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Identifiability Results for Blind Beamforming in
Incoherent Multipath with Small Delay Spread

Nicholas D. SidiropoulasSenior Member, IEEEaNd Xianggian Liu

Abstract—Several explicit identifiability results are derived ~ministic blind beamforming techniques make relatively strong
for deterministic blind beamforming in incoherent multipath structural assumptions but in return may guarantee h|gh|y ac-

with small delay spread. For example, it is shown that if thesum ¢;rate source signal and propagation parameter estimates in the
of spatial and fractional sampling diversities exceeds two times

the total number of paths, then identifiability can be guaranteed h'gh SNR regime W'th 9”'y a _small nymber of ;ensorg an_d/or
even for one Symb0| Snapshot_ The tools come from the theory a.Va.||a.b|e Samples. Th|S IS pal‘tlculaﬂy |mp0rtant N m0b||e wire-
of low-rank three-way array decomposition (commonly referred less environments, wherein the number of sources and multipath

to as parallel factor analysis (PARAFAC) and data smoothing in  rays can be large and propagation parameters can be changing
one and two dimensions. New results regarding the Kruskal-rank rapidly relative to the signaling rate.

of certain structured matrices are also included, and they are of e L . . .
interest in their own right. Identifiability pertains to the capability of recovering all rele-

vant source signals and propagation parameters in the absence of
noise and unmodeled dynamics. Identifiability is a natural pre-
requisite for a well-posed estimation problem because it signi-
fies the existence of a unique desired solution under ideal oper-
I. INTRODUCTION ating conditions. Given identifiability, one would then turn to es-
g(Himation (model fitting)algorithms Eventually,robustnessand

/

Index Terms—Array signal processing, delay estimation, direc-
tion-of-arrival estimation, matrix decomposition.

LIND beamforming is the problem of reconstructin . . .
source signals given only output data from a sensor ar rformgncmf agen algonthm_ ”‘?ed tq .be stud|gd.
without assuming knowledge of propagation parameters. In—EVen "f a_particular m.odel IS |Qent|f|a_blg, th!s does not
stead, blind beamforming algorithms rely on various structurg?cessar'ly mean that a given algorithm will identify the model

properties of the problem to reconstruct the source sicarat parameters in the absence of noise. This may require additional
estimate relevant propagation parameters algorithm-specific identifiability conditions. However, model

Blind beamforming has been under intense research scruttﬂgmiﬁabi“ty lays out.the Iegst common denominator that is
during the past decade, primarily due to its importance in wirgecessary foany algorithm to identify the model parameters.

less communications. radar. source localization. and SyS;EnMOdel identifiability issues related to deterministic blind

identification. Although the literature on the subject is bro eamforming are the focus of this paper. Its starting point
g J gs been the realization that PARAFAC is the core problem

and the available blind beamforming algorithms build on rath . ; o -
diverse principles, they can be coarsely classified as l‘ollows:unfjerlylng [22]. The |mportanF twist Is that existing PARA'.:A.‘C.
uniqueness results do not directly apply to the deterministic

) those that exploit "T‘OW“ space/time manifqld structurg;,q beamforming problem because delay spread induces
E)e.g., EﬁiRlT [13] is prloba.bly one of the simplest an(C,iollinearity in the rows of the effective signal matrix, violating

. thest WE i nO(I)wn e|>(<amp es); ianal struct a basic premise behind all PARAFAC uniqueness results to

i) f o_tse ?SE botn nowr: stource d5||gna E ructure, T'gate. Taking advantage of additional (Vandermonde) structure
'E' € /ap ad_e, cons anl tmtp uu_f, nownl pu;ﬂ—uat is often present in the context of deterministic blind
sléapezslpr.ea ing, or cyclostationarity (e.g., [1], [ eamforming, we show how one can squeeze the most out of

[16], [21]); . o spatio-temporal smoothing to prove identifiability. Note that

li) those that exploit statistical mdependenqe of thg SOUI’Cﬁge link to PARAFAC also implies that existing least squares
(cf., [6] and references therein for a tutorial review). model fitting algorithms [3], [5], [18], [19] (which do not

. A recentlEEE Procee(_jingsaper by van der Veen [22] pro'_require additional algorithm-specific identifiability conditions)
vides an excellent overview of algebraic methods for determlgfe directly applicable to deterministic blind beamforming.

istic blind beamforming, which capitalize on i) and/or ii). Deter- A drawback of the work reported in [22] is that the working

. . . . conditions are necessary but not sufficient for identifiability;
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missions for which there is a generally small but positive prob-
ability of rank-deficiency (e.g4210% for i.i.d. 8 x 10 BPSKS
and higher for correlated signal streams). We will lift such re- -
quirements herein. \/'
The work reported in [23]-[25] assumes that the overaIIJ L
spatio-temporal channel matrix has already been estimate
using training symbols and seeks to determine path angles ai
delays by exploiting the Kronecker structure of the spatio-tem: j

poral manifold. If the channel is known or has been estimatec

then the source symbols can be readily estimated, and this

usually the end goal in digital communication applications

(but path angles and delays can be useful in a 911 emergency Fig. 1. Multipath propagation scenario.
situation). Similar rank issues appear in [23]-[25]. The work in

[24] is of particular interest because it employs spatio-tempofdl Notation

smoothing. Starting from three dimensionality conditions that Notation conventions used throughout this paper are standard.
are necessary for identifiability, [24] attempts to optimizgye will make use of the Kronecker product and the Khatri-Rao
the choice of smoothing factors to maximize the number gfoquct. These are defined next.

resolvable rays. This has two drawbacks: 1) identifiability is Gjven two matriceA (I x F1) andB (J x £3), the Kronecker

not guaranteed for the resulting maximum since the objectiyeoductA @ B is thel.J x F} F» matrix defined as
is only an upper bound on the number of rays that could be

resolvable, and ii) due to analytical difficulties, the maximiza- Bay
tion is carried out assuming continuous parameters, which can AGB —

only be an approximation. In contrast, we optimize a sufficient ) : ‘ .
condition (hence our maximum is achieved), and we do it by Bas,1 -+ Barp

explicit integer optimization (hence, the result is exact). A ) )

concise statement of identifiability conditions pertaining to Given two matrices\ (I x F) andB (J x F) with the same

Ba17 F

[22]-[25] can be found in the end of the Appendix. number of columns, the Khatri-Rao prodi&b A is thel J x
The main contributions of this paper are in terms of the fofhatrix defined as
lowing: AD(B)
+ a backbone result on the so-called Kruskal-rank of the AD,(B)
Khatri-Rao product (Lemma 1) that also providesausefuB ® A := [b; ®a; --- bp®ar]|= .
lower bound on the rank of the Khatri-Rao product. .
« avariety of explicit identifiability results for deterministic AD;_.1(B)

blind beamforming in the presence of incoherent multi- _ - .
path with small delay spread. For example, we show th ereay 1S the fth co_lumn OfA, anq similarly forb (i.e., the
if the sumof spatial and fractional sampling diversities ex- atri-Rao product is a column-wise Kronecker product), and

ceeds two times the total number of paths, then identifigj(') is an operator that extrgcts e+ 1)th row of iFS matrix
bility can be guaranteed, even for one snapshot argument and constructs a diagonal matrix out of it.

» Improved PARAFAC/Vandermonde identifiability results
(Theorems 2, 3). These are contributions to the theory of
multi-way analysis. They can be directly applied to yield Fig. 1 is a schematic of the communications scenario under
interesting identifiability conditions for most problems inconsideration. A total op sources are transmitting to a base
[22]-[25] as well as other related problems in the recestation, which uses an array 8f receive antennas. The base-
literature. band-equivalent multipath propagation model for one source

with r; associated paths can be written as

Il. DATA MODEL FORBLIND BEAMFORMING

A. Organization

: . , x(t) =h(t) = s(t 2
The rest of this paper is structured as follows. Section Il con- ® () *5(0)
tains a compact derivation of the so-calledoherent multipath
. . where
with small delay spreadata model, following [22]. Although x(t) vector consisting of th@/ receive antenna outputs at
most models in [22] fall under our framework, we focus on this time £
particular model because it strikes a good balance between plaué;(t) (scala{r) source signal at tinte
sibility and generality on one hand and simplicity of exposi- N convolution:

tion on the other. Section Il provides very brief background Oand th
PARAFAC and the uniqueness of trilinear low-rank decompo-
sition. This is required to understand the proofs and derivations -

in this paper. Section IV presents our main results. Conclusions h(t) = Z a(0;)B;9(t — ;)
are drawn in Section V. Proofs are deferred to the Appendix.

eM x 1impulse response vecth(t) can be modeled as

j=1
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where angle, path loss, and delay parameters) fromvd. starting with
8 direction of arrival of thejth ray; all rays associated with the first source and then all rays associ-
a(f) array steering vector; ated with the second source, etc., and define
B;  complex path loss that collects the overall attenuation
and phase shift; Ay =[a(by)---a(f,)] :Mxr
g(t) pulse shape function; I =diagp, 6] :rxr
Tj path delay for thgth ray. G, =[g(r) -glrn)] :Pxr

Inincoherent multipath with small delay spread, we assume that
g(t) is zero outside an intervd, L,) with L, < 1 =T (the and a selection matri¥ that joins rays associated with a given
common normalized pulse period), and the delay spread is snz@lirce
enough forL, + max(7;;) < 1, wherer;; is the delay of the

jth ray of theith source. This means that every sample of the n 0
received signal is a combination @iind not more thap source J:= .
symbols. Letr; be the number of rays associated with source 0 1,

o

and letr = >"%_, r; be the total number of rays. Then, the re- o ]
ceived baseband signal at the output of the base station anteffi§"€1~ denotes amx1 vector consisting of 1s. Then, it can

array can be expressed as be shown [22] that
p p H:=h;, - --h,)]=(G,0A,)I'J 3)
x(t) = Z ) x s;(t Z Z 0:5)5:;9(t — 7i5)s:(t) and
= = X =(G, ® Ay)TJIS )

wheres;(¢) is the information-bearing signal of thith source at
time ¢ (held constant oveF), and it is assumed that all source¥Vhere

employ a common pulse shape. Suppose that excess bandwidth 51(0) s1(1) -+ s(N—=1)
is available [22] for sample(t) at a rate ofP times the symbol 52(0) sa(1) -+ so(N —1)
rate, and collect samples duridg symbol periods. Then, con- S= _ _
struct anM P x N data matrix X ' ' '
5p(0) sp(1) - s (N —1)
x(0) x(1) x(N —1) , :
1 1 1 Equation (4) can also be written as
x<—> x<1+—> X<N—1+—>
X.— Xo ApDo(G7)
: : : : X A¢D1(G-)
P P-1 P-1 X=| . |= : rJs. (5)
x|—5-) x 1+T e x| N-— 1+T : :
Xpo1 AyDp_1(G;)

Under our assumptiong(t) is nonzero betweej, L,) and
L, + max(r;;) < 1, and thusg(¢t — r;;) is possibly nonzero
only within [0, 1) for any¢ andj. Define

If g(¢) is bandlimited and sampled at or above the Nyquist
rate, then taking the DFT of each oversampled antenna output
over a single symbol period, the following model is obtained
[22]:

g(T):[g(o—T) g<%—7> g<%—T>}T X = (F, & Ag)TIS (6)

where(-)T denotes matrix transpose, and construct a véetor which can also be written as
with samples oh;(¢), which is the impulse response vector for

. X, AyDo(Fy)
theith source: =0
' — X A¢D1(Fy)
1 pP_1\17 X = ) = i r'Js @)
= [0 (L) ow (5] o :
P P Xp_1 A¢Dp 1(Fy)
h; can be expressed as [22] where
v 1 -1
h; = Z(gij ®ai;)Bij, gi; = g(7i;), a;; = a(b;;). S
j:1 F(;5 = . .
Recall thatr = > ?_ r; is the total number of rays for all f‘l s bt
sources. Let us conveniently index the rays (and corresponding b = e~/ D) 0=1, -, 7.

IThe same symbol (e.gX) is occasionally used to denote different things for.
the benefit of simplicity and intuition; the meaning will always be clear from tthe advantage of (7) Versus (5) is that the former exhibits con-

context. venient structure in the sense th&} is a Vandermonde matrix.
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Definition 1: GivenA € CI*F rp := rankA) = riff it
X = + containsat least acollection ofr linearly independent columns
but no collection ofr + 1 linearly independent columns. The
. . . Kruskatrank (ork-rank for short—which is a term coined by
Fig. 2. Schematic of rank-two decomposition of a three-way array as a sumf .

two rank-one three-way factors. arshman and Lundy [10]) oA is denoted byka. ka = &

if everyk columns of A are linearly independent, but either

We will return to (5) and (7) [equivalently, (4) and (6)] after in# = F, or there exists a collection é&f+ 1 linearly dependent

troducing the reader to PARAFAC ideas plus some new prepaf@Umns inA. (ks < ra < min(Z, F), ¥ A).
tory results. PARAFAC unigueness has a rich history [9], [11], [12], [14].

Among the various results, the one due to Kruskal [11] is the

IIl. B ACKGROUND ON PARAFAC AND THE UNIQUENESS OF deepest. Kruskal’s result was recently generalized to the com-

TRILINEAR DECOMPOSITIONS plex-valued case by Sidiropoules al. [18].
) ) ) Theorem 1R-[11]; C-[18]): GivenX; = BD;(A)C?,i =
Consider and x J x Kthree—way _arrayx with typqul ele- 0,1,---,1—1,A € CI*F B e C/*F, C e CEXF jf
mentx; ; , and thef’-component trilinear decomposition

F-1 ka +kp+kc >2(F'+1) (13)
Figk = fz_:o @, sbi, k. f- ®) thenA, B, andC are unique up to common permutation and
- (complex) scaling of columns. [
Equation (8) expresses the three-way arkays a sum off’ There exist several practical algorithms that compute trilinear

rank-one three-way factors; a schematic of such a decompaitcompositions. These range from generalized eigenvalue de-
tion is given in Fig. 2. Analogous to the definition of matrixcomposition to iterative algorithms based on alternating least
(two-way array) rank, the rank of a three-way ard@ycan be squares (ALS), Gauss—Newton, and related optimization tech-
defined as the minimum number of rank-one (three-way) comiques. The choice of algorithm depends on application-specific
ponents needed to decompd§eThe trilinear decomposition is characteristics such as data dimensionality and rank (eigenvalue
also known as canonical decomposition, triple-product decomethods demand much stricter conditions than what is required
position, and PARAFAC analysis [7]-[9], [11]. A fundamentaby Theorem 1), noise level and color, etc. ALS combined with
(and quite surprising) transition takes place when one mowsmple acceleration schemes, such as relaxation, is currently
from matrices (two-way arrays) to three-way arrays: réhika- perhaps the best shot at a one-size-fits-all algorithm; cf., [3],
trix decompositions are not unique for ady > 1, whereas [5], [18], and [19].

low-rank three-way array decomposition (PARAFAC) is essen-

tially unigue for an interesting range 67 > 1. In order to make IV. MAIN RESULTS

this precise, we need a few definitions.

Define anl x F matrix A with typical elementA (i, f) :=
a;, f, J x F matrix B with typical elemenB(j, f) := b;
and K x F matrix C with typical elementC(k, f) := «, ;.
Furthermore, defing x K matricesX;, I x K matricesY,

andTT x matrlpesZk with .co‘rrespondlng typical eIementsF) norB (.J x F) contains a zero column (and, henkg, > 1,

X4, k) ==Y, (i, k) := Zy(4, §) := x;_j . Then, the model )

in (8) can be written in three different ways in terms of systemk = 1), thenkpoa > min(ka + ks — 1, ). n
Remark 1: Note that since rank is greater than or equal to

of simultaneous matrix equations (each of which can be int(?cr-_rank Lemma 1 provides a useful lower bound on the rank of
preted as “slicing” the three-way arrd§ along one of the three i
the Khatri-Rao product.

dimensions): The second Lemma deals with therank of Vandermonde
N | (9) matrices.

Lemma 2 (Vandermonderank Lemma): An m x n Vander-
monde matrix

The following Lemmas relate to thlerank of certain struc-
tured matrices and will prove useful in the sequel. Proofs can be
found in the Appendix. The first Lemma shows that tReank
of the Khatri—-Rao product is almost sup-additive.

Lemma 1 k-rank of Khatri-Rao Product):If neither A (I x

X; =BD,(A)CT, i=0
Y, = AD;(B)C?, j=0,1,---,J—-1  (10)
Z; = AD,(C)BT, k=0,1,---,K—1. (11)

1 1 ce 1
Stacking the data in, e.g., (9), into/d x K matrixU and using o Qay o ap
the definition of the Khatri-Rao product in (1), it follows that Vo= | of a3 - Al
U=(A®B)CT. (12) : : . :
arln—l a;n—l . azl—l

Corresponding compact matrix representations can also be dg- - . , .
. . Meaning that it is possible to permute the columns of one matrix, provided
rived from either (10) or (11).

the columns of the other two matrices are permuted in the same way, and that it
The following concept is key for PARAFAC uniqueness, and possible to scale for example the first column of any two matrices, provided
it will also play an essential role in the derivation of identifiathe first column of the third matrix is counter-scaled such that the scale of the
- L . . rank-one factor constructed from the outer product of the three columns remains
bility results for the deterministic blind beamforming problem§afrected. This is what is referred to as permutation and scale ambiguity in the
considered herein. sequel.
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with distinct nonzero generators,, s, ---, «v,, € C is not available. This involves little additional effort, given the perfect

only full rank but is also fulls rank: kv = rv = min(m, n). symmetry of the trilinear model [cf., (9)—(11)].

Note that the latter fails in general for the transpose of a Van-Corollary 2: If Ay is Vandermonde (corresponding to a uni-

dermonde matrix. m formlinear array) with distinct nonzero generators (distinct path
We now return to (4) and (6). Notice that both equations dangles and no spatial aliasing), a6l is full k-rank [for dis-

scribe the same PARAFAC model viewed in different domaininct path delays, this can be achieved by proper pulse-shape

However, due to the presence of the selection matlxXJS has design, e.g.¢g(t) = 1 — ¢, t € (0, 1)], then the model in (4) is

collinear rows, and henc€l'JS)? has collinear columns and, identifiable, provided that

hence, ig:-rank one. This means that Theorem 1 fails to prove

identifiability of (4)—(6). We will prove identifiability by capi- min (r, P) +min(2r, M + 1) = 2r + 2. (16)

talizing on Vandermonde structure to build up fheank. This

is the subject of the next two Theorems and their corollaries.COnsider a special case of (16) M > 2r — 1, then fractional
Theorem 2: GivenX; = BD;(A)C%,i =0, 1, I—1, sampling rateP = 2 is sufficient for identifiability.
A € CIXF B e C/%F, C e CEXF with A Vandermonde Remark 3: The latter result does not require Vandermonde

structure onF4 and, hence, can be applied to the data in the
original (time) domain without the need to take the DFT. Note
kg +min(I + kg, 2F) > 2(F + 1) (14) thatworking in the time domain also bypasses the Nyquist sam-
pling (or above) issue altogether.

thenA, B, andC are identifiable up to permutation and scaling Remark 4: Note the dual roles played by (antenna diver-

of columns. m sity) andP (fractional sampling diversity) in the above corol-
Remark 2: Condition (14) is clearly more relaxed than whataries. When bot#,, andA, are Vandermonde, duality simpli-

is available without explicitly capitalizing on the Vandermondées to symmetry, as we will see shortly.

structure ofA.. Recall that the genericrank identifiability con- The proof of Theorem 2 (cf., the Appendix) employs one-di-

with distinct nonzero generators, if

dition for the trilinear model is mensional (1-D) smoothing [15] and involves optimization of
the smoothing factor from the viewpoint of proving the best
ka + ks +kc > 2(F +1) identifiability result possible. If the data model exhibits expo-

nential structure along two of the three modes (and, hence, two
of the three matrices are Vandermonde), then one can, of course,
smooth in one dimension and claim fdlirank of the matrix
corresponding to the second exponential mode (cf., Lemma 2).
However, one wonders if stronger identifiability results can be

Recalling that:-rank is less than or equal to rank, the latter magPtained via 2-D (spatio-temporal) smoothing. This is explored

which, even after claiming fulk-rank for A due to its Vander-
monde structure, yields

kg +min(l, F) + kc > 2(F + 1).

also be written as in the following Theorem, whose proof can be found in the Ap-
pendix.
kg + min(I, F) 4+ min(kc, F) > 2(F + 1) Theorem 3:GivenX; = BD,;(A)C",i=0,1,---, [ -1,
A e CI*F B e ¢/*F, C ¢ CK*F whereA andB are
from which it is clear that (14) is an improvement. Vandermonde matrices with distinct nonzero generatois if
In the context of (6)I'JS plays the role ofCT, whereas .J + ko > 2F + 2, thenA, B, andC are identifiable up to
(Fgy, Ay) play the role of(B, A) or (A, B), depending on permutation and scaling of columns. [ |
which one is assumed to be Vandermonde. Remark 5: On the surface, the conditidnr J +kc > 2F+2

Corollary 1: If F, is Vandermonde with distinct nonzeroappears to be more relaxed than (14), which, after claiming full
generators (distinct path delays aRdt or above Nyquist), the k-rank of the Vandermonde matri3, yields
path angles are distinct, and ahjspatial manifold vectors cor-
responding to distinct angles are linearly independent, then the min(.J, F) + min({ + k¢, 2F) > 2F + 2.

model in (6) is identifiable, provided that ) )
However, observe that one may, without loss of generality, al-

min(r, M)+ min(2r, P+ 1) > 2r + 2. (15) ways assume that = min(/, J), and some work shows that,
in fact, we have the following lemma.

As a special case of (15), if the fractional sampling factor Lemma 3 (Identifiability Condition Equivalencefor J =
P > 2r —1,thenM = 2 antennas are sufficient ferpaths, min(7, J)
and hence, the system is capable of supporting many more paths
than sensors, provided sufficient fractional sampling diversity min(J, F) + min(f + k¢, 2F) > 2F +2 &
(in terms of excess bandwidth) is available. This is not a strin- I+J+ke>2F +2. m
gent requirement (in theory, one only requires the generators of
the Vandermonde matri& to be nonzero and distinct), butper- The interesting conclusion is that in contrast to 1-D
formance will inevitably be affected when very limited excessmoothing, which is indeed helpful in deriving identifiability
bandwidth is available. results, 2-D smoothing does not further improve things.

Thus far, we have capitalized on the Vandermonde structureThe following results are obtained as corollaries of Theorem
of F',, but we can also exploit Vandermonde structurdin if 3.
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Corollary 3: Forr > p (multiple rays per source), Fg For a proof of Lemma 1, considéicolumns ofB ® A arising
is Vandermonde with distinct nonzero generators (distinct patht of the corresponding columns ofA andB. Let A andB
delays andP at or above Nyquist)A, is Vandermonde (corre- denote matrices formed out of these columnAcindB. Ac-
sponding to a uniform linear array) with distinct nonzero gereording to Lemma 4, itl + 1 < kz + kg, then thed columns
erators (distinct path angles and no spatial aliasing), then B ® A under consideration are guaranteed to be linearly in-
model in (6) is identifiable, provided thatf + P > 2r, i.e., dependent. According to Lemma 5, this will be guarantaed
the sum of spatial and fractional sampling diversities strictfprtiori, provided
exceeds the total number of distinct paths, irrespective of the
number of snapshot¥. d+1 < min(d, ka) + min(d, kg). (18)

Corollary 4: Forr = p (single ray per source), B is tall
(N > p) and full rank, then under the remaining assumptions Ift light of (18), we consider the following cases.

Corollary 3, the model in (6) is identifiable, providéd + P > o If d < min(ka, k), thenmin(d, ka) + min(d, kp) =

7+ 1. 2d > d+ 1.

As alluded to earlier on, note the complete symmetry in the  If min(ka, k) < d < max(ka, k), then
roles of M (antenna diversity) ané (fractional sampling di- min(d, ka)+min(d, k) = d+ min(ka, k) > d+ 1.
versity). o If d > max(ka, k), thenmin(d, ka) + min(d, k) =

ka + k.
V. CONCLUSIONS Therefore ford + 1 < ka + kg, i.e.,d < ka + kg — 1, any

We have investigated identifiability issues in the context ¢f columns ofB ® A are guaranteed to be linearly independent.
deterministic blind beamforming in the presence of incoherelPte thatB © A is I.J x I, therefore
multipath with small delay spread. The viewpoint derives from
the theory of low-rank decomposition of multiwvay arrays,

known as PARAFAC analysis, which was shown to be thaend thus, the proof is complete. -

core problem underlying deterministic blind beamforming. Proof of Lemma 2-The interesting case is whav is fat
Using a series of new Lemmas and spatio-temporal smoothilné; ; g '

with optimized choice of smoothing factor(s) in one and twg_~ m < n. Any subset of columns of a Vandermonde matrix
P 9 fbrms a Vandermonde matrix (but this is not necessarily true

dimensions, we have proven a variety of relaxed and PrECESF subsets of rows of a Vandermonde matrix). Therefore, any

identifiability results, which improve on what is available N o lection of up ton columns ofV' will constitute a tall/square
[22]. For example, we have shown that if teemof spatial P q

: ) . . : Vandermonde matrix with distinct nonzero generators, which is
and fractional sampling diversities exceeds two times the to}al column rank (e.g., [20, p. 274]) -

number of paths, then identifiability can be guaranteed. The i . . .
link to PARAFAC also implies that generic PARAFAC Ieas‘3 Proc_)f of Theorem 2:Consider the / x K matrix obtained
stacking the datX;

squares model fitting algorithms are directly applicable toy

koa > min(ka + kg — 1, F) (29)

deterministic blind beamforming. BDy(A)
In the context of PARAFAC theory, our results prove that im- BD;(A)
proved unigueness properties are applicable if a given trilinear X = ) cT,
model exhibits Vandermonde structure along one or two modes; :
therefore, the additional structure indeed pays off. This is a con- BD;_1(A)

tribution to the theory of multiway analysis. Interestingly, "befinem matrices of sizd.J x K
contrast to 1-D smoothing, which is indeed helpful in estab-
lishing identifiability results, 2-D smoothing does not seem tgr() ._ X(Jp+1: J(L+p), - ) p=0,1, -
add anything in this respect. T T
whereX(Jpu+1: J(L+u), : ) stands forrows . +1to J(L+
APPENDIX 1) (inclusive) of matrixX, m is known as the smoothing factor

Proof of Lemma 1:We will need the following Lemmas. [15], andL := I —m + 1. Note that due to the Vandermonde
Lemma 4 (Rank of Khatri-Rao Product [19]iGivenA (I x  structure of

FyandB (J x F), if ka + ks > F + 1, thenB & A is full 1 ... 1
column rank. N [ | ay ap
Lemma 5: Let A be an/ x F' matrix, and letA be anl x d A= )

matrix constructed using any< F' columns ofA. Then . : .

al P aF
min(d, ka) <kz < d 17) .
(e k) < kg @7 it holds that
wherek 4 stands for thé-rank of A. [ |
Proof: Clearly, sinceA hasd columns,kzy < d. Every B]?)DH(AK ggo(i)
ka columns ofA are linearly independent, and hence, everyX(u) _ pri(A) T _ 1(A) ,;)ZCT

min(d, ka) columns of A are linearly independent, and the : :
Lemma follows. u BD/4,—1(A) BD;_1(A)
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where
@A = diag(al, ag, ", CLF).

Laying out thesen matrices in parallél

X :— [X(O) X(mfl)]
BDy(A)
BD.(A)
= _ [CT ®,CT o7 LCT].
BD;_:(A)
Note that
CDo(A)
CD; (A
[CT ®,C7 ... & iCT] = HA
CD,, 1(A)
=AM e C

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

kc). With L
becomes

min(I, F'), the above identifiability condition

kg +min(2F, I + kg) > 2(F + 1).

This completes the proof. Note again that no better choice
of L can be found from the viewpoint of identifiability since
['(L) can be easily shown to be bounded from above by
ks + min(2F, I + kc); hence, with this choice oL, I'(L)
actually achieves its upper bound. [ ]
Proof of Theorem 3:ConsiderX; = BD;(A)CT, i =
0,1,---,I—1, A e CI*F B e C/*F, C e CEXF where
A andB are Vandermonde matrices with distinct nonzero gen-
erators

where A(™ is a Vandermonde matrix constructed out of thE€t

first m rows of A. Similarly
BDo(A)

BDUA) | 0L,

BD,_1(A)

whereA (™) is a Vandermonde matrix constructed out of the first

L rows of A. It follows that

X = (A<L> ® B) (A(’") ® C)T

which is a special PARAFAC model with double Khatri-Rao
structure. It follows from Theorem 1 th&, A" (and, there-
fore, A as well), andA ™ @ C are unique up to permutation

and scaling of columns (and, hence, the same hold€fppro-
vided that

kB +kaw +kacmec = 2(F +1).
Using Lemmas 1 and 2, this yields
kg +min(L, F) +min(kaey + ke — 1, F) > 2(F +1).
Invoking Lemma 2 once more gives
kg +min(L, F)+min(min(m, F)+kc—1, F) > 2(F+1)
or equivalently
kg + min(L, F)+ min(m+kc — 1, F) > 2(F +1).
Recallm = I — L + 1 to obtain
(L) :=kp+min(L, F)4+min(I+kc—L, F) > 2(F+1).

Choosingl, = min(/, F) leads tol'(min(I, F)) = kg +
min(l, F) + min(J + k¢ — min(J, F), F'). By considering
different cases fof relative to the breakpointd + k¢ )/2 and
1, it is easy to see thdt(min({, F')) > kg + min(2F, I +

3This is not the sam& as in (6).

1 1 1 1
ay ag bl bF
A. = 5 B =
a7l W
BDg(A)
BD.(A)
X = . cT
BD; i(A)

and capitalize on the Vandermonde structuredofby con-
structing a new matrix X

BDo(A)
BD.(A)

X = [CT ®,CT P ICT]

(L1 :I—m—|—1)

whereX has size of.; J x mK, and

C' = [CT ®,C7
Dy :diag(al, A, ~- -, CLF).

$p7'C?]

Next, take advantage of the Vandermonde structurB,oind
construct a matrixX
X,
. X3 . _ P
X=| . |[c" #sC" 37 —'C"
X1

whereX; is a matrix containing the firsto rows of X;, and
m' = .J — L, + 1. We can further writéX as

B(Lz)DO(A(Ll))
R B(Lz)Dl(A(Ll)) R
X = . CT . LiL, x m'mK
B(LZ)DLl_l(A(Ll))

4This is not the samX as in the proof of Theorem 2.
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where

C'=[T" osC"
$p :diale, bQ, cee

@Bnl’—léT]
’ bF)
The generic identifiability condition for the PARAFAC model

iska + ks +kc > 2(F 4 1). It follows that thek-rank identi-

fiability condition for the 2-D smoothed model above is
kg + ko + kc > 2(F + 1). (20)

Recall
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e FF>1I F > .J.Then
Lo(min({, F), min(J, F)) = I + J 4+ min(kc, F).

Recall thatc stands for thé-rank ofC, and hencésc <
I to obtain

To(min(f, F), min(J, F)) =1+ J + ke > 2F + 2.

We conclude that identifiability is guaranteed it- J + kc >
2F + 2. Note thatl's(L1, Lo) < I + J + ke, and hence, the

condition cannot be further relaxed by means of smoothimg.

ké = kB(W’)@G
> min(kgey +hg—1, F)
= min(min(m’, F) +min(m +kc -1, F) -1, F) -
= min(m’ + m+kc — 2, F)

=min(J +J+kc — Ly — Ly, F).
Condition (20) becomes

kpiy +hacy +min(l+J+kc— Ly — Lo, F) > 2(F+1).
(21)

SinceA (L) andB(/») are Vandermonde matrices with distinct

nonzero generators, they have fidtank. We therefore rewrite

(21) as

[o(Ly, L) := min(Ly, F) +min(Ls, F)
+min(l +.J+kc— L1 — Lo, I)
>2(F'+1).
Selectl; = min(J, F'), L, = min(J, F'), leading to

Ty(min(7, F), min(J, F))
= min(/, F') + min(J, F)
+min({ + J + ke — min(l, ) — min(J, F), I).

Per the statement of the Theorem, we wish to prove fhat
J + ke > 2F + 2 is sufficient for identifiability. Consider the
following cases:

e F<I,F<J. . Then

Lo(min({, F), min(.J, I))
=2F4+min(I+J+kc—2F, F)>2F+2

sincel+J+kc > 2F+2guarantee$+J+kc—2F > 2.
e I'< I, F > J.Then

Fo(min(Z, F), min(J, F)) = F+J +min(l + kc — I, F).

Howeverl +J 4+ kc > 2F +2guaranteeg + ke — F >
F — J + 2 so0 we have

To(min(Z, F), min(J, F)) > F+J +min(F' — J+ 2, F).

Suppose FF — J + 2 < F;  then,
Lo(min({, F), min(J, F)) > 2F + 2. If,
on the other hand,F’7 < F — J + 2, then

Ty(min(I, F), min(J, F)) = 2F + J > 2F + 2 since
J > 2 (this is a trivial nondegeneracy condition).

e F > I,F < J. Then,I's(min({, F), min(J, F)) >
2F + 2 by symmetry (needs > 2).

Identifiability Conditions Pertaining to [22]-[25]:
* [22]:

Thep x NN (p in our notation plays the role afin [22])
signal matrixS is fat and full rank.

The Khatri-Rao produdf, @ A, that appears in [22,
Eq. (24), p. 2000] is tall{ < MP% and full rank.

The Khatri-Rao produdi‘ff ~m*) o A, that appears

in [22, Eq. (25), p. 2001] (wherE‘ff_m*l) consists
of the first? —m + 1 rows of F,;,, andm is a temporal
smoothing factor) is tall/{( < M(P —m + 1)) and
full rank. Note that this condition is stronger than (and,
hence, implies thatf'y ® A, is tall and full rank. In
addition, note that there is a typographical error in [22,
Eq. (25), p. 2001], wher®' """ should appear in
place ofF'y © Asy.

The Khatri-Rao produch;") ® TTJIT that appears

in [22, Eq. (25), p. 2001] (wherEg") consists of the
first m rows of F,) needs to be talk{ < myp) and full
rank.

The matricesd’, A” that appear in [22, Eq. (26), p.
2001] need to be tall and full rank.

. [23]-[25];

These assume that the overall spatio-temporal channel
matrix has already been estimated using training sym-
bols and seek to determine path angles and delays by
exploiting the Kronecker structure of the spatio-tem-
poral manifold.

[24] (including precursor results in [23]). This requires
similar conditions—A.,,, A,e, FZ (notation of [24])
need be tall and full rank.

[25]. The Khatri-Rao producG.- ® Ay is required

to be tall and full column rank, whereas an effective
“signal” matrix (actually holding fading coefficients
corresponding to different slots in a TDMA system)
must be fat and full rank, implying that one needs at
least as many channel estimates (computed one per
TDMA slot) as the total number of multipath rays. Ad-
ditional conditions are needed to guarantee that the
proposed eigenvalue solution will identify the model
parameters. Note that [25] deals with the single-user
case.
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