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Blind Digital Signal Separation Using Successive
Interference Cancellation Iterative Least Squares

Tao Li and Nicholas D. Sidiropoulos, Senior Member, IEEE

Abstract—Blind separation of instantaneous linear mixtures
of digital signals is a basic problem in communications. When
little or nothing can be assumed about the mixing matrix, signal
separation may be achieved by exploiting structural properties of
the transmitted signals, e.g., finite alphabet or coding constraints.
We propose a monotonically convergent and computationally
efficient iterative least squares (ILS) blind separation algorithm
based on an optimal scaling lemma. The signal estimation step of
the proposed algorithm is reminiscent of successive interference
cancellation (SIC) ideas. For well-conditioned data and moderate
SNR, the proposed SIC-ILS algorithm provides a better per-
formance/complexity tradeoff than competing ILS algorithms.
Coupled with blind algebraic digital signal separation methods,
SIC-ILS offers a computationally inexpensive true least squares
refinement option. We also point out that a widely used ILS
finite alphabet blind separation algorithm can exhibit limit cycle
behavior.

Index Terms—Array signal processing, decision feedback equal-
izers, digital communication, iterative methods, least squares
methods.

I. INTRODUCTION

CONSIDER the instantaneous multiple-input mul-
tiple-output (I-MIMO) observation model ,

where
data matrix;

mixing matrix;
signal matrix;
matrix of i.i.d. Gaussian random variables;

and it is assumed that , , and that and are
full rank ( ). This model arises, e.g., in the context of antenna
array reception of narrowband sources impinging on an array
of antennas, wherein theth row of contains the symbol
sequence corresponding to theth source. In digital communi-
cations applications, the elements ofare drawn from a finite
alphabet, and they are also usually coded for error protection.

If is known or can be estimated via training symbols, then
recovering from can be done in a variety of standard ways,
including simple linear solutions like zero-forcing (ZF) or min-
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imum mean squared error (MMSE) equalization, followed by
quantization, up to computationally more demanding maximum
likelihood (ML) methods. In mobile communications, propaga-
tion parameters can be rapidly varying. This necessitates fre-
quent retraining, which wastes bandwidth and is a prime mo-
tivation behind the pursuit of so-calledblind methods. In the
absence of noise, the objective of blind source separation is to
factor into and by exploiting known properties of ei-
ther (or both) of , . One approach is to constrainto sat-
isfy known structural properties, e.g., finite alphabet (FA) or
constant modulus (CM) [1], [4], [6]–[11]; let us denote this by

. Given , , and , a key issue is whether or not the
factors are unique (modulo the inherent permutation and scale
ambiguity) in the noiseless case; this has been addressed in [8]
for the FA property. In the presence of noise, anoptimalfactor-
ization is sought, e.g., in the least squares (LS) sense

(1)

where is the Frobenius norm. Criterion (1) coincides with
conditional maximum likelihood (treating and as determin-
istic unknowns).

Even though the I-MIMO model appears to be quite restric-
tive due to its memoryless nature, more complicated convolutive
models can be reduced to it by means of blind equalization tech-
niques [5], [9], [13], in which case one has to rely on residual
signal structure (e.g., FA or forward error correcting codes) to
resolve the resulting I-MIMO mixture and recover. This is, in
fact, a strong motivation behind the study of blind source sepa-
ration methods that rely on FA structure alone.

Existing FA factorization algorithms can be classified into
noniterative analytical methods [1], [4], [9]–[11] and iterative
methods [6]–[8]. Analytical algorithms are typically derived for
the noiseless model and subsequently augmented to
deal with modest amounts of noise via SVD, clustering, and/or
iterative refinement. Iterative algorithms, on the other hand, are
typically (but not always) least squares-oriented: Starting from
given (possibly random) initial estimates of and , they at-
tempt to solve (1) in an iterative fashion. Analytical methods can
serve to provide good initial estimates for subsequent iterative
least squares (ILS) refinement in the fully blind case. ILS al-
gorithms are also useful in the semi-blind case, wherein limited
training (and hence a coarse estimate of) is available. Existing
iterative methods [6]–[][8] will be reviewed in detail in Section
II. Analytical methods are briefly reviewed next.

Factoring subject to FA constraints on can be
viewed as a clustering problem [1], e.g., for BPSK modulation

can only contain up to distinct -dimensional vectors.
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Based on this viewpoint, a two-step algorithm has been pro-
posed in [1]. A drawback is that complexity is exponential in
. A geometric approach has been pursued in [4], viewing the

columns of as vertices of a hypercube in and seeking a
linear transformation from the hypercube to a parallelotope in

corresponding to the columns of. The key step of this al-
gorithm is to find a separating hyperplane parallel to one of the
hyperplanes that define the received signal vectors. The com-
plexity of this algorithm is , where is a
constant. Note that for both [1] and [4] has to be big enough
for to contain all distinct -tuples as columns.

A different approach was taken in [10] and [11] based on
transforming the factorization of subject to FA or CM con-
straints into an appropriate joint diagonalization problem, which
can be solved in a variety of ways. The resulting algorithm
is widely known as the analytical constant modulus algorithm
(ACMA), but an FA version is also available.

The rest of this paper is organized as follows. Existing ILS FA
separation algorithms are reviewed in Section II. A key lemma
and the ensuing novel ILS FA separation algorithm are pre-
sented in Section III, including proof of monotone convergence
and complexity analysis. Simulation results are presented in
Section IV, and conclusions are drawn in Section V. In the Ap-
pendix, it is shown that in contrast to the algorithm proposed
herein, a widely used ILS FA separation algorithm known as
ILSP can exhibit limit cycle behavior.

II. I TERATIVE LEAST SQUARESALGORITHMS FORDIGITAL

SIGNAL SEPARATION

The basic idea behind ILS solutions of (1) is simple. Each
time, compute an LS update foroneof the unknown matrices
conditioned on a previously obtained estimate for the other ma-
trix, proceed to update the other matrix, and repeat until conver-
gence of the LS cost function is reached. Convergence of the LS
cost is guaranteed because each (conditional LS) update may ei-
ther improve or maintain, but cannot worsen, the fit. The final
output is generally dependent on the initialization.

Two ILS FA separation algorithms have been proposed in
[8]: iterative least squares with enumeration (ILSE), which is
a true ILS algorithm, and iterative least squares with projection
(ILSP), which is a much simpler pseudo-ILS algorithm. These
are reviewed next.

Algorithm 1: ILSE andILSP: Given

1)
• either (ILSE )

• or (ILSP) proj .
• .

2) Go to step 1 until

In the above, stands for pseudo-inverse, and each of the
column-wise minimizations is carried out by enumeration over

all possible finite-alphabet-tuples,1 and hence, complexity is
exponential in . ILSE is a true ILS algorithm (guaranteed to
converge, actually in a finite number of steps in this case [8]) but
prohibitively complex even for moderate. In ILSP, the compu-
tationally demanding enumeration step is replaced by a simple
finite-alphabet projection of the unconstrained LS update. Un-
fortunately, this two-step update is not necessarily LS-optimal,
and it may actually worsen the fit. This means that ILSP is
not guaranteed to converge in general. Although ILSP usually
does converge (albeit nonmonotonically) in practice, we show
in the Appendix that it can exhibit limit cycle behavior, which
is clearly undesirable. ILSP is more prone to spurious minima
than ILSE, and it tends to provide measurably worse results. On
the other hand, the complexity of ILSP is per iter-
ation, whereas ILSE requires per iteration (recall
that both are ), where is the size of the finite al-
phabet.

A related recent algorithm is decoupled weighted ILSP (DW-
ILSP) [6]. The basic idea behind DW-ILSP is as follows. For
sufficiently big , one may accurately estimate the data cor-
relation matrix and subsequently whiten the data. This effec-
tively decouples the blind estimation problem across sources.
Each one of the signals may then be iteratively estimated irre-
spective of the other signals. This is algorithmically im-
plemented as follows. Fix . Let ,

, where , and stands
for Hermitian transpose. Let stand for the th signal (row of

).
Algorithm 2: DW-ILSP: Repeat until no change in

proj

The primary claim behind DW-ILSP is that it attains roughly
the same BER versus SNR performance as ILSP at a smaller
complexity cost. At first sight, it may appear that DW-ILSP is
closely related to the algorithm that will be proposed herein; this
is not the case; therefore, it is worthwhile to clarify this issue.
Notice that DW-ILSP aims todecouplethe problem via the
whitening transformation and subsequently estimate one signal
at a time, irrespective of all other signals. In fact, this makes
complete sense for spatially uncorrelated symbol streams and
large . However, the model itself may not be valid for large

, e.g., the implicitly assumed time invariance ofmay be vi-
olated due to mobility-induced fast fading and/or variation in the
directions of arrival, in which case, increasingcomes at the
price of unmodeled dynamics. The approach proposed herein
specifically aims towardcoupling symbol decisions for all
signal streams, letting all users benefit from correct decisions
made for any given user. We will show that this leads to an al-
gorithm that can attain performance close to ILSE (thus,a for-
tiori outperforming DW-ILSP) at the complexity cost of ILSP
(higher than DW-ILSP).

All ILS algorithms (including ILSP, ILSE, DW-ILSP, and
the one to be proposed herein) are suboptimal in the sense that
there are no guarantees that the global minimum of (1) will be

1We use


 to denote the FA restriction on vectors and matrices alike.
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reached. The only truly optimal “algorithm” is pure enumera-
tion over all possible , which is exponential in the product
and, hence, impractical. Concluding this section, note that a de-
cision-directed MMSE FA separation approach has been pur-
sued in [7]; it requires side information for initialization pur-
poses, and its convergence analysis is asymptotic in.

III. PROPOSEDALGORITHM

The core idea behind the novel algorithm proposed herein can
be summarized as follows. Instead of updatingsuboptimally
as a whole (like ILSP) or optimally one column at a time (this
being very complex, as in ILSE), update one row of(user
symbol stream) at a time conditioned onand the remaining
rows of . As soon as a new row update is made available for
any given user, it affects all subsequent row updates for all users.
This is reminiscent of successive interference cancellation (SIC)
and decision feedback (DF) ideas [12] since it uses previously
obtained estimates of other users to “cancel” the multiuser inter-
ference and obtain an improved estimate for a user of “current
interest.” The term successive interference cancellation is more
appropriate in our block-oriented context since DF is usually as-
sociated primarily with temporal (rather than spatial) decision
feedback. Our approach differs from other SIC/DF approaches
in that

i) our problem is blind (the mixing is unknown);
ii) the process shifts back and forth between estimating the

mixing matrix and updating the estimated user symbol
streams until convergence;

iii) the updating is least-squares driven.
Interestingly, it turns out that the optimal update of one row

of conditioned on all other rows is easy to compute—in fact,
it is equivalent to projecting the unconstrained LS row update
to the finite alphabet. Contrast this with the ILSE update of one
column of at a time—which is optimal but requires enumer-
ation over all possible finite-alphabet-tuples. The optimality
of projecting unconstrained LS row updates is a ramification of
the followingoptimal scaling lemma, whose proof can be found
in Bro and Sidiropoulos [2].

Lemma 1: Let be a given matrix, and let
be a given vector. The problem
is equivalent to , where stands for theun-
constrainedminimizer of with respect to , i.e.,

. The above holds for general (not nec-
essarily finite-alphabet constraints). Note that depending on,
the constrained solution may or may not be unique; we denote
proj with the understanding
that it stands for “an argument that minimizes .”

To see how the above lemma applies to the problem at hand,
isolate one row of , say, row , and denote it by . Let be
the correspondingth column of , and consider the LS update
for conditioned on everything else.

where is consisting of all but theth column
of , and is consisting of all but theth row

Fig. 1. Key step of SIC-ILS algorithm.

TABLE I
SIC-ILS ALGORITHM

of . From Lemma 1, it follows that the LS update for is
given byproj . Starting from the first
row, we update the rows ofone by one until all rows have been
updated. Following a complete update, we update using
the pseudo-inverse of. The block diagram in Fig. 1 illustrates
the key step utilized to update one row of. The detailed algo-
rithm can be found in Table I. Notice that the update of a given
row depends on all previously obtained updates of all rows. An
interesting twist is that different row update orders may give
rise to different trajectories in the search space, potentially ex-
hibiting different convergence rates and performance character-
istics. Although we do not pursue this thread herein, we would
like to point out that one way of resolving this issue is torank
possible row updates according to the resulting improvement
in fit, pick the one that provides the best improvement, and re-
peat. This is well motivated from an optimization viewpoint (it
results in a stepwisesteepestdescent), and it also makes sense
in a near-far situation since row updates corresponding to more
powerful users are likely to lead to more significant improve-
ments in fit.

A. Complexity

The complexity of SIC-ILS is similar to ILSP. It requires
flops per update, whereas ILSP

needs flops per update,
and ILSE requires flops to enumerate [8].
The SIC-ILS update complexity claim may not be obvious
from the pseudo-code listing. It requires updating the
matrix by subtracting the rank-1 contribution of rowbefore
its update and adding the rank-1 contribution of rowafter
its update (instead of actually computing the product as listed
in the pseudo-code for clarity of exposition). All algorithms
require flops to update [3].
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It follows that the complexity per iteration costs of ILSP, ILSE,
and SIC-ILS are , [9], and ,
respectively (note that are ). The runtime complexity
of all algorithms depends on the actual number of iterations,
which depends on the specific dataset and termination crite-
rion. In practice, ten iterations are usually sufficient for all
algorithms; hence, per-iteration complexity comparisons are
meaningful. At any rate, monotone convergence is important
even if one is required to abruptly stop the update process after a
fixed number of iterations since monotone convergence assures
that the resulting estimates are no worse than all previously
obtained estimates.

ACMA SIC-ILS: If limited training is available
(semi-blind case), then we have seen that SIC-ILS is capable
of achieving performance close to ILSE at the complexity cost
of ILSP. When no training is available, then algebraic methods
offer an attractive way of initializing SIC-ILS, whereas SIC-ILS
offers an attractive way to refine algebraic estimates. Algebraic
methods bring identifiability to the table, whereas ILS methods
offer joint LS (deterministic ML) optimality, provided the
algebraic estimates are close enough to the true parameters.
The FA version of the ACMA [10], [11] is ideally suited for
our purposes. ACMA estimates are often refined using ILSE,
but this can be very complex even for moderate. The idea is
to replace ILSE refinement of ACMA estimates with SIC-ILS
refinement. Fig. 10 presents a comparison of BER (average for
all users) versus number of users () performance results for i)
binary ACMA followed by two complete iterations ( )
of ILSE and ii) binary ACMA followed by SIC-ILS (allowed
to iterate till convergence). Fig. 11 presents a comparison of
the corresponding CPU run times. Here, (so is tall
for all considered), angular separation between the users is
set to , and dB for all users and all . From
Fig. 10, it is clear that BER is roughly the same, regardless of
whether one refines ACMA estimates using ILSE or SIC-ILS,
but as shown in Fig. 11, SIC-ILS runtime is significantly lower,
especially for higher , even though it is allowed to iterate till
convergence.

B. Convergence

Theorem 1: SIC-ILS is monotonically convergent in a finite
number of steps.

Proof: The proof is essentially a consequence of Lemma
1. Each row update may either improve or maintain, but cannot
worsen, the fit—thus, convergence of the (bounded, non-nega-
tive) cost function is established. Convergence of the cost func-
tion and the parameter matrices in a finite number of steps fol-
lows because there is only a finite number of distinct possibili-
ties for (due to the finite-alphabet constraint), each of which is
paired with a unique LS update for using the pseudo inverse.
In the worst case, the iteration will cycle over all the distinct
possibilities once. Note that the same result applies (as shown
in [8]) to ILSE but not to ILSP.

C. Incorporating Coding Constraints

Notice that Lemma 1 may also be used to incorporate
user-wise coding constraints, such as forward error correction
coding (FEC) or CDMA spreading into SIC-ILSwithout sacri-

Fig. 2. BER versusE =N curves for ILSP—blind case.

Fig. 3. BER versusE =N curves for SIC-ILS—blind case.

Fig. 4. BER versusE =N curves for ILSE—blind case.
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Fig. 5. BER versusE =N curves for ILSP—semi-blind 5% training.

Fig. 6. BER versusE =N curves for SIC-ILS—semi-blind 5% training.

ficing monotone convergence.This is not possible with ILSP
or ILSE. Toward this end, one has to have efficient means of
computing , where is the FEC codebook.
In other words, one has to have an efficient algorithm for com-
puting the projection of a hypothetical “received data” sequence
onto the codebook. For example, if the signals are convolution-
ally coded, then the sought algorithm is the well-known “soft”
Viterbi decoder for the additive white Gaussian noise channel.
Similar algorithms are available for many block codes as well.
Note that least squares optimality of the decoding algorithm is
crucial for maintaining monotone convergence of the overall
blind source separation iteration—suboptimal pseudo-projec-
tions onto the codebook will not do. Thus, Lemma 1 allows us
to easily take advantage of FEC coding constraints (meant to
guard against noise) to remove structured multiple access inter-
ference.

Fig. 7. BER versusE =N curves for ILSE—semi-blind 5% training.

Fig. 8. BER versusE =N curves for DW-ILSP—semi-blind 5% training.

IV. M ONTE-CARLO PERFORMANCERESULTS

In all our simulations, corresponds to a ULA of
sensors ( sensor spacing) receiving signals arriving
from relative to the array broadside. Unless oth-
erwise noted, snapshots, modulation is1 BPSK,
and 10 000 Monte Carlo trials were conducted for each datum
reported.

Blind FA Source Separation: In the fully blind case,
a maximum of two random reinitializations per trial were
allowed for each algorithm. Figs. 2–4 present BER versus

results for ILSP, SIC-ILS, and ILSE, respectively.
Each figure depicts three separate curves: one per user. For
low to moderate SNR, SIC-ILS attains the performance of
ILSE at the complexity cost of ILSP. In contrast to ILSP,
SIC-ILS demodulates all three users at the same BER. A
reasonably accurate initialization is important for DW-ILSP,
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Fig. 9. SER versusE =N curves for SIC-ILS—semi-blind non-? CDMA
4% training.

Fig. 10. BER versus number of users for ACMA/ILSE versus
ACMA/SIC-ILS.

and in this completely blind case, DW-ILSP gives error rates
above 10 for two of the three users (DW-ILSP result
not shown for brevity). Note that fully blind ILS algorithms
(including ILSP and ILSE) exhibit a BER flare-up effect at
higher SNR due to spurious minima [11].

Semi-Blind FA Source Separation: Figs. 5–8 present
ILSP, SIC-ILS, ILSE, and DW-ILSP performance results in the
semi-blind case, utilizing a 5-bit training sequence to obtain
an initial estimate of the mixing matrix . SIC-ILS attains
roughly the same performance as ILSE and is one order of
magnitude better than ILSP and DW-ILSP in terms of BER.

Coding and Spreading Constraints: Fig. 9 presents
SIC-ILS results (one curve for each user) for CDMA spread
signals. Given that spatial diversity is also available, the
spreading codes were purposefully chosen to be short (four

Fig. 11. CPU time versus number of users for ACMA/ILSE versus
ACMA/SIC-ILS.

Fig. 12. Example of ILSP limit cycle of period four. Least squares fit versus
iteration number.

chips) and nonorthogonal (random, normalized to unit norm),
to yield measurable BER for our Monte Carlo simulation. With
one symbol (four chips) of training out of a total of 25 symbols
(100 chips), SIC-ILS (modified to regress overthe signature
of a given user every four chips) delivers very good symbol
error rate (SER) results even at low SNR.

V. DISCUSSION ANDCONCLUSIONS

We have proposed a new algorithm for blind separation of
linear mixtures of digital communication signals. The algorithm
features moderate complexity, monotone convergence, and per-
formance close to ILSE in all cases considered with the excep-
tion of the high SNR fully blind regime. A bonus feature is that
the optimal scaling lemma allows easy incorporation of coding
constraints.
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APPENDIX

ILSP LIMIT CYCLES

One example of a pair that leads to ILSP limit cycle
behavior is

In this case, ILSP actually oscillates between the following two
signal matrix estimates:

Although high-frequency limit cycles can potentially be
detected and ILSP can be randomly reinitialized when this
happens, reinitializations are likely to be avoided in practice
due to complexity considerations; hence, oscillatory behavior
can be problematic. In addition, lower frequency limit cycles
are possible. Fig. 12 depicts the evolution of ILSP least squares
fit versus iteration number for another choice of ,
leading to a cycle of period four. Low-frequency limit cycles
are harder to detect than high-frequency limit cycles.
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