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Abstract—
�

This paper links multiple invariance sensor array
processing (MI-SAP) to parallel� factor (PARAFAC) analysis, which
is a tool rooted in psychometrics and chemometrics. PARAFAC
is a common name for low-rank decomposition of three- and
higher way arrays. This link facilitates the derivation of powerful
identifiability results for MI-SAP, shows that the uniqueness of
single- and multiple-invariance ESPRIT stems from uniqueness of
low-rank decomposition of three-way arrays, and allows tapping
on the available expertise for fitting the PARAFAC model. The
results are applicable to both data-domain and subspace MI-SAP
formulations. The paper also includes a constructive uniqueness
proof for a special PARAFAC model.

I. INTR
�

ODUCTION

D IRECTION-of-arri
�

val (DOA) estimationis akey problem
in radaraswell asin emitterlocalizationin mobilewire-

less communications.In the latter, DOA estimationenables
beamforming
�

for interferencesuppressionandusersignalsepa-
ration,� andit is alsousefulin emergency (911)situations.DOA
estimation� is central to the sensorarray processingproblem,
and	 it has sparked considerableresearchinterest for more
than



two decades[19]. Sensorarray processingtools range
from nonparametricFourier-basedmethodsand conventional
beamforming
�

to parametrichigh-resolutiondirection finding
techniques



like MUSIC [26] andESPRIT[25].
The
�

single-parameter(azimuthonly) caseis simplerthanthe
multiple-parametercase,e.g.,azimuthandelevationor evenad-
ditional
�

parameterssuchasfrequency andpolarization.ESPRIT
is



particularlyappealingin thesingle-parametercase,whereit
pro� vides a solution basedon eigenvalue decomposition.The
basic
�

ideabehindESPRITappliedto directionfinding is to de-
plo� y two identicaldisplaced(but otherwisearbitrary)subarrays.
This
�

inducesrotationalinvariancein thebasebanddatathatcan
be
�

exploited to recover the sought-afterDOA’s. An important
feature
�

of ESPRITis that it doesnot requiresubarraycalibra-
tion



information.Obtainingarraycalibrationdatais anexpen-
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si� veproposition,anddrifts canrenderthecollecteddataunreli-
able.	

In the multiple-parametercase,thingsbecomeconsiderably
morecomplicated.In effect, oneneedsanarraywith displace-
ment� structurein morethanonedimension,andapplyingES-
PRIT separatelyin eachdimensionleaves muchto bedesired.
On
�

theonehand,evenif azimuthandelevationparametersare
independently



resolved, the associationproblem(i.e., pairing
corresponding� azimuthandelevationestimates)remains.More
importantly, this approachdoesnot fully capitalizeon themul-
tidimensional



invariancestructurepresentin thedata.
Se
�

veral authorshave consideredways aroundthe associa-
tion



problem,seee.g., [36] and [42]. The weightedsubspace
f
�
itting (WSF) viewpoint of Viberg and Ottersten[37] led to

the



single-parametermultiple-invariancesubspacefitting (SSF)
formulation of ESPRIT[32] and then to the multiple-param-
eter� multiple-invarianceSSFformulationof ESPRITin [31]. In
parallel,� severalauthorshave investigatedsuboptimalbut com-
putationally� efficient solutionsfor themultiple-parametermul-
tiple-in



variancecase(see,e.g.,[12] and[41]).
ESPRIT
�

ideashave revolutionizedsensorarray signal pro-
cessing.� Interestingly, a generalprinciple underlyingESPRIT
has
�

flourished independentlyin other scientific fields and
disciplines,
�

where it is commonly referred to in a variety
of� ways, including parallel proportional profiles, trilinear
decomposition,
�

canonicaldecomposition,and par� allel factor
(P
�

ARAFAC) analysis.PARAFAC hasbeenfirst introducedas
a	 dataanalysistool in psychometrics,1 where it hasbeenused,
e.g.,� for “individual differencesmultidimensionalscaling” but
in phonetics,exploratory data analysis,statistics,arithmetic
comple� xity, andother fields anddisciplines.R. A. Harshman
[14]–[16], andCaroll andChang[7] developedthePARAFAC
model. Nowadays,much of the researchin the areais con-
ducted
�

in the context of chemometrics,2
!

where it is used
for spectrophotometric,chromatographic,and flow injection
analyses.	 This body of work includestools andconceptsthat
are	 veryusefulin deriving identifiability resultsplusdecadesof
e� xpertiseonthealgorithmicsideof things.ThetermPARAFAC
is widely adoptedin chemometrics,and we adopt it hereas
well. 

In
�

an earlier paper[29], we have linked PARAFAC to the
DS-CDMA blind multiuserdetectionproblem.In thispaper, we
wed PARAFAC ideasto multiple-invariancesensorarraypro-
cessing,� with emphasison identifiability results.Relative to the
CDMA
"

problemin [29], arrayinvariancereplacesspreadingas
the



third dimension,andtheinformation-bearingsourcesignals
can� now be uncoded.

1The first seedof PARAFAC ideasappearedasearlyas1944in a paperby
R. B. Cattell in Psychometrika[9].

2
!
Dataanalysisandits applicationsin chemistry.
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PARAFAC is a commonnamefor low-rank decomposition
of� three-and higher way arrays.As such,it falls undermul-
tiw



ay analysisor linearalgebrafor multiway arrays.Multiway
analysis	 hasalsobeenusedin the context of higherordersta-
tistics



(HOS)-basedindependentcomponentanalysis(ICA) of
non-Gaussiansourcemixtures[10], [22]. Our approachherein
is deterministic;it requiresneitherstatisticalindependencenor
non-Gaussianity.

A.
#

Organization

The rest of this paperis structuredas follows. SectionII
contains� the MI-SAP data model and provides necessary
MI-SAP
$

preliminariesalong with a summaryof previously
known MI-SAP identifiability results.SectionIII introducesthe
PARAFAC modelandexplainshow it arisesin the context of
MI-SAP
$

.SectionIV containsthecorecontributionsof thispaper,
which arein termsof MI-SAP identifiability results.SectionV
discusses
�

algorithmic issues,whereasSection VI presents
simulation� results.Conclusionsaredrawn in SectionVII.

II. MI-SAP PRELIMINARIES

Consider
"

a sensorarrayconsistingof elements� receiving
signals� from narro% wbandsourcesin the far field. The dis-
crete-time� baseband-equivalentmodel for the noisy arrayout-
puts� canbewritten asfollows:

(1)
�

where is the array	 response, is an
v& ectorof sourcesignals,and models� measurementnoise.
Throughout,we assumethat is tall and	 full rank,
which is necessaryfor identifiability. Collecting snapshots,�

(2)
�

where is the source� signalmatrix,and is the
noise% matrix. Supposethat the arraycontains displaced

�
but

otherwise� identicalsubarraysof sensors� each(anextension
of� the usualESPRITscenario,which correspondsto ).

'
Let denote

�
a selection� matrixthatextractsthe rows

corresponding� to the th



subarray;then (see,e.g., [12], [31],
[32], [41])

...
...

...
(3)
�

and	

...
...

...
...

(4)
�

where 
subarray� response;
diagonal
�

dependingon sourceparam-
eters,� th



subarraydisplacement,andframeof

reference;

measurementnoisefor the th



subarray.
Throughoutthispaper, denotes

�
noisydata.Notethatin general,

,( with left equalityfor subarraysthat
share� elements� andright equalityfor subarraysthatdo
not overlap.

As
)

anexample,considera uniform* squarearraywith
interelementspacing in bothdimensions, sources,�
and	 square� subarrayscorrespondingto the bottom-left

,( bottom-right ,( top-left ,( andtop-right
blocks
�

. Then,assuming is



the
referencesubarray[31]

diag
�
diag
�

where denotes
�

the identitymatrix,and
and	 are	 theazimuthandelevationanglesfor the
three



sources(in rads).
Thecoreproblemthatwedealwith in thispapercannow be

stated� asfollows.
PROBLEM: Gi

+
ven ,( ,( find (estimate) ,(

,( and .
Returningto (1) andassumingthat is spatiallywhite

where 
e� xpectationoperator;
Hermitiantranspose( is reservedfor conjugation);
emitter� signalcovariance;
noise% variance.

If is full rank ,( then[26] span span� ,( where
is



an matrix� whosecolumnsare the eigen� vec-
tors



of corresponding� to the largesteigenvalues.Hence,
,( where is nonsingular. This is the basis

of� subspaceapproachesto signalparameterestimation.For the
multiple-in� variancestructureat hand,(3) impliesthat[32]

...
...

...
(5)
�

which meansthat the signal subspaceinherits the invariance
structure� presentin theraw data.In practice, is estimated
using*

An
)

estimate of� is



obtainedfrom theeigenvaluedecompo-
sition� of or� , equivalently, the first left singularvectors
of� . In thenoiselesscase
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Let denote
�

thecorresponding(noiseless,finite-sample)esti-
mate� of . If is



fat and	 full rank,thenspan

span� ; else,if is tall/losesrank,thenspan span� ,(
and	 ,( but now, is ,( and is of� rank

. Hence

...
...

...
(6)
�

In thenoisycase, ,( and

...
...

...
...

(7)
�

A
)

specialcasewill beof interestaswell. For linearly anduni-
formly displacedsubarraysasthosedepictedin Fig. 1, it holds
that



(using
�

thezerothsubarrayasreference).
Both data-domain(4) andsubspacemodels(7) incorporate

errors.� AssumingGaussiannoise, the least squares/weighted
leastsquaresprinciple is appropriate,leading,e.g.,to data-do-
main� leastsquaresfitting

...
... (8)

�

and	 the correspondingweighted subspacefitting (WSF)
problem� [31], [32], [37], [39]

...
... (9)

�

where is



a weightingmatrix, and holds
�

all the diago-
nals.Theproblemsin (8) and(9) have commonstructurefrom
a	 regressionviewpoint.Dependingon theparticularproblemat
hand,constraintsonsomeorall of thematricesmaybeimposed,
e.g.,� known displacementstructure,trainingsymbols,etc.

A. PreviousIdentifiability Resultsfor MI-SAP

It
�

is helpful to clarify thatby identif
.

iability,( wemeanunique-
nessof all spatialsourceparametersaswell astemporalsource
signals� given afinite setof sensormeasurementsin theabsence
of� noiseandup to inherentlyunresolvablesourcepermutation
and	 scalingambiguities.Othernotionsof identifiability arepos-
sible,� e.g.,[18] defines identifiability in the senseof distribu-
tions



(i.e.,distinctmodelparameterizationsgive riseto distinct
distrib
�

utionsof themeasurements),whichisdifferentfromwhat
is meantherein.

Fig. 1. Linearly anduniformly displacedsubarrays.

• As statedearlier, tall



and	 full rankis neces-
sary� for identifiability [40].

• (single-invariance ESPRIT): ,( ,(
full rank ,( ,( anddisplacement are	 requiredfor
identif



iability (e.g.,cf. [27] and[38]).
• linearly and uniformly displaced subarrays

...
...

and	

...
...

...
...

(10)
�

If is alreadytall/full rank, then the single-invariance
ESPRITresultapplies[32, p. 874].However, maywell
be
�

tall/full rankevenif is not, resultingin significantly
relax� edidentifiability conditions.This hasbeenleft open
in [32]. We will fill this gap in thesequel.

• General
/

case: Identifiability resultsfor thegeneralcase
of� arbitrarydisplacementstructurearemissingfrom the
literature.We will providesuchgeneralresultsherein.

As alludedto in theintroduction,thetoolswewill usetoward
our� statedgoalscomefromparallelfactoranalysis.How parallel
factoranalysisrelatesto multiple-invariancesensorarraypro-
cessing� is explainednext, includingthenecessarybackground.

III. PARALLEL FACTOR AN
�

ALYSIS

W
0

e introducesomenotationthatwill beusefulin thesequel.
Let be

�
the matrixwhose st� row is thediagonal

of� ,( andlet denote
�

thediagonalmatrixcontainingthe
st� row of : ,( and

(11)
�
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Letting stand� for the element� of (the
�

signal
part� of theoutputof the th



antennaof the th



subarrayat time

),
'

we have

(12)
�

where stands� for the -elementof ,( andsimilarly
for theothers.Equation(12)expresses as	 asumof triple
products;� it is variably known as the trilinear model, trilinear
decomposition,
�

tripleproductdecomposition,canonicaldecom-
position,� or par1 allel factor (P

�
ARAFAC) analysisof .

Def
2

inea thr3 ee-wayarray with typicalelement
. A rank-1three-wayarray is the“outerproduct”of three

v& ectors ; its typical element can� bewritten as

Equation
�

(12) is an -componenttriple productdecomposi-
tion



of . The r4 ank of� is



defined asthe minimum number
of� rank-1three-way componentsneededto decompose [20].
Theabove definition is consistentwith matrix (two-way array)
rank,� which is theminimumnumberof rank-1matricesneeded
to



decomposea givenmatrix.
Notice
5

how theassumedshift invarianceis crucial in estab-
lishing
6

trilinearity of theMI-SAP model;hoppingthroughcor-
respondingsubarrayelementsinvolvespicking up a factorthat
depends
�

on thechosensubarraysandsourceazimuth/elevation
parameters� but not theparticularsubarrayelements . In the
absence	 of shift invariance,the three-way datain no% longer
obe� y a PARAFAC modelof rank .

Equation(11) canbeviewedas“slicing” the3-D array in
a	 seriesof “slabs” (2-D arrays)perpendicularto the invariance
dimension,
�

i.e., ,( that is, the 2-D slice
of� corresponding� to thegiven . Two additionalslicingsare
possible� andusefulin understandingtheregressionalgorithmin
Section
�

V.

(13)
�

where the matrix . Similarly

(14)
�

where the matrix .

IV. IDENTIFIABILITY

W
0

e will needthefollowing definition.
Def
7

inition 1: Consider
"

a matrix . If8:9<;>= ,( then contains� a collection of linearly
independentcolumns.Moreover, if all? columns� of
are	 linearly independentbut thereexists a collectionof
linearly dependentcolumnsof (or

�
),
'

then has
Kruskal-rank( -rank)

'
.

Theconceptis implicit in thework of Kruskal [20], but the
term



was latercoinedby HarshmanandLundy [17]. Note that
unlik* eregularmatrixrank,theconceptof -rankis asymmetric,
as	 it pertainsto columns:A fat matrix ,( may�
ha
�

ve full rank (
�

ro� w rank column� rank)but -rankoneif
it containstwo colinearcolumnsor evenzeroif it containsan

all-zero	 column.On the otherhand,the -rank of will be
full
�

( )
'

in thiscase.A square/tallfull-rank matrixhas -rank
equal� to its rank.In general, @:ACBED ,( .

PARAFAC uniquenesshasalonghistory[14]–[16], [27], but
Kruskal’s
F

result[20], [21] is thedeepest.
Theorem 1 [20]: Consider

"
the set of matrices

,( ,( where ,(
,( ,( and denotes

�
the common

dimension.
�

If

(15)
�

then



,( ,( and are	 uniqueup to permutationandscalingof
columns,� meaningthatany othertriple that



gives rise

to



thedata is relatedto via&

(16)
�

where is



a permutationmatrix, and are	 diagonal
scaling� matricessatisfying

(17)
�

The
�

resultholdsfor ,( irrespective of condition(15), as
long as does

�
not containan identicallyzero2-D slicealong

an	 y dimension.
Radar
G

and communication systems employing
in-phase/quadrature processing lead to discrete-time
baseband-equi
�

valent models involving complex arrays.
Kruskal, in [20], statesandproves his uniquenessof trilinear
decomposition
�

resultsexplicitly undertheworking assumption
of� real-valuedarrays.Splitting into real and imaginaryparts
destro
�

ys trilinear structure, and three-way array rank is
sensiti� ve to thedomainof numbersusedin thedecomposition
[21]. Care should therefore be exercised in treating the
comple� x case.The proof of the following resultcanbe found
in



our earlierpaper[29].
Theor
H

em2[29]: Gi
+

ven ,(
,( ,( ,( and , i( f

(18)
�

then



,( ,( and are	 uniqueup to permutationand(complex)
scaling� of columns.

As
)

it stands,theconditionappliesto thedata-domainMI-SAP
formulation(3). Thefollowing resultshows thatnothingis lost
in termsof identifiability by going to the correspondingsub-
space� formulation(6).

Pr
I

oposition1—SubspaceIdentifiability: If
�

,( then the subspacemodel in (6) is identifiable, i.e.,
giJ ven ,( ,( ,( ,( and are	 uniqueup
to



permutationandscalingof columns.
Proof: Let be

�
the SVD of ,( where is

,( is diagonal
�

containingthe nonzerosingular
v& aluesof ,( and is . Now, ,( and ,(
from
�

which it follows that . With tall/full



rank, this implies that or� . Since
is



tall/full rank,Sylvester’sinequalityimpliesthat ;
furthermore,
�

sinceeK very columns� of arise	 outof thecorre-
sponding� columns� of ,( Sylvester’sinequalityshows that
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an	 y columns� of are	 linearly independentif andonly if
the



corresponding columns� of are	 linearly independent;
hence, . The -rank of is inheritedfrom .
Theresultthenfollowsby applyingTheorem2 to (6).Notethat

can� berecoveredup to permutationandscalingof rows from
and	 therow subspaceof .
Carroll
"

etK al. [8] have in factconsideredtherelationshipbe-
tween



thedatadomainandsubspacefitting problemsfor what
amounts	 to the specialcaseof nonoverlappingsubarraysex-
tracted



from ,( without referenceto identifiability, however.
There
�

exists a very interestinglink between -rank andthe
concept� of r4 ank ambiguitythat



appearsin the studyof sensor

arrays	 (e.g., cf. [34], [35], and referencestherein).It is well
known [40] that in order to uniquelydeterminethe DOA’s of

uncorrelated* sourcesfrom thearrayoutputs,onerequiresan
array	 manifoldthat is freeof rank- ambiguities,	 meaningthat
eK very steering� vectors(correspondingto distinctDOA’s)
dra
�

wn from themanifoldarelinearly independent.Let be
�

the
maximumsuch for agivenmanifold;3

L
the



associatedantenna
array	 canresolveup to uncorrelated* sources.Let ,( be

�
the



resolvability boundsfor thesubarraymanifoldandthedis-
placement� manifold,respectively. Clearly

No
5

w, supposethat thesourcesignalmatrix is fat
and	 full rank . Then, the -rank identifiability condition
(18)
�

becomes

which is guaranteeda? fortiori if the DOA’s of the different
sources� aredistinctand

ThelatterinequalityisanintuitivelypleasingsubarrM aysynthesis
result;� the resolvingpower of the referencesubarrayand the
displacement
�

subarrayaddup.See[34] for adiscussionof issues
relatedto thedesignof antennaarrayswith a specified .

A randommatrix whosecolumnsaredrawn independently
from
�

an absolutelycontinuousdistribution hasfull rank with
probability� one.Interestingly, it alsohasfull -rankbecauseany
combination� of columnscanbe thoughtof asanotherrandom
matrix� with columnsdrawn independentlyfrom an absolutely
continuous� distribution. This holdsevenif theelementsacross
a	 givencolumnaredependentrandomvariables.In our present
conte� xt, for sourM ce-wiseindependentsourcesignals,

,( andtherefore,(18) becomes

which implies that sources� canbe identified with asfew as
snapshots,� provided ,( ,( andthesubarray

and	 displacementmatricesarefull rank .

A.
#

DOA RecoveryConsiderations

Thusfar, wehaveignoredtheissueof DOA recoveryfromthe
matrix� estimates.If thereferencesubarrayis uncalibrated,asis

3
L N

dependsonarraygeometryandotherantennadesignfactors[34], [35].

usually* assumedin ESPRITapproaches,thenonerelieson the
structure� of to



recover azimuthandelevationestimates.Un-

like DOA determinationfrom arrayoutputsO ,( unambiguousaz-
imuth/elevation recovery from thecolumnsof requiresonly
mild� conditionson the displacementstructure,which can be
easily� satisfied by arraydesign.This is bestillustratedby ex-
ample.	 In thecaseof the uniform* squarearrayin SectionII,
the



displacementsteeringvectorhasthefollowing structure:

which meansthat unambiguousazimuth/elevation recovery
from the columns of is possible, provided the sources
are	 confined within plus or minus 90 in



both azimuth and

ele� vation. In particular, this doesnot requirethat ,(
which is requiredfor unambiguousDOA determinationfrom
displacement
�

subarrayoutputs.
If
�

thereferencesubarrayis calibrated,thenthesteeringvec-
tors



fromboth and	 can� beusedtorecover azimuth/elevation
estimates.�

B.
P

OneAnglein Common

It
�

is interestingto investigatewhethertheidentifiability con-
dition
�

(18) canhold in the presenceof two sourceswith one
angle	 in common.Considera uniform* squarearraywith
interelement



spacing ,( and square� subarrayscor-
respondingto the bottom-left reference),bottom-right

,( top-left ,( and top-right
blocks
�

. Let therebe sources� at the same
azimuth	 but differentelevations.Let ,(

,( and . Then

If ,( thenthefirst andthethird row arelinearly indepen-
dent,
�

andtherefore, and	 are	 full rankaswell asfull -rank:
. For f

�
at andfull rank,

,( andhence,(18) is satisfied,anduniquenessis guar-
anteed.	

C. Regarding Coherence

F
Q
or coherentsources(rank-deficient sourcecovariancema-

trix),



the Cauchy–Schwartz inequality implies that the sample
paths� arecolinearwith probabilityone.The -rankof a matrix
with colinearnonzerocolumnsis one,which implies that the
sum� of -ranksin (18) cannever exceedtwo timesthenumber
of� sourcesplus two; hence,PARAFAC uniquenessapparently
f
�
ails.However, we have thefollowing.

• A recentpartial uniquenessresult of Bro etK al. [3] (in
the



context of applicationsin chemistry)canbe applied
to



show that thecoherentsourcesignalsarestill identifi-
able	 (albeit undermorerestrictive conditions).However,
there



is partial rotationalfreedomfor bucketsof columns
of� thesubarrayanddisplacementmatricesassociatedwith
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the



colinearsources,e.g.,a pair of steeringvectorscorre-
sponding� to two coherentsourcescanbe rotatedwithout
af	 fecting thedata.

• Full uniquenesscanberestoredfor fully coherentsources
if



Vandermondestructureis available in either the sub-
array	 or (by symmetry)the displacementmatrix, using
smoothing� ideas.This requiresseveral new results on
the



-rank of certain structuredmatrices, as well as
optimizing� the smoothingfactor from the identifiability
perspecti� ve. The final results include improved iden-
tif



iability conditions for PARAFAC models exhibiting
V
R

andermondestructurealong one or two modes;these
are	 reportedin [30].

D.
7

Subarraysof DifferentSizes

One
�

limitation of the PARAFAC approachis that it cannot
handle
�

subarraysof differentsizes.This situationcanarise,for
e� xample,if thefull arrayis uniformrectangularwith morerows
than



columnsandoneextractstwo maximalrow-overlapsubar-
rays� andtwo maximalcolumn-overlapsubarrays[11].

E. Linearly andUniformly DisplacedSubarrays

Letusnow returnto thespecialcaseof linearlyanduniformly
displaced
�

subarraysin (10).It is of interestto determinerelaxed
conditions� underwhich thematrix is



full rank.We have the

follo
�

wing result.
Lemma1: (

�
Full Rankof Khatri–RaoProduct).

'
Consider

...

where is



,( is



,( stands� for theKronecker
product,� stands� for theKhatri–Rao(column-wiseKronecker)
product,� and ,( are	 thecolumnsof and	 . If

,( then is



full columnrank .
Remark1: Note

5
that ,( and ; hence,

implies ; therefore,
the



conditionincludestherequirementthat is



tall.
Pr
I

oof: Def
2

ine for
�

notationalsimplicity, and
assume	 thecontrary, i.e., thatthecolumnsof are,	 in fact,lin-
early� dependent.Then,thereexist not% all equalto
zerosuchthat

where is the th



columnof . Throughalgebraicmanipu-
lation,
6

it canbeshown thattheabovecanberearrangedinto the
following moreconvenientform:

... (19)
�

Let us supposethat of� the ’s are nonzero.Let
be
�

constructedout of the corresponding columns� of ,(

and	 let be
�

constructedout of thecorresponding rows of
diag
�

. Then

SUT<V>W . . .

XUYCZE[ X:Y<ZE[ X:Y<ZE[ (20)
�

by
�

Sylvester’sinequality. However, by definition of -rank

\:]C^E_
\:]C^`_ (21)

�

Therefore,from (20) and(21),we obtain

W
0

e have thefollowing cases.

1) : .
2)
a

:
.

3)
b

: .
Note
5

that . For
,( all casesabove leadto , b( ut is therankof the

matrix� in (19);therefore, . Thisconstitutesacontradiction,
and	 thus,theproof is complete.

Lemma1 is theheartof thefollowing theorem.
Theorem 3—PARAFAC/VandermondeUniqueness:Consider

"
the



datamodel

(22)
�

and	 supposethat is Vandermondewith distinct
nonzerogeneratorsandthat is fat andfull rank.If

,( then ,( ,( are	 uniqueupto
permutation� andscalingof columns.Underthesameconditions,
the



correspondingsubspacemodelin (10) is alsounique.
Pr
I

oof: W
0

e prove it for the subspacemodel in (10); the
proof� for the data-domainmodel follows along similar lines.
Recallthat fat andfull rank implies square� and
full rank,andconsider

with ,( where contains� thefirst
rows of . is Vandermondewith distinctnonzerogen-
erators� (thediagonalelementsof ).

'
It is shown in [30] thata

V
R

andermondematrix with distinct nonzerogeneratorshasfull
-rank, i.e., . Then,the condition

and	 Lemma1 imply that
is tall andfull rank.This bringsusbackto thefamiliar caseof
single-in� varianceESPRIT[25], [27], at which point, different
routes� canbetaken.Oneway to obtain is



asfollows.

Define
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TABLE I
DATA DOMAIN

c RECOVERY

Thematrix is squareandfull rank.Let denote
�

its
inverse.Then

(and
�

) i
'

s ,( of rank ,( andhence

Therows of can� thereforebedeterminedup to permutation
and	 scalingfrom theleft eigenvectorsof . From ,(
can� be recoveredas ,( whereas can� be recov-
ered� as ,( where meansequalup to per-
mutation� andscalingof columns. can� thenbe recoveredup
to



permutationandscalingof columnsfrom .
Thecomputationalstepsaresummarizedin TablesI andII. In
the



presenceof noise,theestimatescanberefinedusingtheal-
gorithmJ describedin thenext section.

Remark2: If aULA is employedasreferencesubarray, then
is



Vandermondeaswell, andtherefore, ,(
assuming	 distinctgenerators.In this case,the -rankcondition
in thestatementof Theorem3 becomes

.

V.
R

TRILINEAR
� A

)
L
d

TERNATING L
e

EAST
f S

�
QUARES R

G
EGRESSION
f

(T
�

ALS)

Let us now returnto the leastsquaresfitting problemin (8)
and	 (9). Without lossof generality, let usconsiderthedata-do-
main� formulationin (8).

W
0

e aregiven the noisy data and	 wish to estimate
and	 . Using Khatri–Raoproductnotationand letting

,( where ,( are	 the
noisy slabsalongthe invariancedimension,(8) canbewritten
as	

(23)
�

It follows that the conditionalleastsquaresupdateof giJ ven
interim estimates ,( is given by

(24)
�

where stands� for pseudo-inverse.Stackingthedatamatrices
in (13) leadsto thefollowing equivalentway of writing (8):

(25)
�

TABLE II
SUBSP
g

ACE DOMAIN
c RECOVERY

where ,( and ,(
are	 thenoisyslabsalongthesubarrayelementdimension.It

follo
�

ws that

(26)
�

Finally, stackingthedatamatricesin (14)

(27)
�

where and	 ,(
are	 thenoisyslabsalongthetemporaldimension.

TALS maybeinitialized by single-invarianceESPRITwhen
applicable	 or randomlyotherwise.In thepresentcontext, TALS
may� alsobe initialized usingany suboptimalmultiple-param-
eter� multiple-invariancealgorithm,e.g.,[12], [31], [41]—there
are	 clearly many possibilities.Given initial estimates,TALS
proceeds� by updating ,( ,( and in a round-robinfashion
using* (24), (26), and(27). Note that the conditionalupdateof
an	 y given matrix may either improve or maintain,but cannot
w orsen,the current fit. Global monotoneconvergenceto (at
least)a localminimumfollowsdirectly from thisobservation.

Many algorithmsbasedon theALS principlehavebeenpro-
posed� in the signalprocessingliteratureandaimedat solving
a	 wide varietyof estimationproblems.Theso-calledILSE al-
gorithmJ is onewell-known example[33]. All algorithmsof the
ALS genrebuild on the samebasic“piecemeal”optimization
approach.	 Aside from globalmonotoneconvergence,different
ALS algorithmshave differentproperties,especiallyregarding
whether the global minimum is reached,rateof convergence,
and	 complexity. ILSE, for example,utilizesa computationally
demanding
�

enumerationstep,which is the fundamentalcom-
ple� xity bottleneck.ILSP [33] is actuallynot anALS algorithm
because
�

it usesa two-stepfinite-alphabetupdateprocedurethat
is



not optimal in the conditionalLS sense,andhence,conver-
genceJ is not guaranteed.

The
�

per-iterationcomplexity of TALS is equal to the cost
of� computinga matrix pseudo-inverse.Overall complexity de-
pends� on the numberof iterations,which variesdependingon
problem-specif� ic parametersandthegiven batchof data.Typ-
ical



runtimefor theproblemsconsideredhereinis between0.01
s� anda few seconds.

TALS was first utilized to fit the PARAFAC model by
Harshman
h

[14]–[16] andCarollandChang[7]. Thebare-bones
TALS algorithm outlined above doesnot take advantageof
the



structureof . Other structuresmay also be available,
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e.g.,� finite-alphabetor constant-modulusof the elementsof
,( training symbols embeddedin ,( known DOA for one

or� more sources,etc. If one hasan algorithm that solves the
v& ector regressionproblem ,( for arbitrary
constraint� set ,( then one can enforce on� the columnsof
an	 y oneof the threematrices( )

'
in a LS fashion[4],

thereby



maintainingmonotoneconvergence.Hence,arbitrary
parametric� or nonparametricsourM ce-wiseconstraints� can be
easily� incorporated,and this is one of the nice featuresof
ALS (cf. [4] for a treatmentof unimodalityandnon-negativity
constraints� in thecontext of TALS). Anotherfeatureof ALS is
its



conceptualsimplicity and the fact that thereis no needto
tune



parametersto guaranteeconvergence.Finally, TALS can
be
�

extendedto fit quadrilinearandmoregenerallymultilinear
models.�

T
�
ALS canbe usedto fit the data-domainproblemin (8) or

the



WSF problemin (9). The Gauss–Newton (GN)-typealgo-
rithms� of [31] and [32], which were developedfor the WSF
problem,� may also be appliedto (8). A GN approachfor fit-
ting



thePARAFAC modelhasfirst beenproposedin [13]. The
questioni of which algorithmic approachis the most efficient
has
�

not yet beenthoroughlyinvestigatedand further depends
on� thecharacteristicsof theproblemandtheparticularbatchof
data
�

at hand.We usethe COMFAC implementationof TALS
described
�

in [29]. COMFAC is basicallya fasterimplementa-
tion



of TALS thatemploysdatacompressionusingtheTucker3
three-w



ay model.

VI.
R

SIMULATION

Gi
+

ven thatour identifiability resultsandalgorithmsapplyto
both
�

datadomainandsubspaceproblemformulations,an im-
portant� questionis which formulationto choose.A secondary
consideration� is which algorithm to choose.Since the latter
depends
�

on many factors, including data conditioning and
whether/which constraintsare enforcedduring the iterations,
we confine ourselvesto thefollowing two goals:i) to illustrate
identif



iability resultsandii) to reportourexperimentalfindings
on� thedatadomainversussubspaceissue.

Thepermutationandscaleambiguityis inherentlyunresolv-
able	 from outputdataonly anda commondenominatorto all
blind
�

identification/sourceseparationmethods.In the present
sensor� arrayprocessingcontext, recoveringthesourcesymbol,
direction
�

finding, and subarrayresponsematrices within a
common� permutationmatrix ambiguity simply amountsto
shuf� fling the sources.If signalcopy is the ultimateobjective,
then



the permutationambiguity can be resolved by resorting
to



a? priori or� embeddedinformation, e.g., known DOA’s
or� user ID bits, respectively. The (generallycomplex) scale
ambiguity	 is relevant for digital communicationsapplications,
b
�
ut it can be resolved using automaticgain control (AGC)

and	 differential encoding/decoding[24, p. 187] or phase
estimation.� Note that column-wise scale ambiguity in the
estimated� is irrelevantbecausetheextractionof azimuthand
ele� vation information involves normalizationwith respectto
the



referencesubarray, which effectively amountsto dividing
the



elementsacrossone column with the top element.For

Fig. 2. Azimuth-elevationscatter, SNR j 54 dB.

Fig. 3. Azimuth-elevationscatterzoom-in,SNR k 54 dB.

the



purposeof performanceevaluationonly, the permutation
ambiguity	 is resolved using a greedyleastsquaresmatching
algorithm.	 SNR is defined in termsof the observation model
in



(2) as . Complex Gaussiansource
signals� areusedthroughout.

Thefirst experimentis designedto illustrateperformancein
a	 high SNR scenario.Figs.2 and3 presentazimuth-elevation
scatter� diagramsfor sources� with (azimuth,elevation)
equal� to (10,25),(15,20),(20,15),and(25,10) ,( usingdata-do-
mainLS fitting asin (8) on a uniform* squarearray,
sensor� spacing,threemaximal-overlapsix-elementsubarrays,

symbols,� andSNR 54
l

dB. Figs.4 and5 present
the



samefor a array	 , threemaximal-overlap81-element
subarrays,� symbols,� andSNR 12 dB.

In
�

orderto comparedatadomain(8) versus(weighted)sub-
space� fitting (9), we simulatedthe experimentalsetupin [31,
e� x. 1]. This exampleentails uncorrelated* sources,with
(azimuth,
�

elevation) equalto ( 10,10),( 5,7)
l

, a( uni-*
form squarearray, maximal-overlap 16-elementsub-
arrays,	 sensor� spacing,SNRof 13 dB (10 dB persource),
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Fig. 4. Azimuth-elevationscatter, SNR m 12 dB.

Fig. 5. Azimuth-elevationscatterzoom-in,SNR n 12 dB.

Fig. 6. AzimuthRMSE:Two uncorrelatedsources,oqpsrUt uwv:x y , z|{~} ��� � ,
SNR � 13 dB.

Fig.7. ElevationRMSE:Twouncorrelatedsources,�|�s��� ���:� � , �q��� ��� � ,
SNR � 13 dB.

Fig. 8. AzimuthRMSE:Two 0.8-correlatedsources,�|�s�:� ��� � , �q��  ¡�¢ £ ,
SNR ¤ 30 dB.

250Monte-Carlotrials,and 25,50,100,250symbolsnap-
shots.� TheWSFweightingmatrix in (9) was chosenaccording
to



[31]; seealso [23], [37], and[39]. No weightingwas used
in (8). Single-invarianceESPRITwas usedto initialize both
(8)
�

and(9). The resultsarereportedin Figs.6 and7 in terms
of� azimuthandelevation root meansquareerror, respectively,
for both (8) and(9) versussamplesize.A moredifficult sce-
nario% involving two correlatedsourceswith correlationcoeffi-
cient� 0.8,commonelevationof 7 ,( andSNRof 30 dB was also
simulated.� The remainingparametersare identical to thosein
Figs.6 and7.Theresultsarereportedin Figs.8 and9.Notethat
(8)
�

and (9) provide comparableresults,even in the relatively
dif
�

ficult scenarioof Figs.8 and9. However, the situationcan
change� quitedrasticallyin toughcases.For thesamesetupasin
Figs.
Q

8 and9,but this timetakingSNRdown to 23dB,data-do-
main fitting behaves considerablyworsethanWSF, as shown
in Fig. 10.Theerraticbehavior of thedatadomainLS curve is
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Fig.
¥

9. ElevationRMSE:Two0.8-correlatedsources,¦q§s¨U© ª�« ¬ , ­|®~¯ °�± ² ,
SNR ³ 30 dB.

Fig.
¥

10. Azimuth RMSE: Two 0.8-correlated sources, ´|µs¶:· ¸�¹ º ,»q¼�½ ¾�¿ À
, SNR Á 23 dB.

a	 manifestationof badrunsleadingto local minima.This can
happenin toughcasesinvolving a combinationof close-to-co-
linear sourcesand/orlow SNR and/orcloselyspacedDOA’s.
The
�

differencebetweendatadomainLS fitting andWSFcanbe
attrib	 utedto thedifferencebetweendeterministicandstochastic
ML [39], to whichWSFis asymptoticallyequivalentfor proper

. Ourexperimentalresultsareconsistentwith [39], especially
[39, Fig. 5(a),p. 2445].Althoughwe do not pursuethis thread
herein,notethat weightingcanalsobeappliedin thedatado-
main� to improve performance,anda few reinitializationscan
help
�

alleviate problemswith local minima (but at the cost of
runtimecomplexity).

The
�

lasttwosimulationexperimentsaremeantto illustratethe
v& alidity of the identifiability conditionsof Theorem2/Proposi-
tion



1,andTheorem3.Theorem3 isfirst.Fig.11depictssource

Fig. 11. Averageoutput ÂÄÃÅ ) SNRversusinput SNRfor ÆÈÇÊÉ independent
complex Gaussiansources,ËÍÌÏÎÑÐÓÒ , ÔÖÕØ× , 1000MonteCarlotrials.

Fig. 12. Averageoutput ÙÛÚÜ ) SNRversusinput SNRfor ÝÈÞÊß independent
complex Gaussiansources,àâáÏãÑäÏåÍæÓç , 1000MonteCarlotrials.

signal� estimationresultsfor ,( nonoverlappingsub-
arrays,	 snapshots,� and sources,� usingrandomly
dra
�

wn complex Gaussian ,( ,( ,( and for
�

a total of 1000
Monte
$

Carlotrials. Both eigendecompositionanddata-domain
LS resultsaredepicted.OutputSNRimproves roughlylinearly
with increasinginput SNR, and acceptableestimationresults
can� beobtainedevenwith thesesmallsamplesizesin all three
dimensions,
�

providedinput SNRis high enough—aclearman-
ifestationof identifiability. Of course,betterresultscanbeob-
tained



by increasing or� .
Taking do

�
wn to meansthat Theorem3 is no

longerapplicable,but Theorem2 (andProposition1) is.Fig.12
depicts
�

sourcesignalestimationresultsfor
and,	 otherwise,thesamesetupasFig.11.Thistimedata-domain
LS is randomlyinitialized.Theresultsareobviouslyworsethan
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Fig.11but still consistentwith increasingSNR,whichprovides
e� xperimentalvalidationof Theorem2.

VII.
R

CONCLUSIONS

This
�

paper has establisheda link betweenMI-SAP and
P
è
ARAFAC analysis.WhatPARAFAC bringsto thetableis pri-

marily in theformof strongidentifiability results.Conceptually,
the



link highlightsthefact thatsingle-andmultiple-invariance
ESPRITuniquenessstemsfrom theuniquenessof low-rankde-
composition� of three-way arrays.Interestingly, the link works
both
�

ways: Theorem3 was motivatedby multiple-invariance
single-parameter� ESPRIT, andit is the first constructive proof
of� PARAFAC uniquenessthat is applicablewhen two of the
three



modesaresmallerthanthe numberof factors(sources).
Proposition
è

1 alsoshows that uniquenessextendsto subspace
modelsin a losslessfashion.
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