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Robust Iterative Fitting of Multilinear Models
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Abstract—Parallel factor (PARAFAC) analysis is an extension
of low-rank matrix decomposition to higher way arrays, also re-
ferred to as tensors. It decomposes a given array in a sum of multi-
linear terms, analogous to the familiar bilinear vector outer prod-
ucts that appear in matrix decomposition. PARAFAC analysis gen-
eralizes and unifies common array processing models, like joint
diagonalization and ESPRIT; it has found numerous applications
from blind multiuser detection and multidimensional harmonic re-
trieval, to clustering and nuclear magnetic resonance. The pre-
vailing fitting algorithm in all these applications is based on (alter-
nating) least squares, which is optimal for Gaussian noise. In many
cases, however, measurement errors are far from being Gaussian.
In this paper, we develop two iterative algorithms for the least ab-
solute error fitting of general multilinear models. The first is based
on efficient interior point methods for linear programming, em-
ployed in an alternating fashion. The second is based on a weighted
median filtering iteration, which is particularly appealing from a
simplicity viewpoint. Both are guaranteed to converge in terms of
absolute error. Performance is illustrated by means of simulations,
and compared to the pertinent Cramér–Rao bounds (CRBs).

Index Terms—Array signal processing, non-Gaussian noise, par-
allel factor analysis, robust model fitting.

I. INTRODUCTION

THE parallel factor (PARAFAC) model [1]–[5] is a useful
data analysis tool that has recently found applications in

array signal processing and communications, e.g., [6] and [7].
Generalizing the concept of low-rank decomposition to higher
way arrays or tensors, PARAFAC is instrumental in the analysis
of data arrays indexed by three or more independent variables,
just like singular value decomposition (SVD) is instrumental
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in ordinary matrix (two-way array) analysis. Unlike SVD,
PARAFAC does not impose orthogonality constraints; the
reason is that low-rank decomposition of higher order tensorial
data is essentially unique under certain conditions [5], [6], in
contrast to low-rank matrix decomposition.

Because of its direct link to low-rank decomposition,
PARAFAC analysis has found applications in numerous and
diverse disciplines, e.g., cf. [6], [7], and references therein.
Related work on joint diagonalization, symmetric, super-sym-
metric, and rank-one tensorial decomposition, has also ap-
peared in the signal processing literature, mostly in the context
of higher order statistics (HOS) and independent component
analysis (ICA)-based blind source separation [8]–[11]. The
papers [8]–[11] do not address the general PARAFAC analysis
problem, as we do, but focus on special (symmetric, rank-one)
cases which are of interest in their own right.

In most applications of PARAFAC analysis, an alternating
least squares regression procedure is used to fit the model pa-
rameters (e.g., cf. [6] and [12]). Least squares (LS) regression
is optimal (in the maximum likelihood sense) when measure-
ment errors are additive i.i.d. Gaussian. Gaussianity is an often-
made assumption, due to the central limit theorem, but also
for tractability considerations. However, in many applications
(e.g., [13] and [14]), the measurement errors are far from being
Gaussian random variables.

The least absolute error (LAE) criterion is often used as a ro-
bust alternative to LS [15]. LAE regression is optimal (in the
maximum likelihood sense) when measurement errors are addi-
tive i.i.d. Laplacian (e.g., see [16]). The Laplacian distribution is
more heavy-tailed than the Gaussian one; therefore, it is better
suited to model impulsive noise and outliers. An easy way to see
this is to consider mean estimation under LS and LAE criteria.
These correspond to arithmetic mean and median operators, re-
spectively. The median operator rejects impulses regardless of
strength,1 whereas the arithmetic mean is skewed by even one
outlying sample.

Another distribution commonly used for modeling impulsive
noise is the Cauchy, and, more generally, the class of -stable
distributions [13], [14]. Interestingly, as we will see, regression
under the LAE criterion often performs well even when mea-
surement errors are not Laplacian, but rather drawn from the
class of -stable distributions. It is, therefore, of interest to de-
velop PARAFAC regression procedures that optimize the LAE
fitting criterion.

In this paper, we develop two such iterative procedures. One
is based on linear programming (LP); the other makes use of
weighted median filtering (WMF) (e.g., [19]). Their relative
merits are investigated via simulations and compared to the

1Up to roughly K=2 impulses can be rejected, where K is the sample size.

1053-587X/$20.00 © 2005 IEEE



VOROBYOV et al.: ROBUST ITERATIVE FITTING OF MULTILINEAR MODELS 2679

pertinent Cramér–Rao bounds (CRBs), which are also derived
herein.

Yet, another commonly used class of impulsive noise models
is Gaussian mixture distributions. Gaussian mixture models can
approximate a broad class of non-Gaussian distributions. Esti-
mation algorithms derived under the Gaussian mixture assump-
tion often maintain good performance under symmetric stable
distributions (e.g., cf. [17] and [18]). LAE regression affords a
similar robustness benefit across stable distributions; however,
it is conceptually much simpler. For example, it does not depend
on any noise parameters, and, thus, there is no need for a sepa-
rate parameter estimation step.

This paper is organized as follows. In the next section, the
PARAFAC model is introduced. The proposed robust iterative
algorithms are developed in Section III and the related CRBs
are presented in Section IV. Simulation results are given in Sec-
tion V and conclusions are drawn in Section VI.

II. PARALLEL FACTOR ANALYSIS

We introduce notation that will be useful in the sequel. Con-
sider an three-way array with typical element

and the -component trilinear decomposition

(1)

for all , and . Here,
stands for the th element of matrix , and, sim-

ilarly, and stand for th and th elements of
and matrices and , respectively. Matrices

, and are, in general, complex valued. Equation (1) ex-
presses as a sum of rank-1 triple products; it is known
as trilinear decomposition, or PARAFAC analysis of . If

, where and are the
Kruskal ranks [5] of the matrices , and , respectively, then
rank-F decomposition of the three-way array is unique [5],
[6]. The Kruskal rank of is the maximum integer, , such that
any columns drawn from are linearly independent.

Let denote the operator which takes the th row
of matrix and produces a diagonal matrix by placing this row
on the main diagonal. Then, by “slicing” the three-dimensional
(3-D) array in a series of “slabs” [two-dimensional (2-D)
arrays], we obtain

(2)

Here, such a slicing is made perpendicular to the th dimension,
i.e., is the 2-D slice of corresponding
to the given index . Two other types of slicing of are useful
in understanding the algorithms which will be developed in the
next section. They are given by

(3)

(4)

where , while the matrix
and matrix are defined as and

, respectively.

III. TRILINEAR ALTERNATING LEAST ABSOLUTE

ERROR (TALAE) REGRESSION

In practice, the three-way array will contain measurement
noise, i.e., , where the th element of
can be written as

(5)

where denote the additive complex i.i.d. zero-mean mea-
surement noise with statistically independent real and imaginary
parts.

The PARAFAC fitting problem is then formulated as follows.
We are given the noisy data and wish to estimate , and

. Let us introduce the tall matrix

...
... (6)

where stands for the Khatri–Rao (column-wise Kronecker)
matrix product. Similarly, we introduce the matrix of noisy data

...
...

... (7)

Then, the conditional maximum lkelihood (ML) estimation
problem for the matrix given matrices and and assuming
i.i.d. Gaussian measurement noise is the LS fitting problem

(8)

where denotes the Frobenius matrix norm.
If the measurement noise is i.i.d. Laplacian (with i.i.d. Lapla-

cian-distributed real and imaginary parts in the complex case),
then ML estimation is equivalent to LAE regression. Some ma-
nipulations are necessary in order to express the absolute error
criterion in the form of a convenient vector norm. Toward this
end, introduce the operator

... (9)

Re
Im

(10)

where is a complex-valued matrix and denotes its
th column. The following property holds (see Appendix A for

derivation):

(11)
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where is the identity matrix of commensurate dimension,
and are any complex-valued matrices of commensurate di-
mensions, denotes the Kronecker matrix product, and
stands for the operator

Re Im
Im Re

(12)

Using property (11), we find that the absolute error model
fitting criterion can be written as

(13)

i.e., through the norm of a real-valued vector. Here,
and .

Using the other two ways of slicing the array , we introduce
the matrices

... (14)

... (15)

and correspondingly

...
... (16)

where , and are the noisy
slabs of along corresponding dimensions.

Now, we have all notations necessary to explain the new fit-
ting algorithms.

A. Trilinear Alternating LAE (TALAE) Regression Based on
Linear Programming (TALAE-LP)

The idea behind this algorithm is similar to that of trilinear
alternating LS (TALS) regression for Gaussian noise2 [7], [12]
and is as follows. Each time, update a subset of parameters using
the LAE criterion, conditioned on previously obtained estimates
of the remaining parameters; proceed to update another subset
of parameters; repeat until convergence.

In more detail, we first initialize matrices and randomly
or by single-invariance ESPRIT when applicable [6], [7]. Then,
given the matrix , and these initial estimates of and
(which we denote hereafter as and ), our purpose is to find
the estimate of the matrix which minimizes the norm (13).
Specifically, we have to find the estimate of by solving the
following optimization problem:

(17)

2However, the norm of type (13) is now used instead of the Frobenius norm
of (8).

for given , and . In (17), denotes the inverse op-
erator to of (9). Introducing the vector
and the vector of slack variables (both of commensurate di-
mensions), we can equivalently write the problem (17) as

subject to

(18)

where denotes the usual pointwise ordering. The optimization
problem in (18) is an LP problem that can be very efficiently
solved using interior-point methods [20], [21].

Using the second way of slicing the 3-D array (i.e., working
with the data ) and exploiting the property (11), we
obtain that the estimate of can be found by solving the fol-
lowing optimization problem:

(19)

with given and previously estimated and . This problem
can be rewritten as the following LP problem:

subject to

(20)

where is the vector of slack variables of commensurate di-
mension.

Finally, using the third way of slicing the 3-D array and ap-
plying the property (11), we obtain that the estimate of can
be found by solving the following optimization problem:

(21)

with given and previously estimated and . This problem
is equivalent to the following LP problem:

subject to

(22)

where is the vector of slack variables of commensurate di-
mension.

Fitting proceeds by updating one matrix at a time, conditioned
on interim estimates of the other two, in a round-robin fashion.
Note that the conditional update of any given matrix may either
improve or maintain but cannot worsen the current fit. Mono-
tone convergence of the fit (but not necessarily to the global
minimum) follows directly from this observation.

Each conditional LAE matrix update entails solving an LP
problem whose complexity is higher than that of the corre-
sponding LS matrix update (matrix pseudo-inverse) [21]. If
we define one iteration to be a full update cycle of all three
matrices, then the per-iteration complexity of TALAE-LP
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can be estimated as , while the
corresponding per-iteration complexity of TALS is .
Overall complexity depends on the number of iterations, which
varies depending on problem-specific parameters and the given
batch of data.

B. TALAE Based on Weighted Median Filtering (TALAE-WMF)

LP yields the optimal solution for each of the conditional opti-
mization problems in (17), (19), and (21), at a relatively modest
complexity. In the following, we show how one can iteratively
solve (17) [and, likewise, (19) and (21)], using simple weighted
median filtering. Unlike the LP-based solution, the iterative so-
lution derived below is not necessarily an optimal solution of
(17). However, the weighted median filtering iteration is sim-
pler, monotonically convergent (and, thus, maintains monotone
convergence of the outer loop as well), and, as we will see in the
simulations, it does not appear to affect the performance of the
overall model-fitting procedure appreciably.

Fixing all parameters in (17) except for
, we can simplify this problem

as

(23)

where Re Im , and
stands for the th column of .

Defining

(24)

and

(25)

the problem in (23) becomes

(26)

The minimization problem in (26) can be further written as

(27)

where and are the th elements of the vectors
and , respectively. Equivalently, (27) can be expressed as

(28)

provided that none of the elements is zero. Note that
if one of these elements is zero, then the corresponding sum-
mand in (28) can be dropped because it becomes a constant
in this case (independent of ). Note that the opti-
mization problem (28) is solved by WMF (e.g., see [19]) where

, and are the filter
inputs, weights, and output value, respectively. The WMF oper-
ation boils down to sorting, and can, thus, be efficiently imple-
mented at a complexity cost of .

Iterating the WMF over real and imaginary parts of all ele-
ments of the matrix , e.g., in a circular fashion, and likewise
for the elements of the matrices and involved in the decom-
position, one obtains a LAE trilinear regression algorithm that
is monotonically convergent in terms of the LAE cost function.
The per-iteration complexity of the TALAE-WMF algorithm is
then estimated as , which is close to the
per-iteration complexity of TALS, and much lower than the cor-
responding complexity of TALAE-LP.

Note that the proposed robust PARAFAC algorithms (as
any alternating-optimization-based technique) can use any
additional side information by keeping the corresponding
columns of the respective matrices fixed during iterations or
initializing them with preliminary (possibly coarse) estimates.
The advantage of PARAFAC fitting versus other approaches in
this case is that it uses all the model structure and aims for the
ML solution.

IV. CRAMÉR–RAO BOUNDS

The PARAFAC CRB for Gaussian noise has been derived in
[22]. Corresponding Laplacian and -stable CRBs are of in-
terest as benchmarks in our present context. Since the symmetric

-stable distribution does not have an analytic expression for its
density function, we will derive the CRB for robust fitting of the
trilinear PARAFAC model for the special case of Cauchy noise.
First, the Cauchy distribution has a closed-form expression for
its density function. Second, estimators that perform well under
the Cauchy distribution are robust in different impulsive noise
environments, i.e., the performance of such estimators does not
change significantly when other symmetric -stable distribu-
tions are used [13].

One delicate point regarding the CRB for the trilinear de-
composition model is the inherent permutation and scale am-
biguity. To derive a meaningful CRB, we assume that the first
rows of and are normalized to , which re-
solves the scale ambiguity [22]. Further, we assume that the first
row of is known and consists of distinct elements, which re-
solves the permutation ambiguity [22]. Then, we can write the

row-vector of unknown complex param-
eters as

(29)

Result: The Fisher
information matrix (FIM) for the estimation of in Gaussian,
Laplacian and Cauchy noise is given by

FIM (30)

where

(31)
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(32)

(33)

(34)

(35)

(36)

(37)

for Gaussian noise

for Laplacian noise

for complex Cauchy noise

for real Cauchy noise

(38)

is the standard deviation of the Gaussian or Laplacian distri-
bution, is the dispersion of the Cauchy distribution and

...
. . .

... (39)

...
. . .

... (40)

...
. . .

... (41)

We have (42)–(44), shown at the bottom of the page.
Finally, the CRB matrix of the unknown elements of is

given by

CRB (45)

Proof: See Appendix B.

V. SIMULATIONS

In this section, we compare the performance of the proposed
TALAE-LP and TALAE-WMF algorithms with that of the
conventional TALS method, and against the pertinent CRB.
The example of fully blind PARAFAC multiuser separation-de-
tection for a direct-sequence code-division multiple access

. . .

. . .

. . .

...
(42)

. . .

. . .

. . .

...

...

(43)

. . .

. . .

. . .

...
(44)
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(DS-CDMA) communication system [6] is simulated.3 For the
DS-CDMA application, the elements of the matrices , and

have the following meanings:
fading/gain between user and antenna element ;
th chip of the spreading code of user ;
th symbol transmitted by user .

Correspondingly, matrix is the channel matrix, is the
spreading code matrix, and is the user symbol matrix, all
unknown to the receiver. Here

number of users;
total number of antenna elements in the array;
number of intersymbol interference (ISI)-free chips per
symbol (ISI-free equivalent spreading gain);
length of the transmitted sequence of symbols (number of
snapshots).

See [6] for a list of the necessary assumptions which make the
PARAFAC model valid in this context.

The data are contaminated by channel noise. Three models
of the channel noise are used. One is Gaussian noise, while the
other two are Laplacian and Cauchy noise.

For LS fitting, we use the COMFAC algorithm [12], which is
a fast implementation of TALS. The MOSEK convex optimiza-
tion MATLAB toolbox [25] is used to solve LP problems asso-
ciated with our TALAE-LP algorithm. The interior-point based
solver of the MOSEK toolbox is applied. Scale and permuta-
tion ambiguities are inherent to this blind separation problem
[6]; the scale ambiguity manifests itself as a complex constant
that multiplies each individual row of . For constant-mod-
ulus transmissions, this ambiguity can be removed via automatic
gain control (AGC) and differential encoding/decoding. We as-
sume differentially encoded user signals throughout the sim-
ulations. For the purpose of performance evaluation only, the
permutation ambiguity is resolved using a greedy LS
column-matching algorithm.

We present Monte Carlo simulations that are designed to as-
sess the root-mean square error (RMSE) performance of the

3Note that, in contrast to the existing robust/blind multiuser detection algo-
rithms (e.g., see [23], [24], and references therein) where the space-time signa-
ture of the user-of-interest has to be known, in our example, we assume that the
spatio-temporal signatures of all users are completely unknown.

aforementioned algorithms. The parameters used in the simu-
lations are as follows: number of Monte Carlo trials

; and . Here, is the charac-
teristic exponent which determines the heaviness of the tail of
the symmetric -stable distribution used in our third example
( yields the Cauchy distribution). The associated sym-
metric -stable characteristic function is given by

(46)

where is a positive constant related to the scale of the dis-
tribution (also known as dispersion in the case of the Cauchy
distribution). The geometric signal-to-noise ratio (SNR), in this
case, is defined according to ([26, p. 68])

SNR (47)

where is the exponential of the Euler constant
is the magnitude of the noise-free signal

and is the geometric power of symmetric -stable noise ([26,
p. 38])

(48)

Both Gaussian and Cauchy distributions belong to the class of
symmetric -stable distributions. The geometric power of com-
plex Gaussian noise can be calculated as [26], shown in (49) at
at the bottom of the page. Substituting (49) into (47), we find
that for the Gaussian case the geometric SNR is equivalent to
the standard SNR.

For the complex Cauchy case, the noise power and corre-
sponding geometric SNR can be written as (50) and (51), respec-
tively, shown at the bottom of the page. In the Laplacian case,
we use the standard SNR, since Laplacian distribution does not
belong to the class of symmetric -stable distributions.

Throughout the simulations, we assume that the noise power
is normalized to be equal to 1. User signals are redrawn from an
i.i.d. Bernoulli distribution and differentially encoded for each

Re Im

Re Im
Re Im (49)

Re Im

Re Im
Re Im (50)

and

SNR (51)
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Fig. 1. RMSEs versus SNR. First example; Gaussian channel noise.

Monte Carlo trial. BPSK modulation is used for all user sig-
nals. The gains of the channel matrix and the elements of the
spreading code matrix are generated as i.i.d. Gaussian unit
variance random variables and are fixed in each Monte Carlo
trial, and re-drawn from one trial to another.

Even though dimensions and ranks are such that algebraic
(ESPRIT-like) initialization is possible for all three algorithms
in our simulation setup, we choose to initialize all three com-
peting algorithms randomly for each batch of data. The reason
is that we wish to assess the global convergence characteristics
of the three iterations.

The RMSE for each simulated point and for each method
tested is calculated according to the following expression:

RMSE (52)

while the (averaged) CRB is calculated as

CRB
Tr CRB

(53)

where Tr stands for the trace operator.
In the first example, we assume sensors and

users. Figs. 1–3 display the performance of the aforementioned
algorithms in terms of RMSE versus the SNR4 for the case of
Gaussian, Laplacian and Cauchy noise, respectively, and com-
pare the performance with the corresponding CRBs.

A conceptually simple method that is often employed in en-
gineering practice to deal with impulsive noise and outliers is to
use a memoryless clipper nonlinearity (e.g., [24]) followed by
ordinary LS fitting. Fig. 4 shows the performance of the pro-
posed TALAE methods as compared to the TALS procedure

4Standard SNR in Gaussian and Laplacian case and geometric SNR in Cauchy
case.

Fig. 2. RMSEs versus SNR. First example; Laplacian channel noise.

Fig. 3. RMSEs versus SNR. First example; Cauchy channel noise.

with clipper nonlinearity. The input-output relationship of the
clipper nonlinearity is

sgn otherwise

where denotes the threshold of the clipper.
In the second example, SNR dB is fixed while the

numbers of sensors and users are varied. In this example,
Cauchy noise is assumed. Figs. 5 and 6 show the RMSEs of the
TALAE-LP and TALAE-WMF methods versus the number of
antenna elements for and , respectively.

Figs. 1 and 2 demonstrate that in the case of Gaussian noise,
the TALS method performs slightly better than the proposed
robust algorithms, while in the case of Laplacian noise, the
proposed robust algorithms have slightly better performance as
compared to the TALS method. In the case of Cauchy noise,
the TALS method breaks down (Figs. 3, 5, and 6), while the
performance of the proposed robust algorithms is not affected
and is close to the CRB (despite the fact that our techniques
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Fig. 4. RMSEs versus SNR. First example; Cauchy channel noise. 
 is the
dispersion of the Cauchy noise.

Fig. 5. RMSEs versus I for F = 2. Second example; Cauchy channel noise.

are designed for Laplacian noise). The degradation in perfor-
mance relative to TALS in the Gaussian case can be considered
as a moderate price for greatly improved robustness against
heavy-tailed Cauchy noise.

The TALS procedure with clipper nonlinearity shows rea-
sonably good performance in the case of Cauchy noise (Fig. 4),
although the clipper-plus-TALS results are uniformly worse
than those of TALAE-LP and TALAE-WMF for all choices of
clipper threshold considered. Notice that the performance of
clipper-plus-TALS technique depends critically on the clipper
threshold, and different thresholds should be chosen to achieve
the best performance at different SNRs. The TALAE-LP/WMF
techniques do not require such calibration. Furthermore,
TALAE-WMF only incurs a small complexity penalty rela-
tive to TALS ( versus per
iteration). Based on these observations, we conclude that
TALAE-WMF is to be preferred over the clipper-plus-TALS
approach.

Fig. 6. RMSEs versus I for F = 4. Second example; Cauchy channel noise.

Comparing the two robust regressions (TALAE-LP versus
TALAE-WMF), we see that they behave very similarly per-
formance-wise in all cases considered in our simulations. This
was not necessarily expected, because TALAE-LP jointly up-
dates many parameters, and is, therefore, capable of making
“superdiagonal” optimization steps which are not possible with
TALAE-WMF. The latter updates one parameter at a time, and,
thus, it may be more easily trapped in ridges which do not allow
fit improvements by means of updating only a single parameter.
Nevertheless, this possibility does not appear to affect perfor-
mance in our simulations. Further note that the two TALAE
regressions appear robust against random initialization. Intu-
itively, this fact can be attributed to the fact that we work with a
relatively over-determined model.

We have seen that each complete update cycle of
TALAE-WMF (in which all parameters are visited for up-
date once, in any order) is computationally much simpler than
the corresponding cycle of TALAE-LP. To get a real sense of
computational complexity, the number of iterations required
for convergence of both methods is also needed. This number
varied between 10 and 20, depending on simulated noise
model and initialization of matrices and . Throughout the
simulations it was observed that TALAE-WMF requires two to
five more iterations than TALAE-LP for Gaussian or Laplacian
noise, and about the same number of iterations for Cauchy
noise. This is indeed a positive result taking into account that
TALAE-WMF can be implemented with simple sorting hard-
ware, whereas TALAE-LP and TALS require a sophisticated
computing capability.

VI. CONCLUSION

Two new iterative algorithms for robust fitting of trilinear
PARAFAC models have been proposed. The algorithms rely on
alternating optimization, using LP or WMF. Our findings show
that both algorithms are computationally efficient, but the WMF
iteration is particularly appealing from a simplicity viewpoint.
The proposed algorithms outperform the workhorse alternating
LS PARAFAC fitting procedure under heavy-tailed noise, and,
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even though they are matched to the Laplacian distribution, they
still perform well under Cauchy noise. Furthermore, their per-
formance degrades only moderately under Gaussian noise. We,
therefore, expect that the new algorithms will prove useful in a
variety of applications of PARAFAC analysis. Finally, we note
that both TALAE-LP and TALAE-WMF can be readily gener-
alized to multilinear LAE regression in higher dimensions (i.e.,
for -way arrays).

APPENDIX A
PROOF OF PROPERTY (11)

Let and be and , respectively, complex-
valued matrices. The th column of satisfies

Re
Im

Re Im
Im Re

Re
Im

(54)

and, therefore

...
. . .

...

(55)

APPENDIX B
PROOF OF CRB RESULT

The proof for the case of Gaussian noise is given in [22]. Here
we provide proofs for the Laplacian and Cauchy cases only.

Laplacian Case: The likelihood function in this case can be
written as [27]

Re

Im (56)

The corresponding log-likelihood (LL) function is given by

Re

Im (57)

The complex FIM for log-likelihood can be ex-
pressed as

FIM (58)

where denotes the expectation operator.
Taking partial derivatives of with respect to the

unknown parameters, we obtain

Re Im

Re
Re

Im
Im

(59)

Re
Re

Im
Im

(60)

Re
Re

Im
Im

(61)

Next, let us derive expressions for the elements of FIM,
starting from the element

Re

Re

Im

Im
Re

Re

Im
Im

(62)

where is the th unit coordinate vector and stands for
the Kronecker delta. In (62), we use the fact that the real and
imaginary parts of are statistically independent.

Thus, the matrix containing all the elements (62) (
and ) can be expressed in the

form of (32) with the coefficient . In the same way,
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we compute the matrices and in the form of (33) and
(34), respectively.

Similarly, we can find the element

(63)

Then, the matrix containing all the elements (63) (
and ) can be

written in the form of (35) with the coefficient . In the
same way, we find the matrices and given by (36)
and (37), respectively. Applying the matrix inversion lemma to
the FIM matrix, we obtain (45).

Cauchy Case: We have seen that the Laplacian CRB for the
PARAFAC model only differs by a multiplicative constant from
the corresponding Gaussian CRB. In [28], it is shown that this is
true for general signal models observed in i.i.d. additive noise,
provided that the noise probability density function (pdf) pos-
sesses everywhere continuous first and second derivatives. This
is not the case for the Laplacian pdf, due to the discontinuity
at the origin; however, it is true for the Cauchy. In fact, in [28]
and [29], it is shown that the noise pdf-dependent multiplicative
constant that appears in the FIM can be computed as

(64)

where is the noise pdf and is its first derivative.
Hence, we can proceed in this fashion, calculating the integral
above for the Cauchy pdf.

The expression for complex isotropic Cauchy density func-
tion in our case is given by [13]

Re

Re Im
(65)

The first derivative of the pdf (65) can be easily calculated as

Re Im

Re Im
Re

Re Im
Im

Re
Re Im

Im
Re Im

Re Im
Re Im

(66)

and, correspondingly

Re Im

Re Im

Re Im
Re Im

(67)

Substituting (67) into (64) and calculating the integral,
we finally find the coefficient for the Cauchy noise
case, shown in (68) at the bottom of the page, where

Re Im and Im
Re are the polar coordinates.

In the proof above, we considered complex noise. However,
it is worth noting that in the particular case of real Cauchy noise,
the coefficient is equal to . Indeed, the real Cauchy pdf
is

(69)

and its first derivative is

(70)

Re Im

Re Im
Re Im

Re Im
Re Im

Re Im

(68)
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Substituting (69) and (70) into (64), we obtain

(71)

and the proof is complete.
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