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Identifiability Results for Blind Beamforming in
Incoherent Multipath with Small Delay Spread

Nicholas D. Sidiropoulos, Senior Member, IEEE,and Xiangqian Liu

Abstract—Several explicit identifiability results are derived
for deterministic blind beamforming in incoherent multipath
with small delay spread. For example, it is shown that if thesum
of spatial and fractional sampling diversities exceeds two times
the total number of paths, then identifiability can be guaranteed
even for one symbol snapshot. The tools come from the theory
of low-rank three-way array decomposition (commonly referred
to as parallel factor analysis (PARAFAC) and data smoothing in
one and two dimensions. New results regarding the Kruskal-rank
of certain structured matrices are also included, and they are of
interest in their own right.

Index Terms—Array signal processing, delay estimation, direc-
tion-of-arrival estimation, matrix decomposition.

I. INTRODUCTION

B LIND beamforming is the problem of reconstructing
source signals given only output data from a sensor array

without assuming knowledge of propagation parameters. In-
stead, blind beamforming algorithms rely on various structural
properties of the problem to reconstruct the source signalsand
estimate relevant propagation parameters.

Blind beamforming has been under intense research scrutiny
during the past decade, primarily due to its importance in wire-
less communications, radar, source localization, and system
identification. Although the literature on the subject is broad
and the available blind beamforming algorithms build on rather
diverse principles, they can be coarsely classified as follows:

i) those that exploit known space/time manifold structure
(e.g., ESPRIT [13] is probably one of the simplest and
best well-known examples);

ii) those based on known source signal structure, e.g.,
finite alphabet, constant modulus, known pulse
shape/spreading, or cyclostationarity (e.g., [1], [2],
[16], [21]);

iii) those that exploit statistical independence of the sources
(cf., [6] and references therein for a tutorial review).

A recentIEEE Proceedingspaper by van der Veen [22] pro-
vides an excellent overview of algebraic methods for determin-
istic blind beamforming, which capitalize on i) and/or ii). Deter-
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ministic blind beamforming techniques make relatively strong
structural assumptions but in return may guarantee highly ac-
curate source signal and propagation parameter estimates in the
high SNR regime with only a small number of sensors and/or
available samples. This is particularly important in mobile wire-
less environments, wherein the number of sources and multipath
rays can be large and propagation parameters can be changing
rapidly relative to the signaling rate.

Identifiability pertains to the capability of recovering all rele-
vant source signals and propagation parameters in the absence of
noise and unmodeled dynamics. Identifiability is a natural pre-
requisite for a well-posed estimation problem because it signi-
fies the existence of a unique desired solution under ideal oper-
ating conditions. Given identifiability, one would then turn to es-
timation (model fitting)algorithms. Eventually,robustnessand
performanceof a given algorithm need to be studied.

Even if a particular model is identifiable, this does not
necessarily mean that a given algorithm will identify the model
parameters in the absence of noise. This may require additional
algorithm-specific identifiability conditions. However, model
identifiability lays out the least common denominator that is
necessary foranyalgorithm to identify the model parameters.

Model identifiability issues related to deterministic blind
beamforming are the focus of this paper. Its starting point
has been the realization that PARAFAC is the core problem
underlying [22]. The important twist is that existing PARAFAC
uniqueness results do not directly apply to the deterministic
blind beamforming problem because delay spread induces
collinearity in the rows of the effective signal matrix, violating
a basic premise behind all PARAFAC uniqueness results to
date. Taking advantage of additional (Vandermonde) structure
that is often present in the context of deterministic blind
beamforming, we show how one can squeeze the most out of
spatio-temporal smoothing to prove identifiability. Note that
the link to PARAFAC also implies that existing least squares
model fitting algorithms [3], [5], [18], [19] (which do not
require additional algorithm-specific identifiability conditions)
are directly applicable to deterministic blind beamforming.

A drawback of the work reported in [22] is that the working
conditions are necessary but not sufficient for identifiability;
rank issues remain. The most important of these rank issues has
to do with nontrivial lower bounds on the rank of the Khatri–Rao
product, and it is addressed herein in Lemma 1. Another issue
has to do with the requirement that the source (user) signal ma-
trix be fat and full rank. In a rapidly fading environment (or,
e.g., when data are collected over slots in a TDMA system), it is
desirable to alleviate the requirement thatbe fat and full rank.
This is also true for finite-alphabet digital communication trans-
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missions for which there is a generally small but positive prob-
ability of rank-deficiency (e.g., for i.i.d. BPSK
and higher for correlated signal streams). We will lift such re-
quirements herein.

The work reported in [23]–[25] assumes that the overall
spatio-temporal channel matrix has already been estimated
using training symbols and seeks to determine path angles and
delays by exploiting the Kronecker structure of the spatio-tem-
poral manifold. If the channel is known or has been estimated,
then the source symbols can be readily estimated, and this is
usually the end goal in digital communication applications
(but path angles and delays can be useful in a 911 emergency
situation). Similar rank issues appear in [23]–[25]. The work in
[24] is of particular interest because it employs spatio-temporal
smoothing. Starting from three dimensionality conditions that
are necessary for identifiability, [24] attempts to optimize
the choice of smoothing factors to maximize the number of
resolvable rays. This has two drawbacks: 1) identifiability is
not guaranteed for the resulting maximum since the objective
is only an upper bound on the number of rays that could be
resolvable, and ii) due to analytical difficulties, the maximiza-
tion is carried out assuming continuous parameters, which can
only be an approximation. In contrast, we optimize a sufficient
condition (hence our maximum is achieved), and we do it by
explicit integer optimization (hence, the result is exact). A
concise statement of identifiability conditions pertaining to
[22]–[25] can be found in the end of the Appendix.

The main contributions of this paper are in terms of the fol-
lowing:

• a backbone result on the so-called Kruskal-rank of the
Khatri–Rao product (Lemma 1) that also provides a useful
lower bound on the rank of the Khatri–Rao product.

• a variety of explicit identifiability results for deterministic
blind beamforming in the presence of incoherent multi-
path with small delay spread. For example, we show that
if the sumof spatial and fractional sampling diversities ex-
ceeds two times the total number of paths, then identifia-
bility can be guaranteed, even for one snapshot.

• Improved PARAFAC/Vandermonde identifiability results
(Theorems 2, 3). These are contributions to the theory of
multi-way analysis. They can be directly applied to yield
interesting identifiability conditions for most problems in
[22]–[25] as well as other related problems in the recent
literature.

A. Organization

The rest of this paper is structured as follows. Section II con-
tains a compact derivation of the so-calledincoherent multipath
with small delay spreaddata model, following [22]. Although
most models in [22] fall under our framework, we focus on this
particular model because it strikes a good balance between plau-
sibility and generality on one hand and simplicity of exposi-
tion on the other. Section III provides very brief background on
PARAFAC and the uniqueness of trilinear low-rank decompo-
sition. This is required to understand the proofs and derivations
in this paper. Section IV presents our main results. Conclusions
are drawn in Section V. Proofs are deferred to the Appendix.

Fig. 1. Multipath propagation scenario.

B. Notation

Notation conventions used throughout this paper are standard.
We will make use of the Kronecker product and the Khatri–Rao
product. These are defined next.

Given two matrices ( ) and ( ), the Kronecker
product is the matrix defined as

...
...

...

Given two matrices ( ) and ( ) with the same
number of columns, the Khatri–Rao product is the
matrix defined as

...

(1)
where is the th column of , and similarly for (i.e., the
Khatri–Rao product is a column-wise Kronecker product), and

is an operator that extracts the th row of its matrix
argument and constructs a diagonal matrix out of it.

II. DATA MODEL FORBLIND BEAMFORMING

Fig. 1 is a schematic of the communications scenario under
consideration. A total of sources are transmitting to a base
station, which uses an array of receive antennas. The base-
band-equivalent multipath propagation model for one source
with associated paths can be written as

(2)

where
vector consisting of the receive antenna outputs at
time ;
(scalar) source signal at time;
convolution;

and the impulse response vector can be modeled as
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where
direction of arrival of the th ray;
array steering vector;
complex path loss that collects the overall attenuation
and phase shift;
pulse shape function;
path delay for the th ray.

In incoherent multipath with small delay spread, we assume that
is zero outside an interval with (the

common normalized pulse period), and the delay spread is small
enough for , where is the delay of the
th ray of the th source. This means that every sample of the

received signal is a combination ofand not more thansource
symbols. Let be the number of rays associated with source,
and let be the total number of rays. Then, the re-
ceived baseband signal at the output of the base station antenna
array can be expressed as

where is the information-bearing signal of theth source at
time (held constant over ), and it is assumed that all sources
employ a common pulse shape. Suppose that excess bandwidth
is available [22] for sample at a rate of times the symbol
rate, and collect samples duringsymbol periods. Then, con-
struct an data matrix1

...
...

...
...

Under our assumptions, is nonzero between and
, and thus, is possibly nonzero

only within for any and . Define

where denotes matrix transpose, and construct a vector
with samples of , which is the impulse response vector for
the th source:

can be expressed as [22]

Recall that is the total number of rays for all
sources. Let us conveniently index the rays (and corresponding

1The same symbol (e.g.,X) is occasionally used to denote different things for
the benefit of simplicity and intuition; the meaning will always be clear from the
context.

angle, path loss, and delay parameters) from 1 to, starting with
all rays associated with the first source and then all rays associ-
ated with the second source, etc., and define

diag

and a selection matrix that joins rays associated with a given
source

...

where denotes an vector consisting of 1s. Then, it can
be shown [22] that

(3)

and

(4)

where

...
...

...

Equation (4) can also be written as

...
...

(5)

If is bandlimited and sampled at or above the Nyquist
rate, then taking the DFT of each oversampled antenna output
over a single symbol period, the following model is obtained
[22]:

(6)

which can also be written as

...
...

(7)

where

...
...

The advantage of (7) versus (5) is that the former exhibits con-
venient structure in the sense that is a Vandermonde matrix.
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Fig. 2. Schematic of rank-two decomposition of a three-way array as a sum of
two rank-one three-way factors.

We will return to (5) and (7) [equivalently, (4) and (6)] after in-
troducing the reader to PARAFAC ideas plus some new prepara-
tory results.

III. B ACKGROUND ON PARAFAC AND THE UNIQUENESS OF

TRILINEAR DECOMPOSITIONS

Consider an three-way array with typical ele-
ment and the -component trilinear decomposition

(8)

Equation (8) expresses the three-way arrayas a sum of
rank-one three-way factors; a schematic of such a decomposi-
tion is given in Fig. 2. Analogous to the definition of matrix
(two-way array) rank, the rank of a three-way arraycan be
defined as the minimum number of rank-one (three-way) com-
ponents needed to decompose. The trilinear decomposition is
also known as canonical decomposition, triple-product decom-
position, and PARAFAC analysis [7]–[9], [11]. A fundamental
(and quite surprising) transition takes place when one moves
from matrices (two-way arrays) to three-way arrays: rank-ma-
trix decompositions are not unique for any , whereas
low-rank three-way array decomposition (PARAFAC) is essen-
tially unique for an interesting range of . In order to make
this precise, we need a few definitions.

Define an matrix with typical element
, matrix with typical element

and matrix with typical element .
Furthermore, define matrices , matrices ,
and matrices with corresponding typical elements

. Then, the model
in (8) can be written in three different ways in terms of systems
of simultaneous matrix equations (each of which can be inter-
preted as “slicing” the three-way arrayalong one of the three
dimensions):

(9)

(10)

(11)

Stacking the data in, e.g., (9), into a matrix and using
the definition of the Khatri–Rao product in (1), it follows that

(12)

Corresponding compact matrix representations can also be de-
rived from either (10) or (11).

The following concept is key for PARAFAC uniqueness, and
it will also play an essential role in the derivation of identifia-
bility results for the deterministic blind beamforming problems
considered herein.

Definition 1: Given , rank iff it
containsat least acollection of linearly independent columns
but no collection of linearly independent columns. The
Kruskal-rank (or -rank for short—which is a term coined by
Harshman and Lundy [10]) of is denoted by .
if every columns of are linearly independent, but either

, or there exists a collection of linearly dependent
columns in ( , ).

PARAFAC uniqueness has a rich history [9], [11], [12], [14].
Among the various results, the one due to Kruskal [11] is the
deepest. Kruskal’s result was recently generalized to the com-
plex-valued case by Sidiropouloset al. [18].

Theorem 1 ( -[11]; -[18]): Given ,
, , , , if

(13)

then , , and are unique up to common permutation and
(complex) scaling2 of columns.

There exist several practical algorithms that compute trilinear
decompositions. These range from generalized eigenvalue de-
composition to iterative algorithms based on alternating least
squares (ALS), Gauss–Newton, and related optimization tech-
niques. The choice of algorithm depends on application-specific
characteristics such as data dimensionality and rank (eigenvalue
methods demand much stricter conditions than what is required
by Theorem 1), noise level and color, etc. ALS combined with
simple acceleration schemes, such as relaxation, is currently
perhaps the best shot at a one-size-fits-all algorithm; cf., [3],
[5], [18], and [19].

IV. M AIN RESULTS

The following Lemmas relate to the-rank of certain struc-
tured matrices and will prove useful in the sequel. Proofs can be
found in the Appendix. The first Lemma shows that the-rank
of the Khatri–Rao product is almost sup-additive.

Lemma 1 (-rank of Khatri–Rao Product):If neither (
) nor ( ) contains a zero column (and, hence, ,

), then .
Remark 1: Note that since rank is greater than or equal to

-rank, Lemma 1 provides a useful lower bound on the rank of
the Khatri–Rao product.

The second Lemma deals with the-rank of Vandermonde
matrices.

Lemma 2 (Vandermonde-rank Lemma): An Vander-
monde matrix

...
...

...
...

2Meaning that it is possible to permute the columns of one matrix, provided
the columns of the other two matrices are permuted in the same way, and that it
is possible to scale for example the first column of any two matrices, provided
the first column of the third matrix is counter-scaled such that the scale of the
rank-one factor constructed from the outer product of the three columns remains
unaffected. This is what is referred to as permutation and scale ambiguity in the
sequel.
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with distinct nonzero generators is not
only full rank but is also full rank: .
Note that the latter fails in general for the transpose of a Van-
dermonde matrix.

We now return to (4) and (6). Notice that both equations de-
scribe the same PARAFAC model viewed in different domains.
However, due to the presence of the selection matrix, has
collinear rows, and hence, has collinear columns and,
hence, is -rank one. This means that Theorem 1 fails to prove
identifiability of (4)–(6). We will prove identifiability by capi-
talizing on Vandermonde structure to build up the-rank. This
is the subject of the next two Theorems and their corollaries.

Theorem 2: Given , ,
, , with Vandermonde

with distinct nonzero generators, if

(14)

then , , and are identifiable up to permutation and scaling
of columns.

Remark 2: Condition (14) is clearly more relaxed than what
is available without explicitly capitalizing on the Vandermonde
structure of . Recall that the generic-rank identifiability con-
dition for the trilinear model is

which, even after claiming full -rank for due to its Vander-
monde structure, yields

Recalling that -rank is less than or equal to rank, the latter may
also be written as

from which it is clear that (14) is an improvement.
In the context of (6), plays the role of , whereas

play the role of or , depending on
which one is assumed to be Vandermonde.

Corollary 1: If is Vandermonde with distinct nonzero
generators (distinct path delays andat or above Nyquist), the
path angles are distinct, and anyspatial manifold vectors cor-
responding to distinct angles are linearly independent, then the
model in (6) is identifiable, provided that

(15)

As a special case of (15), if the fractional sampling factor
, then antennas are sufficient forpaths,

and hence, the system is capable of supporting many more paths
than sensors, provided sufficient fractional sampling diversity
(in terms of excess bandwidth) is available. This is not a strin-
gent requirement (in theory, one only requires the generators of
the Vandermonde matrix to be nonzero and distinct), but per-
formance will inevitably be affected when very limited excess
bandwidth is available.

Thus far, we have capitalized on the Vandermonde structure
of , but we can also exploit Vandermonde structure in, if

available. This involves little additional effort, given the perfect
symmetry of the trilinear model [cf., (9)–(11)].

Corollary 2: If is Vandermonde (corresponding to a uni-
form linear array) with distinct nonzero generators (distinct path
angles and no spatial aliasing), and is full -rank [for dis-
tinct path delays, this can be achieved by proper pulse-shape
design, e.g., , ], then the model in (4) is
identifiable, provided that

(16)

Consider a special case of (16). If , then fractional
sampling rate is sufficient for identifiability.

Remark 3: The latter result does not require Vandermonde
structure on and, hence, can be applied to the data in the
original (time) domain without the need to take the DFT. Note
that working in the time domain also bypasses the Nyquist sam-
pling (or above) issue altogether.

Remark 4: Note the dual roles played by (antenna diver-
sity) and (fractional sampling diversity) in the above corol-
laries. When both and are Vandermonde, duality simpli-
fies to symmetry, as we will see shortly.

The proof of Theorem 2 (cf., the Appendix) employs one-di-
mensional (1-D) smoothing [15] and involves optimization of
the smoothing factor from the viewpoint of proving the best
identifiability result possible. If the data model exhibits expo-
nential structure along two of the three modes (and, hence, two
of the three matrices are Vandermonde), then one can, of course,
smooth in one dimension and claim full-rank of the matrix
corresponding to the second exponential mode (cf., Lemma 2).
However, one wonders if stronger identifiability results can be
obtained via 2-D (spatio-temporal) smoothing. This is explored
in the following Theorem, whose proof can be found in the Ap-
pendix.

Theorem 3: Given , ,
, , , where and are

Vandermonde matrices with distinct nonzero generators, if
, then , , and are identifiable up to

permutation and scaling of columns.
Remark 5: On the surface, the condition

appears to be more relaxed than (14), which, after claiming full
-rank of the Vandermonde matrix, yields

However, observe that one may, without loss of generality, al-
ways assume that , and some work shows that,
in fact, we have the following lemma.

Lemma 3 (Identifiability Condition Equivalence):For

The interesting conclusion is that in contrast to 1-D
smoothing, which is indeed helpful in deriving identifiability
results, 2-D smoothing does not further improve things.

The following results are obtained as corollaries of Theorem
3.
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Corollary 3: For (multiple rays per source), if
is Vandermonde with distinct nonzero generators (distinct path
delays and at or above Nyquist), is Vandermonde (corre-
sponding to a uniform linear array) with distinct nonzero gen-
erators (distinct path angles and no spatial aliasing), then the
model in (6) is identifiable, provided that , i.e.,
the sum of spatial and fractional sampling diversities strictly
exceeds the total number of distinct paths, irrespective of the
number of snapshots .

Corollary 4: For (single ray per source), if is tall
( ) and full rank, then under the remaining assumptions in
Corollary 3, the model in (6) is identifiable, provided

.
As alluded to earlier on, note the complete symmetry in the

roles of (antenna diversity) and (fractional sampling di-
versity).

V. CONCLUSIONS

We have investigated identifiability issues in the context of
deterministic blind beamforming in the presence of incoherent
multipath with small delay spread. The viewpoint derives from
the theory of low-rank decomposition of multiway arrays,
known as PARAFAC analysis, which was shown to be the
core problem underlying deterministic blind beamforming.
Using a series of new Lemmas and spatio-temporal smoothing
with optimized choice of smoothing factor(s) in one and two
dimensions, we have proven a variety of relaxed and precise
identifiability results, which improve on what is available in
[22]. For example, we have shown that if thesumof spatial
and fractional sampling diversities exceeds two times the total
number of paths, then identifiability can be guaranteed. The
link to PARAFAC also implies that generic PARAFAC least
squares model fitting algorithms are directly applicable to
deterministic blind beamforming.

In the context of PARAFAC theory, our results prove that im-
proved uniqueness properties are applicable if a given trilinear
model exhibits Vandermonde structure along one or two modes;
therefore, the additional structure indeed pays off. This is a con-
tribution to the theory of multiway analysis. Interestingly, in
contrast to 1-D smoothing, which is indeed helpful in estab-
lishing identifiability results, 2-D smoothing does not seem to
add anything in this respect.

APPENDIX

Proof of Lemma 1:We will need the following Lemmas.
Lemma 4 (Rank of Khatri–Rao Product [19]):Given (
) and ( ), if , then is full

column rank.
Lemma 5: Let be an matrix, and let be an

matrix constructed using any columns of . Then

(17)

where stands for the -rank of .
Proof: Clearly, since has columns, . Every

columns of are linearly independent, and hence, every
columns of are linearly independent, and the

Lemma follows.

For a proof of Lemma 1, considercolumns of arising
out of the corresponding columns of and . Let and
denote matrices formed out of these columns ofand . Ac-
cording to Lemma 4, if , then the columns
of under consideration are guaranteed to be linearly in-
dependent. According to Lemma 5, this will be guaranteeda
fortiori , provided

(18)

In light of (18), we consider the following cases.

• If , then
.

• If , then
.

• If , then
.

Therefore for , i.e., , any
columns of are guaranteed to be linearly independent.

Note that is ; therefore

(19)

and thus, the proof is complete.
Proof of Lemma 2:The interesting case is when is fat,

i.e., . Any subset of columns of a Vandermonde matrix
forms a Vandermonde matrix (but this is not necessarily true
for subsets of rows of a Vandermonde matrix). Therefore, any
selection of up to columns of will constitute a tall/square
Vandermonde matrix with distinct nonzero generators, which is
full column rank (e.g., [20, p. 274]).

Proof of Theorem 2:Consider the matrix obtained
by stacking the data

...

Define matrices of size

where stands for rows to
(inclusive) of matrix , is known as the smoothing factor

[15], and . Note that due to the Vandermonde
structure of

...

it holds that

...
...
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where

diag

Laying out these matrices in parallel3

...

Note that

...

where is a Vandermonde matrix constructed out of the
first rows of . Similarly

...

where is a Vandermonde matrix constructed out of the first
rows of . It follows that

which is a special PARAFAC model with double Khatri–Rao
structure. It follows from Theorem 1 that, (and, there-
fore, as well), and are unique up to permutation
and scaling of columns (and, hence, the same holds for), pro-
vided that

Using Lemmas 1 and 2, this yields

Invoking Lemma 2 once more gives

or equivalently

Recall to obtain

Choosing leads to
. By considering

different cases for relative to the breakpoints and
, it is easy to see that

3This is not the sameX as in (6).

. With , the above identifiability condition
becomes

This completes the proof. Note again that no better choice
of can be found from the viewpoint of identifiability since

can be easily shown to be bounded from above by
; hence, with this choice of ,

actually achieves its upper bound.
Proof of Theorem 3:Consider ,

, , , , where
and are Vandermonde matrices with distinct nonzero gen-

erators

...
...

Let

...

and capitalize on the Vandermonde structure ofby con-
structing a new4 matrix

...

...

where has size of , and

diag

Next, take advantage of the Vandermonde structure of, and
construct a matrix

...

where is a matrix containing the first rows of , and
. We can further write as

...

4This is not the sameX as in the proof of Theorem 2.
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where

diag

The generic identifiability condition for the PARAFAC model
is . It follows that the -rank identi-
fiability condition for the 2-D smoothed model above is

(20)

Recall

Condition (20) becomes

(21)
Since and are Vandermonde matrices with distinct
nonzero generators, they have full-rank. We therefore rewrite
(21) as

Select , , leading to

Per the statement of the Theorem, we wish to prove that
is sufficient for identifiability. Consider the

following cases:

• . Then

since guarantees .
• . Then

However, guarantees
so we have

Suppose ; then,
. If,

on the other hand, , then
since

(this is a trivial nondegeneracy condition).
• . Then,

by symmetry (needs ).

• . Then

Recall that stands for the-rank of , and hence,
to obtain

We conclude that identifiability is guaranteed if
. Note that , and hence, the

condition cannot be further relaxed by means of smoothing.
Identifiability Conditions Pertaining to [22]–[25]:

• [22]:
— The ( in our notation plays the role ofin [22])

signal matrix is fat and full rank.
— The Khatri–Rao product that appears in [22,

Eq. (24), p. 2000] is tall ( ) and full rank.
— The Khatri–Rao product that appears

in [22, Eq. (25), p. 2001] (where consists
of the first rows of , and is a temporal
smoothing factor) is tall ( ) and
full rank. Note that this condition is stronger than (and,
hence, implies that) is tall and full rank. In
addition, note that there is a typographical error in [22,
Eq. (25), p. 2001], where should appear in
place of .

— The Khatri–Rao product that appears

in [22, Eq. (25), p. 2001] (where consists of the
first rows of ) needs to be tall ( ) and full
rank.

— The matrices , that appear in [22, Eq. (26), p.
2001] need to be tall and full rank.

• [23]–[25]:
— These assume that the overall spatio-temporal channel

matrix has already been estimated using training sym-
bols and seek to determine path angles and delays by
exploiting the Kronecker structure of the spatio-tem-
poral manifold.

— [24] (including precursor results in [23]). This requires
similar conditions— , , (notation of [24])
need be tall and full rank.

— [25]. The Khatri–Rao product is required
to be tall and full column rank, whereas an effective
“signal” matrix (actually holding fading coefficients
corresponding to different slots in a TDMA system)
must be fat and full rank, implying that one needs at
least as many channel estimates (computed one per
TDMA slot) as the total number of multipath rays. Ad-
ditional conditions are needed to guarantee that the
proposed eigenvalue solution will identify the model
parameters. Note that [25] deals with the single-user
case.
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