regarding the
uniqueness of low-rank three-way array decomposition to
simultaneously recover all information bearing signals and
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Fig. 1. Multiuser/multirate discrete-time equivalent baseband CDMA model (chip rate).

associated system parameters from output data only. This result
is also generalized herein to the complex-valued case in order
to handle complex modulations.

mMulti-way analysis is largely unknown to the signal pro-
cessing community, although elements of it have implicitly or
explicitly appeared in the context of higher-than-second-order
statistics, under source-independence assumptions, for blind
multichannel system identification [15] and, thus, source sepa-
ration, even when the available sensors are less than the sources
[31] (see also [13] and [26] for an independent component
analysis (ICA) perspective and related Schur/Jacobi-based
algorithmic approaches). However, we herein (and in related
conference papers [6], [7], and [32]) take a deterministic
approach in linking multi-way analysis tools with some key
signal processing and communications problems, without
requiring statistical independence.

A. Organization

This paper is structured as follows. Section II lays out our
assumptions and develops the discrete-time baseband-equiva-
lent data model. Section III summarizes important background
in parallel factor analysis. Section IV discusses identifiability
issues, whereas Section V deals with algorithmic issues. Sec-
tion VI discusses modes of usage and establishes links to other
applications of PARAFAC ideas in signal processing and com-
munications. Section VII presents simulation results, whereas
Section VIII summarizes our conclusions. The proof of a key
theorem can be found in the Appendix.

II. DATA MODEL

A. Modeling Preliminaries

The block diagram in Fig. 1 represents a CDMA system de-
scribed in terms of its discrete-time baseband-equivalent model,
where signals, codes, and channels are represented by samples
of their complex envelopes taken at the chip rate (see also [38]
and [39]). Upsamplers and downsamplers serve the purpose of

multiplexing and demultiplexing (spreading and despreading
by a factor ). Each of the users spreads the corresponding
information sequence with the upsampler and encodes it
using a code of length before transmission through the
unknownFIR channel , which, in addition to multipath,
includes the transmit spectral-shaping pulse, the receive filter,
and the th user’s asynchronism in the form of delay factors. If
Nyquist pulse shapers are adopted, their effect disappears in our
discrete-time model [28, p. 542]. The receiver employs an array
of antennas.Thebasebandoutputofeachantenna issampledat
the chip rate and decomposed into itspolyphase components.

We now summarize our working assumptions—some
of which are already implicit in the model in Fig. 1. The
spreading codes are assumed to be symbol-periodic,
and the spreading gain is known or has been estimated
(e.g., using cyclostationarity tests). The number of active
users is known, and symbol-level (but not necessarily
chip-level) synchronization is available. The linear channels

remain time invariant over symbols (as
we will see, can be as small as 2), and an upper bound

order on the order of all channels
is known. In addition, we assume the following.

a1) The multipath/delay channel between userand an-
tenna only depends on , modulo a flat fading/an-
tenna response pattern factor that is time-in-
variant over symbols. This is valid when multipath
reflectors are in the far field (relative to the receive an-
tenna array); see also [41] and references therein.

a2) Either one of the following blocking assumptions
common to block processing methods (see e.g., [2],
[14], [27], [37]–[39]) is applicable:

• a2.1) The spreading gain , and
intersymbol interference (ISI)-free chips

are available (“discard prefix”).
• a2.2)The codes include trailing

zeros (“guard chips”).
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Fig. 2. Blocking.

Either of a2.1)–a2.2) enables data blocking that avoids ISI;
interchip interference (ICI) remains, but, as we will see, it
can be relatively easily dealt with. If a2.1) is in effect, then
an ISI-free block data model can be derived using a “discard
prefix” strategy that is implemented at the receiver; thus, it
is also applicable in a noncooperative context. The “guard
chips” assumption a2.2) requires a cooperative transmitter.
The “discard prefix”/“guard chips” idea is illustrated in Fig. 2.
Since the channels also incorporate relative delays, both a2.1)
and a2.2) effectively assume delay spreads in the order of a few
chips. This is the case in quasisynchronous CDMA systems
[21]. As an example, consider users in an urban
microcell of radius 1 Km, and suppose that each user transmits
at 10 Kbps with a spreading gain of chips. The
chip duration is s. Suppose that the base station
broadcasts a pilot signal and that the mobiles synchronize their
transmissions with the pilot (e.g., transmit immediately upon
receipt of the pilot). Assuming that the maximum round-trip
path length is 3 Km, the round-trip delay spread is10 µs,
or three to four chips. The same figure applies to a rural setting
with a radius of 12 Km and users in line of
sight. The model also applies to “synchronous” systems in the
presence of oscillator drifts and relative motion between the
mobiles and the base station (see also [21]). Henceforth, we
use to denote the number of ISI-free chips available, with
the understanding that it stands for when “discard prefix”
is in effect or the spreading gain itself when “guard chips” is
in effect. In the interest of brevity, we also index the ISI-free
chips starting from 0, regardless of whether “discard prefix” or
“guard chips” is in effect.

B. Prelude—No ICI

It is instructive to begin with a noiseless/memoryless (syn-
chronous) model and build from it. Toward this end, consider
Fig. 1, discarding the noise , and multi-
path channels . Recall that

fading/gain between user and antenna element
;
th chip of the spreading code of user;
th symbol transmitted by user.

Letting denote the baseband output of theth antenna,
for symbol and chip , it holds that

(1)

It will prove convenient to recast this model in matrix form. Let
us define data matrices

...
...

...
...

for . After some algebraic manipulation, it
can be shown that admits the factorization

(2)

where

...
...

...

...
...

...

...
...

...

and is understood as an operator that extracts the
row of its matrix argument and constructs a diagonal matrix out
of it. By convention, indices start from zero, whereas the first
row of a matrix is row one; hence, we get1. Matrix
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denotes the compound flat fading/array response pat-
tern, is the spreading code matrix, and
is the information bearing signal matrix.

In the presence of noise, the observation model becomes

where the matrix is the measurement noise corre-
sponding to the th polyphase matrix component (tilde will be
used throughout to denote noisy measurements).

C. Incorporating ICI

If ICI is present, the only thing that changes [assuming either
a2.1) “discard prefix” or a2.2) “guard chips”)] is that the indi-
vidual user codes now become “effective codes” or “effective
signatures”: the result of convolving a user's spreading code
with the impulse response of the respective multipath channel
and, if a2.1) is in effect, discarding the firstchips. Thus, only

changes (including number of rows number of ISI-free
chips), and it is now more appropriately called the aggregate
multipath channel/spreading matrix—hence the choice of
symbol .

III. I NTERMEZZO: PARALLEL FACTOR ANALYSIS

Recall (1), reproduced here for convenience:

Note that in (1) is a sum of triple products; it is vari-
ably known as the trilinear model, trilinear decomposition,
triple product decomposition, canonical decomposition, or
PARAFAC analysis. It has been first introduced as a data
analysis tool in psychometrics,1 where it has been used for
“individual differences multidimensional scaling,” but also
in phonetics, exploratory data analysis, statistics, arithmetic
complexity, and other fields and disciplines [3]. Nowadays,
most of the research in the area is conducted in the context of
chemometrics,2 where it is used for spectrophotometric, chro-
matographic, and flow injection analyses. The term PARAFAC
is widely adopted in chemometrics, and we adopt it here as
well, although we also use the other terms when convenient,
particularly in stating theoretical results.

Harshman [18] developed the PARAFAC model as a natural
extension of the ideas put forward by Cattell [11]. At the same
time, Caroll and Chang [9] introduced the canonical decompo-
sition (CANDECOMP) model, which is essentially identical to
PARAFAC but was developed as a natural extension of multidi-
mensional scaling tools. In signal processing and communica-
tions terms, PARAFAC can be thought of as a generalization of
ESPRIT ideas—actually as a general principle underlying the
most general formulation of ESPRIT to date. PARAFAC can
also be seen as generalizing joint approximate diagonalization
ideas [41]. We will return to these points in Section VI.

1To the best of our knowledge, the first seed of PARAFAC ideas appeared as
early as 1944, in a paper by R. B. Cattell inPsychometrika[11].

2Data analysis and its applications in chemistry.

Fig. 3. Datacube in diversity space.

Define a three-way array with typical element
. A rank-1 three-way array with typical element

can be written as

Equation (1) is an -component triple product decomposition
of . The rank of is defined to be the minimum number
of rank-1 three-way components needed to decompose[24].
The above definition is consistent with matrix (two-way array)
rank: the minimum number of rank-1 matrices needed to de-
compose a given matrix. PARAFAC is thus naturally related to
linear algebra for multi-way arrays [24], which is also known as
multi-way analysis.

In the present context, contains the observation data
arranged in a three-waydiversity space—(antenna#,symbol#,
chip#)—reflecting the three different kinds of diversity avail-
able:

• spatial;
• temporal;
• spreading diversity.

We refer to as thediversity datacube3. This concept is illus-
trated in Fig. 3.

Note that (1) affords a scalar view of the diversity datacube.
Another view, namely ,
is afforded by the polyphase matrix decomposition of the data
in (2). This alternative view can be interpreted as “slicing” the
3-D array in a series of “slabs” (2-D arrays) perpendicular
to one of the diversity dimensions: in this case, the spreading
dimension. Indeed, it is easy to see that according to our defini-
tions and for a fixed is nothing but : the
2-D slice of corresponding to the given.

The perfect symmetry of the trilinear model in (1) allows two
more matrix system rearrangements, which can be interpreted
as “slicing” the three-way array along different dimensions.
In particular

(3)

where the matrix . Similarly

(4)

where the matrix . These alternative
“views” of the data are useful in understanding the proofs of

3Although it does not literally have to be acube, i.e., in general,K 6= N 6=
P .



814 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 3, MARCH 2000

core theoretical results, as well as algorithmic PARAFAC is-
sues. Note that we may choose the rows of any one of the three
matrices , or to construct the diagonal matrices that ap-
pear in the middle of the decomposition. An important feature
of the different data rearrangements is revealed when two of the
three parameters are (e.g., and ).
We may thenalwaysselect a matrix system representation for
which the left matrix is tall and the right matrix is fat.

Our link of the DS-CDMA setup to PARAFAC affords a pow-
erful identifiability result, plus the opportunity to tap on and ex-
tend the available expertise for fitting the PARAFAC model, to
derive a deterministic (least squares) joint blind estimation al-
gorithm. These are explored next.

IV. I DENTIFIABILITY

The following concept is key for this section.
Definition 1: Consider a matrix . If rank ,

then contains a collection of linearly independent columns.
Moreover, ifevery columns of are linearly indepen-
dent, but this does not hold for every columns, then has

-rank . Note that rank .
The concept of -rank is implicit in the seminal work of

Kruskal [24], but the term was later coined by Harshman and
Lundy [19] ( -rank stands forKruskal-rank). The distinction
between rank and-rank is important. Consider the following
two matrices:

For , the left matrix has full column rank (two)and
full -rank (two), whereas the right matrix has full column rank
(two) butnot full -rank (one). In other words,-rank re-
quires thateverytwo columns are linearly independent, whereas
rank simply requires that there exists at leastonepair of lin-
early independent columns.

A matrix whose columns are drawn independently from an
absolutely continuous distribution has full rank with probability
one. Interestingly, it also has full-rank because any combina-
tion of columns can be thought of as another random matrix
with columns drawn independently from an absolutely contin-
uous distribution.

A distinguishing feature of the trilinear model is its unique-
ness. Under mild conditions and unlike the unconstrained bi-
linear model, the trilinear model does not suffer from rotational
freedom (i.e., are identifiable without unitary matrix
ambiguities). Several results regarding uniqueness of this model
have been known from early on (and, in fact, sparked the interest
in trilinear modeling in the data analysis community), e.g., [18],
[24], and [25]. Among them, the following (due to Kruskal [24])
is the deepest.

Theorem 1: [24] Consider the set of matrices
, where

, and denotes the common
dimension. If

(5)

then , and are unique up to (inherently unresolvable
from output data only) permutation and scaling of columns,
meaning that any other triple that gives rise to the
data is related to via

(6)

where is a permutation matrix, and are diagonal
scaling matrices satisfying

(7)

The result holds for , irrespective of condition (5), as
long as does not contain an identically zero 2-D slice along
any dimension.

Note that for finite , the set of permutation matrices is fi-
nite (as opposed to the set of unitary matrices, which is infinite).
Furthermore, in our DS-CDMA context (as well as in other ap-
plications, such as source separation), symbol matrix recovery
within a permutation matrix ambiguity amounts to shuffling the
users. This is not a major concern, and it can be resolved by
resorting toa priori or embedded information, e.g., spreading
codes, and user ID bits, respectively. The scale ambiguity is rel-
evant for digital communications applications, but it can be re-
solved using AGC and differential encoding/decoding [28, p.
187] or phase estimation.

Kruskal, in [24], states and proves his uniqueness of tri-
linear decomposition explicitly under the working assumption
of real-valued arrays. Communication systems employing
complex modulation (in-phase/quadrature processing) lead to
discrete-time baseband equivalent models involving complex
arrays. The generalization of Kruskal's results to the complex
case is nontrivial because of the following.

• If we try to cast the complex model in (1) or (2) in terms
of real and imaginary parts, we have the following.

• Starting from (1), we are led to two real scalar tri-
linear models for the real and imaginary parts of
the data, each involvingfour timesthe factors of the
complex scalar trilinear model, albeit constrained in
a particular fashion.

• Starting from the parallel slabs model (2), we are led
to a block PARAFAC-like model for the unfolded
real-imaginary data slabs in which the middle ma-
trix is tri-diagonal, instead of diagonal. If we con-
strain one of the factors to be real, then the middle
matrix can be made diagonal, but then, the-rank of
the matrix constructed out of these diagonals is al-
ways less than or equal to one, violating (5), which
requires that the-rank of each of the three matrices
is at least two4.

• We should be careful in extending factorization results
from the real-valued case to the complex-valued case (e.g.,
uniqueness of prime factorization).

4Thek-rank of any one of the three matrices involved can never be greater
than the number of factors (users)M . If thek-rank of one of the three matrices
is 1, then the other two can never make up for it; the sum of the threek-ranks will
be bounded above by2M +1 < 2(M +1) in this case. Hence, it is necessary
for all three matrices to havek-rank at least 2 for (5) to be satisfied.
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• Kruskal [25] gives an example of a 2 2 2 array of
real numbers whose rank is 3 when considered over the
field of reals, yet when thesamearray ofreal numbersis
simply thought ofas being a complex array, it has rank 2.
Care should therefore be exercised in treating the complex
case.

In his seminal paper [24], Kruskal actually proves a series
of partial uniqueness results, culminating in a set of conditions
that are jointly satisfied by the-rank condition (5). His line
of argument is exquisite but long and laborious (20 pages).
Herein, we are interested in generalizing the-rank condition to
the complex case and applying it to DS-CDMA systems. Based
on this hindsight and using ideas from Kruskal, we develop a
concise proof for the complex case, which also helps illuminate
the meaning and role of-rank. The result is summarized in the
following Theorem, which is proven in the Appendix.

Theorem 2: Given
, if

, then , and are unique up to permutation and
(complex) scaling of columns.

Before presenting the algorithmic ramifications of Theorem
2, we elaborate on its implications to our blind DS-CDMA
problem at hand.

A. Interpretation from a Communications Viewpoint

Even though the PARAFAC uniqueness result is purely de-
terministic, it also admits a statistical characterization. Recall
that a matrix whose columns are drawn independently from an
absolutely continuous distribution has full-rank (equal to its
rank) with probability one, even when the elements across a
given column are dependent random variables. In our present
context, we have the following.

• User-wise independent fading (or, user-wise independent
DOA's and unambiguous array manifold) imply thatis
full -rank with probability one.

• “Persistence of excitation” of user symbols implies that
is full -rank. This is certainly valid for communi-

cations transmissions, provided is big enough. For
small , the presence of—inevitable—nuisance effects
like residual carriers will also render full -rank with
probability one.

• User-wise independent multipath/delay channel taps as-
sure that is also full -rank.

Under these justifications for the full-rank conditions, (5)
yields

(8)

which has the following important corollaries.

1) If (typical in DS-CDMA), then
antennas are sufficient for users; hence, our system is
capable of supporting more users than sensors.

2) If , then symbols are sufficient;
hence, fading and multipath can potentially vary as fast
as half the symbol rate.

3) If , then (ISI-free) chips are
sufficient (recall that the actual spreading gain must be

); therefore, we do not necessarily need orthogonal
or quasiorthogonal spreading sequences, which is particu-
larly important in oversaturated systems (number of users
greater than the spreading gain).

4) However, the most interesting case is precisely when
some or all of are not of “proper” dimen-
sions (i.e., fat instead of tall), yet the-rank condition
(5)–(8) is satisfied, and the model is identifiable. An in-
teresting instance occurs when ,
and ; none of is tall, yet

,
and the model is generically (meaning with probability 1
under our statistical assumptions) identifiable. Of course,
more significant diversity gains are possible for bigger

, e.g., .

Remark 1: Conditions (5)–(8) characterize thediversity
tradeoff, i.e., the intricate balance of different kinds of diversity
(spatial, temporal, spreading) that leads to identifiability.
Fig. 4 depicts the boundary of the identifiability region [where

] for
users.

V. TRILINEAR ALTERNATING LEAST SQUARESREGRESSION

The principle of alternating least squares (ALS) can be used
to fit the trilinear model on the basis of noisy observations.
In the noiseless case, and under considerably stronger condi-
tions, , and can indeed be found using eigenanalysis.
The following result—generalizing ESPRIT, but rediscovered
many times ([30] is one of the earliest)—is a simplerconstruc-
tive proof of uniqueness, albeit under restrictive (dimension-
ality, full-rank) conditions. It is useful in initializing ALS itera-
tions whenever its conditions are met. A short proof follows.

Theorem 3 (Constructive Proof of Uniqueness—Full-Rank
Case): Given

, suppose that two of the three
matrices , say without loss of generality and ,
are tall and full rank, and the corresponding third (in this
case) has a pair of columns corresponding to, say and

, such that the associated diagonals and
have no zero elements, and has distinct ele-
ments. Then, , and are unique up to permutation and
(complex) scaling of columns as in (6) and (7) and can be re-
covered from the data in a single shot.

Proof: Due to the inherent scale ambiguity, without loss
of generality we can absorb the first diagonal into thematrix
and consider:

(9)

where is diagonal nonsingular
is tall and full rank, and is fat and full rank.

Construct sample auto- and cross-correlation matrices:
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Fig. 4. Boundary of identifiability region forM = 8 users.

where stands for Hermitian transpose. Define the
matrix , and note that it is tall and full rank under
our working assumptions. We have

(10)

Let , which is the pseudo-inverse of. It then follows
from (10) that

(11)

and determining the matrix from amounts
to solving a generalized eigenvalue problem. Lettingdenote
the th row of and be the th element along the diagonal
of , we find from (11) that

Because are both of rank , the 's and 's are
the generalized eigenvalues and left generalized eigenvectors
(restricted in the column space of ) of the matrix pencil

(see, e.g., [20] and [50]). Once is recovered
(modulo permutation and scale), can be recovered modulo
permutation and scale from (10) as . Then, can
be obtained from the original data in (9) as (note
that is fat and full rank, and the pseudo-inverse simply carries
over the permutation and scale ambiguity to the columns of).
Finally, the diagonals can be recovered modulo permutation and
scale using both pseudo-inverses as , and the
proof is complete.

Although the algorithm implied by Theorem 3 is single shot,
its relatively restrictive assumptions on the dimensionality and
rank of prevent us from taking full advantage of the
practically important (diversity combining) implications of the
relaxed -rank condition (5)–(8) of Theorem 2. In contrast, al-
though iterative, the ALS algorithm we describe next capital-
izes fully on the identifiability of Theorem 2 in addition to pos-
sessing least-squares optimality.

The basic idea behind ALS is simple: Each time, update a
subset of parameters using least squares conditioned on pre-
viously obtained estimates of the remaining parameters; pro-
ceed to update another subset of parameters; repeat until con-
vergence. We are given the noisy dataand wish to estimate

and . Consider the polyphase decomposition (2) and
concatenate the 's to obtain

...
... (12)

Least squares fitting (and ML parameter estimation, when the
noise is modeled as temporally and spatially white Gaussian
and all other parameters are treated as deterministic unknowns)
amounts to

...
... (13)

where are the noisy slabs, and
stands for the Frobenius norm. It follows that the conditional
least squares update foris

...
...

where stands for pseudo-inverse, and denote pre-
viously obtained estimates of and . Similarly, from the
second way of slicing the 3-D data

, which is rewritten as

...
...

it follows that LS fitting is equivalent to

...
...

and the conditional LS update for is

...
...

Finally, from the third way of slicing the data
, we find the conditional

LS update for as

...
...

Note that the conditional update of any given matrix may either
improve or maintain but cannot worsen the current fit. Global
monotone convergence to (at least) a local minimum follows
directly from this observation.

ALS (initialized using eigenanalysis when Theorem 3 is
applicable and randomly otherwise) has been proven to be the
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method of choice in applications of PARAFAC in chemomet-
rics, for a variety of reasons outlined in [3]. The trilinear ALS
method is appealing primarily because it is guaranteed to con-
verge monotonically but also because of its relative simplicity
(no parameters to tune, and each step solves a standard LS
problem) and good performance [3]. Experience shows that
convergence to the global minimum is almost always achieved
whenever the -rank condition is satisfied [3]. The explanation
(and fundamental differencevis-a-vis unstructured bilinear
ALS solutions of problems) lies in the inherent
uniquenessof the trilinear model. The ALS approach also
allows easy incorporation of a weighted loss function, missing
values, and constraints on some or all of the factors [5].

VI. FURTHER CONSIDERATIONS

In cooperative multiuser communication systems, the
spreading codes are known. If no multipath is present, or if
the multipath channels can be effectively estimated (e.g., using
training), then (or a good estimate thereof) can be assumed
to be known. In this case, we can initialize ALS with the given

. This speeds up convergence significantly and improves
performance (smaller MSE). Similar arguments can be made
if estimates are available for any one or two of . In
practice, PARAFAC will be most useful for “cold-starting” or
“boot-strapping” the equalization/detection process when little
is known about the system. Once good estimates of the system
parameters are acquired via PARAFAC, a simpler tracking
loop, like, e.g., adaptive MMSE-DFE, can be used. Once every
so often, PARAFAC can be invoked again to reopen the eye.

Reflecting on the form of the LS criterion in (13), we
note that the multiple-parameter/multiple-invariance subspace
fitting (SSF) formulation of ESPRIT [33], [34], [46], [47] (also
see related work in [16] and [49]) is actually a special case
of the mathematical statement of the problem considered in
this paper when posed in eigenspace. In particular, given
subspace estimates , the aforementioned SSF
problem is to find a square invertible matrix, unitary diagonal
matrices , and a (sub)array response matrix,
such that the following cost is minimized:

...
...

It follows that the identifiability results and trilinear ALS tech-
niques presented herein carry over to such a SSF problem, and
its many applications that include joint azimuth-elevation esti-
mation, joint angle-delay estimation, and multidimensional har-
monic retrieval; see [6] and [43]–[45].

Going back to the least squares formulation of PARAFAC in
(13), we note that if we constrain the model by insisting that

, then ajoint approximate diagonalizationproblem
appears, and thus, the latter is a special case of PARAFAC. Our
identifiability results of Section IV and fitting algorithms of
Section V applya fortiori to the joint approximate diagonaliza-
tion problem as well. The latter isthebasic problem in a variety

of important papers dealing with source separation in the con-
text of signal processing and communications, e.g., the analyt-
ical constant modulus algorithm (ACMA), and the JADE algo-
rithm; see [41] for a review. These contributions have brought
forward the significance of joint diagonalization as a core signal
separation principle. As we have seen, PARAFAC is an even
broader principle that encompasses these problems and answers
some of the open questions in joint diagonalization, in partic-
ular, those related to identifiability with factors having dimen-
sions unfit for eigenanalysis and/or factors that do lose rank.

VII. SIMULATION RESULTS

A. Algorithm

In all of our simulations, we used the COMFAC algorithm
[7], which is essentially a fast implementation of trilinear ALS.
COMFAC speeds up the LS fitting procedure by working with
a compressed version of the data, thereby avoiding brute-force
implementation of ALS in the raw data space. The main steps
of COMFAC are

i) compression;
ii) initialization and fitting of PARAFAC in compressed

space;
iii) decompression and refinement in the raw data space.

These are outlined next.5

• As a first step, COMFAC compresses the
three-way array into a (usually much) smaller

three-way array . This is achieved by fitting
a Tucker3model [40] to the raw data [4], yielding
three bases that span the systematic variation in each of
the three modes [23], [40]. Regressing the raw data onto
these bases yields the compressed array

. Using the CANDELINC theorem [4], [10], it can be
shown that fitting the PARAFAC model to , given the
aforementioned bases, is equivalent to fitting PARAFAC
to the (much smaller) .

• Next, an -component PARAFAC model is fitted to .
For initialization, we may use two-slab eigenanalysis (ES-
PRIT) or, better yet, a method known asdirect trilinear
decomposition, which generates two optimal pseudo-slabs
from the available data and extracts initial estimates using
eigenanalysis, provided the dimensions are appropriate;
otherwise, a random initialization may be used. Given the
relatively small size of , ALS as well as other (e.g.,
Gauss–Newton using separable least squares, Levenberg-
Marquardt, etc.) optimization techniques can be used in
compressed space; a “universal” choice is yet not clear,
and COMFAC actually employs a combination Gauss-
Newton/ALS for this step, with ALS usually carrying most
of the optimization burden.

• After fitting the model in the compressed space, the
solution is decompressed by “post-multiplying” with the
Tucker3 bases. This is followed by a few ALS steps in
uncompressed space, which serve to guard for compres-
sion artifacts. Usually, the decompressed model is close

5Detailed description of these steps is omitted due to lack of space but can be
accessed by downloading [7]
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Fig. 5. Scatter diagrams forM = 4 users. Matched filter receiver.

Fig. 6. Scatter diagrams forM = 4 users. Blind PARAFAC receiver.

to the LS solution, hence,5 ALS steps are sufficient for
this refinement stage.

As per Theorems 1 and 2, scale ambiguity is inherent to the
separation problem without side information, and it manifests
itself as a complex constant that multiplies each individual row
of . For constant-modulus transmissions, this ambiguity can
be removed via automatic gain control (AGC) and differen-
tial encoding (DE)/decoding [28, p. 187]. We assume differ-
entially-encoded user signals throughout the simulations. For
the purpose of performance evaluation only, the permutation
ambiguity is resolved using a greedy least squares -row
matching algorithm.

B. Sample Runs

If is the noise-free data and is the noisy data,
we define the sample SNR at the input of the multiuser receiver
as

SNR dB

where the is the sum of squares of all elements of the 3-D
array , andaverage SNR(henceforth refered to as SNR) in the
obvious fashion.6

Figs. 5–8 present the results of two illustrative simulation
experiments. In our first experiment, we consider
differentially encoded BPSK (DE-BPSK) user signals, spread
with Hadamard(4) codes and augmented by two trailing zeros,

6This (and notE =N ) is the pertinent measure of SNR becauseE =N does
not take into account the effects of multiple antennas/fading/multipath.

Fig. 7. Harmonics.

Fig. 8. PARAFAC-recovered harmonics.

for a total of chips/symbol (six ISI-free chips/symbol
available). Each user undergoes a Rayleigh multipath/delay
frequency selective channel of length chips and is
received at an SNR of 16 dB by antennas. In addition
to each user's own multipath/delay channel, each user-antenna
pair experiences independent Rayleigh flat fading. Fig. 5
depicts scatter diagrams (at the input of the decision device)
for the conventional Matched Filter receiver. Fig. 6 depicts
the same for the proposed blind PARAFAC receiver. With

snapshots, the proposed deterministic blind receiver
overwhelmingly outperforms the MF receiver. Note that the
MF receiver exploits knowledge of the spreading codes and
averages the independently faded signal copies received by the
two antennas. We underscore that the proposed receiver does
not utilize spreading code information.

To illustrate the waveform-preserving character of our
PARAFAC receiver and using the same transmit/channel
parameters, in our second experiment, we consider harmonic
sources. At the receiver, we employ antennas and
collect snapshots. SNR at the input of the multiuser
receiver is 10 dB. Fig. 7 depicts the true source signals, whereas
Fig. 8 depicts the PARAFAC-recovered signals. Observe the
shuffling among waveforms due to the permutation ambiguity
predicted by Theorem 2.

C. Monte Carlo Results—Comparison With Nonblind
ZF/MMSE

In this section, we present Monte Carlo simulations that are
designed to assess the bit/symbol error rate (BER/SER) perfor-
mance of the proposed blind PARAFAC receiver. We compare
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against the nonblind zero-forcing (ZF also known as decorre-
lating) and nonblind minimum mean-squared error (MMSE) re-
ceivers. The latter offers a performance bound against which
blind algorithms are often measured [14], [39]; therefore, it is a
natural benchmark. As a line of reference, we also include re-
sults for the conventional matched filter (MF) receiver, although
it clearly exhibits an error floor due to the presence of multi-
path and the ensuing loss of orthogonality that causes signifi-
cant multiuser interference (MUI).

In contrast to our blind PARAFAC receiver, the nonblind
ZF/MMSE receivers assume perfect knowledge of mul-
tipath/delay/fading and spreading codes. In addition, the
nonblind MMSE receiver assumes knowledge of the SNR. Let
us rewrite the (unfolded) polyphase decomposition of the data
in (12) in the compact form as

With noise present, becomes , whereas is assumed to
be perfectly known in a nonblind setting. It follows that the ZF
solution for is

...
...

where denotes the noisy slabs. Similarly, the nonblind
MMSE solution is a regularized inverse given by

SNR

The MF receiver exploits knowledge of the spreading codes
and takes advantage of antenna diversity by combining inde-
pendently faded array outputs. On the average, and for a typical
simulation setup like the ones below, PARAFAC takes a few sec-
onds to run in interpreted MATLAB on a SUN ULTRA-1.

Recall that
number of users;
number of snapshots;
number of ISI-free chips per symbol;
number of antennas.

Throughout, number of Monte Carlo trials 1000. Note
that the effective BER averaging is of order per user
with varying from experiment to experiment. For all users
and all experiments, is of order
chip multipath/delay channels. trailing zeros (“guard
chips”) are used for blocking, and ISI-free chips
are available. For each Monte Carlo run, the multipath/delay
channel taps are redrawn from an i.i.d. Rayleigh generator and
are thus the fading coefficients. User signals are redrawn from
an i.i.d. distribution and then differentially encoded for each run.
Note that the channel impulse responses are not normalized to
unit norm; this, along with the presence of fading, means that
the effective signal power varies considerably from run to run
and from user to user, which is a challenging setup when power
control is absent. No power control is assumed. The results are
reported as average BER/SER for all users versus average SNR.

Fig. 9. BER versus SNR.M = 4; P = 6; N = 50; K = 2 DE-BPSK.

Fig. 10. SER versus SNR.M = 4; P = 6; N = 50; K = 2 DE-QPSK.

Fig. 11. BER versus SNR:.M = 8; P = 10; N = 50; K = 2 DE-BPSK.

Averaging is performed over the statistics of fading, multipath,
user signals, and (AWG) noise.

Fig. 9 depicts results for
and DE-BPSK transmissions. The blind PARAFAC receiver is
depicted using solid line with circles, MF using dashed line with
stars, nonblind MMSE using dash-dot with squares, and non-
blind ZF using double-dot with triangles (the ZF and MMSE
receivers appear almost identical in the log-log plot, especially
for high SNR, as expected). Fig. 10 presents the counterpart of
Fig. 9 but for DE-QPSK. Notice that in both cases, the blind
PARAFAC receiver is very close to the nonblind MMSE re-
ceiver.

Figs 11 and 12 present results for
DE-BPSK and ,

DE-BPSK, respectively. Note that the gap between blind
PARAFAC and (nonblind) MMSE increases as increases.
This is to be expected, of course, and it can be easily com-
pensated by increasing from the current (minimum possible)
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Fig. 12. BER versus SNR.M = 16; P = 18; N = 50; K = 2 DE-BPSK.
Increasing gap with increasingM .

Fig. 13. Works with small sample sizes. BER versus SNR.M = 4; P = 6;

N = 10; K = 2 DE-BPSK.

value of 2 to, e.g., 4 or, alternatively, by increasing some other
form of diversity ( or ).

Fig. 13 shows small sample results:
DE-BPSK. It is clear that PARAFAC performs well even

for very small sample sizes.
Remark 2—Regarding the Case (More Users than

Spreading): Observe that due to symmetry, conclusions for this
case can be drawn from the above simulation results, noting
that the role of antenna diversity can be switched
with spreading diversity . In addition, note that due
to the presence of frequency-selective multipath, no two users
will share the same signature code (“effective” spreading code),
even if they start out with the same spreading code on transmit.
If , then what happens is thatall signature codes be-
come correlated, albeit at (randomly) varying degrees, since the
multipath channels (and hence the signature codes) are redrawn
for each Monte Carlo trial. PARAFAC works with these “effec-
tive” spreading codes, and therefore , it does not make sense to
single out any subset of users; average BER for all users is still
pertinent.

VIII. R EPRISE

This paper has developed a link between PARAFAC analysis
and blind multiuser separation-equalization-detection for
DS-CDMA systems. Relying on the uniqueness of low-rank
three-way array decomposition and trilinear alternating least
squares regression, a deterministic blind PARAFAC receiver
has been proposed that offers some unique advantages: notably
blind performance close to nonblind MMSE; identifiability

(consistency as SNR ); and deterministic joint LS/con-
ditional ML estimates of signals, array response, and effective
codes.

Unlike existing approaches, PARAFAC requires no sta-
tistical independence or whiteness in space or time, and it
does not rely on known codes, DOA-calibration information,
or FA/CM properties to achieve separation, although it can
capitalize on any of these, if available. PARAFAC works well
for small sample sizes by virtue of its deterministic nature, and
it is robust with respect to near-far effects (LS/ML). Interest-
ingly, PARAFAC can recover the users even if less spreading
than users is available, which is an important advantage in
oversaturated systems, or whenever bandwidth comes at a
premium. This is achieved by trading spreading diversity
for spatio-temporal diversity. Rapidly varying frequency-flat
fading, as well as unknown frequency-selective multipath, can
be handled, provided that the multipath reflectors are in the
far-field, the system is quasisynchronous so the delay spread is
in the order of a few chips, and sufficient diversity is available
for identifiability in the sense of the-rank condition (5)–(8).

The ideas presented herein also apply to non-CDMA systems
where fractional sampling diversity is available (not necessarily
induced by spreading). As shown recently in [29], TDMA,
orthogonal frequency division multiplexing/multiple access
(OFDMA), and discrete multitone (DMT) can be thought of
as special cases of the CDMA model considered herein. For
example, in OFDMA, the codes are complex exponentials. It
follows that our results apply to these schemes as well. These
are of interest in their own right, and will be expanded upon in
a sequel to this paper. Multi-way arrays, multilinear models,
and the trilinear model in particular have many additional
applications in signal processing and communications that are
currently under investigation.

APPENDIX

Proof of Theorem 2:We will use the following result, which
is of interest in its own right, and is stated and proved separately
(without reference to uniqueness of triple product decomposi-
tion) in Kruskal [24]. Kruskal proves it (in four pages) under
the working assumption of real matrices, but in contrast with
the uniqueness of triple product decomposition results, it only
involves rank (instead of-rank) and span arguments for a pair
of matrices, and it readily generalizes to the complex case. Like
Kruskal, we will use the result for the “last mile,” i.e., to finish
the line of argument in the main proof.

Lemma 1 (Permutation Lemma):Let denote the
number of nonzero elements of . Given two matrices
and with the same number of columns , suppose that
has no identically zero columns, and assume that the following
implication holds:

rank

We then have that , where is a permutation ma-
trix, and is a nonsingular complex diagonal scaling matrix.

Main Proof: Let us first consider uniqueness of. The rest
will follow by the complete symmetry of both the complex tri-
linear model and the-rank condition. Suppose there also exist
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, such that
, for . We wish to

show that

rank

for all . Taking linear combinations , it
follows that

diag diag

(14)

Because the rank of a matrix product is always less than or equal
to the rank of any factor, we have

rank diag

rank diag rank diag (15)

Let be the number of nonzero elements in
. Drop those columns of and associated rows of

corresponding to the zeros of ; this results in truncated
matrices and having columns and rows, respectively. Let

be the corresponding nonzero part of . Then,
relying on Sylvester's inequality, we obtain

rank diag

rank diag

rank rank diag (16)

Since all elements of are nonzero, it follows that

rank rank diag

rank rank (17)

Now, has columns of the original , and is constructed
out of rows of ; by the definition of -rank, it holds that

rank rank (18)

Thus, (15)–(18) allow us to infer that

(19)

For different ranges of, (19) implies (20), shown at the bottom
of the page. This is the first leg of the main proof. Now, observe

that in order to establish the implication required by thepermu-
tation lemma, it suffices to show that the-rank condition (5)
excludes the latter two ( ) possibilities. We will argue by con-
tradiction.

We start by proving that (5) implies rank rank .
From (14), it follows that

diag

Consider again , which is the number of nonzero el-
ements in . We will show that . Suppose
the opposite, namely, that . As part of the
derivation leading to (20), we see that (21), shown at the bottom
of the page, holds. Since , from (5)

Equation (21) then shows that rankdiag when-
ever . However, diag ,
and therefore, its rank should be zero. This shows that

rank rank

Recall the assumption of thepermutation lemmaand work from
the second line and to the left:

rank

rank (22)

where the top left-most inequality follows from definition of
-rank ( rank). Here is now another point where the-rank

condition plays a key role:

(23)

Combining (22) and (23), we arrive at the second key inequality

(24)

Consider now inequalities (20) and (24) jointly. Sup-
pose that the third leg () of (20) is in effect, that is,

; then, we obtain

for
for

for
(20)

rank diag
for

for
for

(21)
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which is impossible because . Similarly,
suppose that the second leg () of (20) is in effect, that is,

; then, we obtain

which is impossible since

since . The only remaining option is leg
, i.e., , and thus

which is the condition required by thepermutation lemma(in
addition, note the trivial fact that

, which implies that none of
has an all-zero column). This shows that , where
is a permutation matrix, and is a nonsingular complex diag-
onal scaling matrix. Since the trilinear model is completely sym-
metric ( any one of the three matrices can be put in the middle
of the decomposition), and the-rank condition is also sym-
metric (sumof -ranks), it follows that and are also unique
modulo permutation and scale. This completes the proof.

Remark 3: It can be shown that the permutation is common
to all three matrices, and the product of the respective scales is
identity. This is not critical in the DS-CDMA context, and we
therefore skip it for space considerations.
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