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Abstract—This paper considers the problem of downlink
transmit beamforming for wireless transmission and downstream
precoding for digital subscriber wireline transmission, in the
context of common information broadcasting or multicasting
applications wherein channel state information (CSI) is available
at the transmitter. Unlike the usual “blind” isotropic broadcasting
scenario, the availability of CSI allows transmit optimization.
A minimum transmission power criterion is adopted, subject to
prescribed minimum received signal-to-noise ratios (SNRs) at
each of the intended receivers. A related max–min SNR “fair”
problem formulation is also considered subject to a transmitted
power constraint. It is proven that both problems are NP-hard;
however, suitable reformulation allows the successful applica-
tion of semidefinite relaxation (SDR) techniques. SDR yields an
approximate solution plus a bound on the optimum value of the
associated cost/reward. SDR is motivated from a Lagrangian
duality perspective, and its performance is assessed via pertinent
simulations for the case of Rayleigh fading wireless channels. We
find that SDR typically yields solutions that are within 3–4 dB of
the optimum, which is often good enough in practice. In several
scenarios, SDR generates exact solutions that meet the associated
bound on the optimum value. This is illustrated using measured
very-high-bit-rate Digital Subscriber line (VDSL) channel data,
and far-field beamforming for a uniform linear transmit antenna
array.

Index Terms—Broadcasting, convex optimization, downlink
beamforming, minimization of total radiation power, multicas-
ting, semidefinite programming, semidefinite relaxation (SDR),
very-high-bit-rate Digital Subscriber line (VDSL) precoding.

I. INTRODUCTION

CONSIDER a transmitter that utilizes an antenna array to
broadcast information to multiple radio receivers within a

certain service area. The traditional approach to broadcasting is
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to radiate transmission power isotropically, or with a fixed direc-
tional pattern. However, future digital video/audio/data broad-
casting and multicasting applications are likely to be based on
subscription to services; hence, it is plausible to assume that the
transmitter can acquire channel state information (CSI) for all
its intended receivers.

The goal of this paper is to develop efficient algorithms for
the design of broadcasting schemes that exploit this channel
information in order to provide better performance than the
traditional approaches.

Our design approach is based on providing Quality of Ser-
vice (QoS) assurance to each of the receivers. Since the received
signal-to-noise ratio (SNR) determines the maximum achiev-
able data rate and (essentially) determines the probability of
error, it is an effective measure of the QoS. We consider two
basic design problems. The first seeks to minimize the total
transmission power (and thus leakage to neighboring cochannel
transmissions), subject to meeting (potentially different) con-
straints on the received SNR for each individual intended re-
ceiver. The second is a “fair” design problem in which we at-
tempt to maximize the smallest receiver SNR over the intended
receivers, subject to a bound on the transmitted power. We will
show that both these problems are NP-hard, but we will also
show that designs that are close to being optimal can be effi-
ciently obtained by employing semidefinite relaxation (SDR)
techniques.

Our designs are initially developed for a wireless broadcast
scenario in which each user employs a single receive antenna
and the channel is modeled as being flat in frequency and quasi-
static in time. However, the designs are also appropriate on a
per-tone basis for orthogonal-frequency-division multiplexing
(OFDM) and related multicarrier systems, and, as we will show,
they can be generalized in a straightforward manner to single-
carrier systems transmitting over frequency-selective channels.
In addition to wireless systems, applications of the proposed
methodology also appear in downstream multicast transmission
for multicarrier and single-carrier digital subscriber line (DSL)
systems. In this context, (linear) precoding of multiple DSL
loops in the same binder that wish to subscribe to a common ser-
vice (e.g., news feed, video-conference, or movie multicast) can
be employed to improve QoS and/or reduce far-end crosstalk
(FEXT) interference to other loops in the binder. In scenarios in
which the customer-premise equipment (CPE) receivers are not
physically co-located (as in residential service) or cannot be co-
ordinated (legacy CPE), multiuser decoding of the downstream
transmission is not feasible, while transmit precoding is viable.
The most important difference between DSL and the wireless
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multicast scenario is that DSL channels are diagonally domi-
nated. Still, exploiting the crosstalk coupling to reduce FEXT
levels to other loops in the binder can provide significant per-
formance gains, especially if (cooperative or competitive) power
control is implemented.

It is interesting to note that, as of today, Internet multicas-
ting (using IP’s Multicast Backbone—MBone) is performed at
the network layer, e.g., via packet-level flooding or spanning-
tree access of the participant nodes and any intermediate nodes
needed to access the participants. To complement that approach,
what we advocate herein can be interpreted as judicious phys-
ical layer multicasting, that is, enabled by i) the availability of
multiple transmitting elements; ii) exploiting opportunities for
joint beamforming/precoding; and iii) the availability of CSI at
the transmitting node or one of its proxies. This is a cross-layer
optimization approach that exploits information available at the
physical layer to reduce relay retransmissions at the network
layer, thus providing congestion relief and QoS guarantees.

Notation: We use lowercase boldface letters to denote
column vectors and uppercase bold letters to denote matrices.

denotes transpose, while denotes Hermitian (conju-
gate) transpose. extracts the real part of its argument,
and the imaginary part.

II. DATA MODEL AND PROBLEM STATEMENT

Consider a wireless scenario incorporating a single trans-
mitter with antenna elements and receivers each with
a single antenna. Let denote the complex vector
that models the propagation loss and phase shift of the fre-
quency-flat quasi-static channel from each transmit antenna
to the receive antenna of user , and let
denote the beamforming weight vector applied to the
transmitting antenna elements. If the signal to be transmitted
is zero-mean and white with unit variance, and if the noise1

at receiver is zero-mean and white with variance , then
the receiver SNR for the th user is . Let
be the prescribed minimum SNR for the th user and define
the normalized channel vectors . Then

. Therefore, the design
of the beamformer that minimizes the transmitted power, sub-
ject to (possibly different) constraints on the received SNR of
each user, can be written as

subject to:

We will denote an instance of problem as ,
keeping in mind that .

Remark 1: One could think of imposing the stricter con-
straints , in order to avoid the need for single-tap
equalization at the receivers. However, we are interested in the
practically important case of , wherein the stricter con-
straints generically yield an overdetermined system of equa-
tions, and thus an infeasible problem. On the other hand, it is

1The noise may include unmodeled interference.

easy to see that problem is always feasible, provided of course
that none of the channel vectors is identically zero.

Problem is formulated under the assumption that the design
center (usually the transmitter) has knowledge of the channel
vector (and the noise variance ) for each user. This can
be accomplished in a straightforward manner in fixed wireless
systems and time-division-duplex (TDD) systems. In other sys-
tems, it can be accomplished through the use of beacon signals,
periodically transmitted from the broadcasting station (and typ-
ically embedded in the transmission). The receiving radios can
then feed back their CSI through a feedback channel. For the
purposes of this paper, we will assume that the design center
has perfect knowledge of the channel vectors, but extensions to
cases of imperfect knowledge are under development.

Problem is a quadratically constrained quadratic program-
ming (QCQP) problem, but unfortunately the constraints are not
convex.2 Nonconvexity, per se, does not mean that the problem is
difficult to solve; however, we have the following claim, whose
proof can be found in Appendix I.

Claim 1: The QoS problem is NP-hard.
The implication of Claim 1 is that if an algorithm could solve

an arbitrary instance of problem in polynomial time, it would
then be possible to solve a whole class of computationally very
difficult problems in polynomial time [4]. The current scientific
consensus indicates that this is unlikely.

A. Review of Pertinent Prior Art

The above problem is reminiscent of some closely related
problems. For , the optimum is a matched filter. When
the scaled channel vectors span a ball or ellipsoid about a
“nominal” channel vector,3 the problem can be transformed ex-
actly into a second-order cone program, and hence can be ef-
ficiently solved [13]. Unfortunately, this transformation cannot
be employed in the case of finitely many channel vectors (in-
tended receivers).

Another closely related work is that in [1] (and references
therein), which considers the problem of multiuser transmit
beamforming for the cellular downlink. The key difference be-
tween [1] and our formulation is that the authors of [1] consider
the transmission of independent information to each of the
downlink users, whereas we focus on (common information)
multicast. The mathematical problems are not equivalent. A
fundamental difference is that our problem is NP-hard, whereas
the formulation in [1] can be efficiently solved. To further
appreciate the difference intuitively, we point out that in the
generic case of our formulation most of the SNR constraints
will be inactive at the optimum (i.e., most of the constraints will
be oversatisfied). Consider, for example, the case of two closely
located receivers with different SNR requirements: one of the
two associated constraints will be oversatisfied at the optimum.
On the other hand, it is proven in [1] that in the formulation of
[1] the constraints are always met with equality at the optimum.
The important common denominator of our work and [1] is the
use of semidefinite programming tools.

2This is easy to see for N = 1, in which case each constraint requires that
the magnitude of w be greater than a constant.

3This implies a continuum of intended receivers.
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Transmit beamforming for the dissemination of common in-
formation to multiple users has been considered in the Ph.D.
dissertation of Lopez [7, ch. 5]. Lopez proposed maximizing
the sum of received SNRs, which is equivalent to maximizing
the average SNR over all users. This formulation leads to a prin-
cipal component computational problem for the optimum beam-
former, which is relatively simple to solve. The drawback is that
quality of service cannot be guaranteed to all users in this way.
This is important, because the weakest user link determines the
common information rate. Still, the work of Lopez is the closest
in spirit to ours, and for this reason we will include the max-
imum average SNR approach in our performance evaluations in
Section VIII (see Table V).

III. RELAXATION

Toward solving our problem, we first recast it as follows:

subject to:

where we have used the fact that
, and we have de-

fined . Now consider the following reformulation
of the problem:

subject to:

where now is an complex matrix, and the inequality
means that the matrix is symmetric positive semidef-

inite. Note that, in the above equivalent formulation of our
problem, the cost function is linear in ; the trace constraints
are linear inequalities in , and the set of symmetric positive
semidefinite matrices is convex; however, the rank constraint
on is not convex.4 The important observation is that the
above problem is in a form suitable for semidefinite relaxation
(SDR) (see, e.g., [9] and references therein); that is, dropping
the rank-one constraint, one obtains the relaxed problem

subject to: and

which is a semidefinite programming problem (SDP), albeit not
yet in standard form. In order to put it in standard form, we add

“slack” variables , , one for each trace
constraint. In this way, we obtain the program

s.t.:

and

4The sum of two rank-one matrices has generic rank two.

which is now expressed in a standard form used by SDP solvers,
such as SeDuMi [11]. Here, is the identity matrix of size

.
SDP problems can be efficiently solved using interior point

methods, at a complexity cost that is at most
and is usually much less. SeDuMi [11] is a MATLAB imple-
mentation of modern interior point methods for SDP that is par-
ticularly efficient for up to moderate-sized problems, as is the
case in our context. Typical run times for realistic choices of
and are under 1/10 s, on a typical personal computer.

IV. ALGORITHM

Due to the relaxation, the matrix obtained by solving
the SDP in Problem will not be rank one in general. If it
is, then its principal component will be the optimal solution
to the original problem. If not, then is a lower
bound on the power needed to satisfy the constraints. This
comes from the fact that we have removed one of the orig-
inal problem’s constraints. Researchers in optimization have
recently developed ways of generating good solutions to the
original problem, , from , [9], [12], [15]. This process
is based on randomization: using to generate a set of
candidate weight vectors, , from which the “best” solution
will be selected. We consider three methods for generating the

’s, which have been designed so that their computational
cost is negligible compared to that of computing . (For
consistency, the principal component is also included in the set
of candidates.) In the first method (randA), we calculate the
eigen-decomposition of and choose such
that , where the elements of are independent
random variables, uniformly distributed on the unit circle in
the complex plane; i.e., , where the are inde-
pendent and uniformly distributed on . This ensures that

, irrespective of the particular realization
of . In the second method (randB), inspired by Tseng [12],
we choose such that , which ensures
that . The third method (randC), motivated
by successful applications in related QCQP problems [8], uses

, where is a vector of zero-mean, unit-vari-
ance complex circularly symmetric uncorrelated Gaussian
random variables. This ensures that [8].

For both randA and randB, , and
hence when , at least one of the constraints

will be violated.5 However, a feasible weight
vector can be found by simply scaling so that all the con-
straints are satisfied. Under randC, depends on the
particular realization of , but again the resulting can be
scaled to the minimum length necessary to satisfy the con-
straints. The “best” of these randomly generated weight vectors
is the one that requires the smallest scaling. For convenience,
we have summarized the algorithm in Table I, which includes a
simple MATLAB interface to SeDuMi [11] for the solution of
the semidefinite relaxation, . We point out that we have not
yet been able to obtain theoretical a priori bounds on the extent

5Recall that because of the relaxation, trace(X ) is a lower bound on the
energy of the optimal weight vector for the original problem.
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TABLE I
BROADCAST QoS BEAMFORMING VIA SDR: ALGORITHM

of the suboptimality of solutions generated in this way, but our
simulation results are quite encouraging.

V. MAX–MIN FAIR BEAMFORMING

We now consider the related problem of maximizing the min-
imum received SNR over all receivers, subject to a bound on the
transmitted power. That is

subject to:

It is easy to see that the constraint in problem should be met
with equality at an optimum, for otherwise could be scaled up,
thereby improving the objective and contradicting optimality.
Thus, we can focus on the equality-constrained problem. With
a scaling of the optimization variable , the equality-
constrained problem can be equivalently written as

subject to:

It is clear that is immaterial with respect to optimization;
the solution scales up with , while the optimum value
scales up with . We will denote an instance of problem
as . Let be a solution to ,

and the associated minimum transmitted power. Consider

, that is

subject to:

and let denote an optimal solution. Since already attains

, , it follows that , . Hence,
also satisfies the constraints of the QoS formulation, and at the
same power as . It follows that is equivalent to . This
shows Claim 2.

Claim 2: is equivalent to up
to scaling. In the special case that , , we have

that , , and hence

is equivalent to up to scaling.
Corollary 1: One way to solve the max–min fair

problem is to solve the QoS problem

, then scale the resulting solution to the desired

power . Conversely, scaling the solution of

yields a solution to , even in the case of unequal
.

Remark 2: It is important not to lose sight of the fact
that is not equivalent up to scaling to

when the ’s are unequal. This can be intu-
itively appreciated by noting that the max–min fair formulation
aims to maximize the minimum received SNR, without regard
to the individual SNR constraints. The QoS formulation, on the
other hand, explicitly guarantees the prescribed minimum SNR
level at each node.

From the above, and Claim 1, Claim 3 follows.
Claim 3: The max-min fair problem is NP-hard.
If the QoS problem could be solved exactly, there would have

been no need for a separate algorithm for the max–min fair
problem. However, we can only solve the QoS problem ap-
proximately (cf., randomization postprocessing of the gener-
ally higher rank solution). Due to this, it is of interest to de-
velop a customized SDR algorithm directly for the max–min fair
problem. Using the fact that ,
and defining , we recast the max–min fair
problem as follows:

subject to:

Dropping the rank constraint, we obtain the relaxation

subject to:

Introducing an additional variable, , this relaxation can be
equivalently written as

subject to:
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TABLE II
BROADCAST MAX–MIN BEAMFORMING VIA SDR: ALGORITHM

Further introducing nonnegative real slack variables, one
for each inequality constraint, we convert the problem to an
equivalent one involving only equality, nonnegativity, and pos-
itive-semidefinite constraints

subject to:

This problem is formatted for direct solution via SeDuMi
[11]. Table II provides a suitable MATLAB interface for
solving this relaxation. Postprocessing of the solution of the
relaxed problem to approximate the solution of the original
max–min-fair problem can be accomplished using randA,
randB, and randC, but the selection criterion is different (see
Table II).

In closing this section, we would like to point out connections
between problems and and the problem of maximizing
the common mutual information of the (nondegraded) Gaussian
broadcast channel in which the transmitter has antennas and
each of the (noncooperative) receivers has a single antenna.
If denotes the covariance of the transmitted signal, then the
maximum achievable common information rate (in the sense of
Shannon) can be written as (see, e.g., [6] and references therein)

Alternatively, we can rewrite this max–min problem as

subject to

By the monotonicity of the “log” function, the above problem
is further equivalent to

subject to

in the sense that they yield the same optimal transmit covariance
matrix . The latter problem is identical to problem . In
other words, the semidefinite relaxation of problem actually
yields a transmit covariance matrix that achieves the maximum
common information rate . In a similar manner, we can argue
that the rank-one transmit covariance matrix obtained from
problem achieves the maximum common information rate
under the restriction that beamforming is employed. However,
the latter rate can be significantly lower than for a large
number of users [6]. Nonetheless, from a practical perspective,
beamforming is attractive because it is simple to implement,6

requiring only a single standard additive white Gaussian noise
(AWGN) channel encoder and decoder. In contrast, achieving
the maximum common information rate in general requires
higher rank transmit covariance matrix . In that case, a
weighted sum of multiple independent signals is transmitted
from each antenna, with each independent signal requiring
a separate AWGN channel encoder and decoder. Hence, the
beamforming strategy considered in this paper trades off a
potential reduction in the maximum common information rate
for implementation simplicity.

VI. CASE OF FREQUENCY-SELECTIVE MULTIPATH

Although we have focused our attention so far on fre-
quency-flat fading channels, the situation is quite similar in
the case of spatial beamforming7 for common information
transmission over frequency-selective (intersymbol interfer-
ence) channels. Let denote the th vector tap of
the baseband-equivalent discrete-time impulse response of the
multipath channel between the transmitter antenna array and

6A properly weighted common temporal signal is transmitted from each an-
tenna.

7It is perhaps worth emphasizing that, while space–time precoding would
generally be preferable from a performance point of view when the channels
are time dispersive, we (continue to) consider spatial beamforming only in this
section. This is motivated from a complexity point of view. Space–time multi-
cast precoding is an interesting topic for future research.
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the (single) receive antenna of receiver . Assume that delay
spread is limited8 to nonzero vector channel taps. Define the
channel matrix for the th receiver as

Beamforming the transmit array with a fixed (time-invariant)
yields a scalar equivalent channel from the viewpoint of

the th receiver, whose scalar taps are given by

or, in vector form

Now, if a Viterbi equalizer is used for sequence estimation at the
receiver, then the parameter that determines performance is [3]

where now and is generally of higher rank
than before, but otherwise things remain conceptually the
same. In particular, the relaxations and and the algo-
rithms in Tables I and II can be employed as they were in the
frequency-flat case—only the definition of the input matrices
changes.

VII. INSIGHTS AFFORDED VIA DUALITY

Let us return to our original problem , as follows:

subject to:

We will now gain some insight into the quality of the so-
lution generated by the semidefinite relaxation of using
bounds obtained from duality. For convenience, we first con-
vert the problem to real-valued form; this yields a
vector of real variables , and
the ’s are now symmetric matrices of rank 2:

, where

and . Problem can then be
rewritten as

subject to:

The Lagrangian of problem is [2]

and the dual problem is

8or, essentially limited; the remaining taps can be treated as interference.

where denotes . If the symmetric matrix
has a negative eigenvalue, then it is easy to see that

the quadratic term in is unbounded from below (e.g.,
choose proportional to the corresponding eigenvector). If, on
the other hand, all eigenvalues are greater than or equal to zero,
then the said matrix is positive semidefinite and the minimum
over is attained, e.g., at . This yields the following
equivalent of the dual problem:

subject to:

which is a semidefinite program.
The dual problem is interesting, because the maximum of the

dual problem is a lower bound on the minimum of the original
(primal) problem [2]. The dual problem is convex by virtue of its
definition, however the particular dual studied above is special
in the sense that optimization over for a given can be carried
out analytically, and the residual -optimization problem is an
SDP. This means that we can solve the dual problem and thus
obtain the tightest bound obtainable via duality. This duality-de-
rived bound can be compared to the SDR bound we used ear-
lier. Let denote the dual of a given optimization problem,
and let denote the semidefinite relaxation of , obtained
by dropping the associated rank-one constraint. Furthermore, let

denote the optimal value of a given optimization problem.
Theorem 1: [14, pp. 403–404] and

.
More specifically, Theorem 1 states that the dual of the dual

of is the SDR of and that the optimal objective value of the
SDR of is the same as the optimal objective value of the dual
of . Hence, SDR yields the same lower bound on the optimal
value of as that obtained from duality, and the associated gap
between this bound and the optimal value is equal to the duality
gap.

Theorem 1 along with Claim 2 directly yield the following
corollary for the max–min-fair problem .

Corollary 2: and
.

VIII. SIMULATION RESULTS

An appropriate figure of merit for the performance of the pro-
posed algorithm for the QoS beamforming problem would
be the ratio of the minimum transmitted power achieved by the
proposed algorithm and , the transmitted power achieved
by the (true) optimal solution. Unfortunately, problem is
NP-hard, and thus can be difficult to compute. However,
we can replace in the figure of merit by the lower bound
obtained from the SDR; i.e., . If
we let denote the sequence of candidate weight vectors
generated via randomization, and denote the minimally
scaled version of that satisfies the constraints of problem

, then a meaningful and easily computable figure of merit is
. We will call this ratio the upper
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TABLE III
MC SIMULATION RESULTS FOR QoS BEAMFORMING: MEAN

AND STANDARD DEVIATION OF UPPER BOUND ON POWER BOOST.
EACH ELEMENT OF h IS i.i.d. WITH A CIRCULARLY SYMMETRIC

COMPLEX GAUSSIAN (RAYLEIGH) DISTRIBUTION OF VARIANCE 1.
ALL THREE RANDOMIZATION TECHNIQUES (randA, randB,

randC) ARE USED IN PARALLEL, FOR 1000
RANDOMIZATIONS EACH. � � = 1, 8i

TABLE IV
MC SIMULATION RESULTS FOR QoS BEAMFORMING: MEAN AND

STANDARD DEVIATION OF UPPER BOUND ON POWER BOOST. HERE,
THE NUMBER OF POST-SDR randomizations = 30 NM . REMAINING

PARAMETERS ARE AS IN TABLE III

bound on the power boost required to satisfy the constraints. If
our algorithm achieves a power boost of , then the transmitted
power is guaranteed to be within a factor of that of the optimal
solution and will often be closer.

A. Rayleigh Fading Wireless Channels

We consider the standard independent and identically dis-
tributed (i.i.d.) Rayleigh fading model described in the caption
of Table III. That table summarizes the results obtained using
the direct QoS relaxation algorithm in Table I ( ,

) with all three randomization options (randA, randB, and
randC) employed in parallel, for a fixed number of 1000 ran-
domization samples each. Table IV summarizes results for the
same scenario, except that 30 randomization samples are
drawn for each randomization strategy—thus the number of ran-
domizations grows linearly in the problem size. Note that, in
many cases, our solutions are within 3–4 dB from the (gener-
ally optimistic) lower bound on transmitted power provided by
SDR, and thus are guaranteed to be at most 3–4 dB away from
optimal; this is often good enough from an engineering perspec-
tive. Comparing the corresponding entries in Tables III and IV,
it is evident that switching from 1000 to 30 randomiza-
tions per channel realization only yields a minor performance
improvement in the cases considered.

Table V summarizes our simulation results for max–min fair
beamforming, using the direct algorithm in Table II ( ,

, ). Table V presents Monte Carlo averages for the
upper bound on the minimum SNR (the optimum attained

TABLE V
MC SIMULATION RESULTS FOR MAX–MIN FAIR BEAMFORMING: AVERAGES

FOR THE UPPER BOUND ON min SNR , THE RELAXATION-ATTAINED

min SNR , THE min SNR ATTAINED BY MAXIMIZING AVERAGE

SNR (ACROSS USERS), AND THE min SNR FOR THE CASE OF NO

BEAMFORMING. THE RESULTS ARE AVERAGED OVER 1000
MONTE CARLO (MC) RUNS. FOR EACH MC RUN, THE

ELEMENTS OF h ARE INDEPENDENTLY REDRAWN FROM

A CIRCULARLY SYMMETRIC COMPLEX GAUSSIAN

DISTRIBUTION OF VARIANCE 1. � = 1, 8i, P = 1.
ALL THREE RANDOMIZATION TECHNIQUES (randA,
randB, randC) ARE USED IN PARALLEL, FOR

30 NM RANDOMIZATIONS EACH

in problem ), the SDR-attained minimum SNR (after ran-
domization), the minimum SNR attained by the maximum
average SNR beamformer9 [7, ch. 5], and the minimum SNR
for the case of no beamforming. For the latter, we have used

, which fixes transmitted power to 1. Under
the i.i.d. Rayleigh fading assumption, this is equivalent to
selecting an arbitrary transmit antenna, allocating the entire
power budget to it, and shutting off all others. To see this,
note that the sum channel viewed by any
particular receiver will still be Rayleigh, of the same variance
as the elements of . For this reason, we can view the beam-
forming vector as corresponding to no
beamforming at all. All three randomization options (randA,
randB, and randC) were employed in parallel, for 30
samples each. It is satisfying to note that the SDR solution
attains a significant fraction of the (possibly unattainable) upper
bound. Furthermore, the SDR technique provides a substantial
improvement in the average minimum SNR relative to no
beamforming and to maximum average SNR beamforming [7,
ch. 5]. Like SDR, maximum average SNR beamforming uses
full CSI at the transmitter. However, it is generally not mean-
ingful to compare designs produced under different objectives.
Accordingly, the maximum average SNR beamforming results
in Table V are only meant to convey an idea of how much QoS
improvement SDR can provide over computationally simpler
solutions that also exploit full CSI.

We observe from Tables III–V, that as and/or increase,
the quality of the approximate solution drifts away from the re-
spective relaxation/duality bound. This could be due to a variety
of factors, or combination thereof. First, the relaxation bound
may become more optimistic at higher and/or —remember
that it is only a bound, not necessarily a tight bound. If this is
true, then the apparent degradation may in fact be much milder
in reality. Second, the number of randomizations required to at-
tain a quasi-optimal solution may increase faster than linearly
in the product . Third, the approximation quality of the

9This beamformer maximizes the average SNR for each channel matrix re-
alization (Monte Carlo run), where the average is taken over the users. The re-
sulting beamforming vector is also scaled to unit norm.
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Fig. 1. Broadcast beamforming example using algorithm in Table I.
Optimized beam pattern for N = 8-element transmit ULA (d=� = 1=2)
and M = 24 downlink users, in six clusters of four users each. Clusters
centered at [�51;�31;�11;11;31;51] with extent �2 . Channel vectors
are Vandermonde, of element modulus 1. � = � , 8i, � = 1=� ,
8i (here, � also models propagation loss, in addition to thermal noise).
Symmetric lobes appear due to the inherent ULA ambiguity. randA, #
post-SDR randomizations = 300. In this case, the solution is guaranteed to be
within 0.1% of the optimum.

method per se may degrade as the problem size grows. In a re-
lated, but distinct, problem the quality of the SDR approxima-
tion degrades logarithmically in the problem size [10].

B. Far-Field Beamforming for a Uniform Linear Transmit
Antenna Array

In several scenarios, the solutions generated by the SDR tech-
nique are essentially optimal. This is illustrated in Fig. 1, which
shows the optimized transmit beampattern for a particular far-
field multicasting scenario using a uniform linear antenna array
(ULA); the details of the simulation setup are included in the
figure caption for ease of reference.

C. Measured VDSL Channels

In this section, we test the performance of our algorithms
using measured VDSL channel data collected by France
Telecom R&D as part of the EU-FP6 U-BROAD project #
506 790.

Gigabit VDSL technology for very short twisted copper
loops (in the order of 100–500 m) is currently under devel-
opment in the context of fiber to the basement (FTTB) or
fiber to the curb/cabinet (FTTC) hybrid access solutions. Mul-
tiple-input multiple-output (MIMO) transmission modalities
are an important component of gigabit VDSL. These so-called
vectoring techniques rely on transmit precoding and/or mul-
tiuser detection to provide reliable communication at very
high transmission rates [5]. Transmit precoding is particularly
appealing when the targeted receivers are not physically co-lo-
cated, or when legacy equipment is being used at the receive

site. In both cases, multiuser detection is not feasible. In this
context, media streaming (e.g., news-feed, pay-per-view, or
video-conferencing) may involve multiple recipients in the
same binder.

Let denote the number of loops subscribing to a given mul-
ticast. With multicarrier transmission, each tone can be viewed
as a flat-fading MIMO channel with inputs and outputs,
plus noise and alien interference. The diagonal of the channel
matrix consists of samples of the direct [insertion loss (IL)]
channel frequency responses, while off-diagonal elements
are drawn from the corresponding FEXT channel frequency
responses. Due to the noncoherent combining of the self-FEXT
coupling coefficients, the useful signal power received at each
output terminal is reduced, even when all inputs are fed with the
same information-bearing signal. That is, the equivalent channel
tap at frequency is ,
where denotes the direct (insertion loss) channel, and

denotes a generic FEXT interference channel.
Conceptually, the scenario is very similar to the wireless sce-

nario considered earlier, but with two key differences: now
, and the channel matrix is diago-

nally dominated, because FEXT coupling is much weaker than
insertion loss. The question then is whether transmit precoding
can provide a meaningful benefit relative to simply ignoring
FEXT altogether.

We use IL and far-end FEXT measured data for S88 cable
comprising 14 quads, i.e., 28 loops. The length of the cable is
300 m. For each channel, a log-frequency sweeping scheme was
used to measure the I/Q components of the frequency response
from 10 kHz to 30 MHz, yielding 801 complex samples per
channel. Cubic spline complex interpolation was used to con-
vert these samples to a linear frequency scale. We consider 17

channel matrices, with 14, in the frequency range
21.5 to 30 MHz. Insertion loss drops between 40 and 45 dB
in this range of frequencies, while FEXT coupling is between

77 and 82 dB in the mean, with over 10-dB standard de-
viation and significant variation across frequency as well. For
each channel matrix, we apply our max–min-fair beamforming
algorithm with , , and . Fig. 2 shows the
resulting plots of minimum received signal power, the associ-
ated relaxation/duality bound, and the minimum received signal
power when no precoding is used. We observe that SDR can
almost double the minimum received signal power relative to
no precoding, and it often attains zero gap relative to the relax-
ation/duality bound. For shorter loops (e.g., 100 m), the situation
is even more in favor of SDR, because then FEXT resembles
near-end crosstalk (NEXT) and is relatively more pronounced.

D. Further Observations

1) Comparison of the Two Relaxations: We have shown
theoretically that the two problem formulations (QoS, , and
max–min-fair, ) are algorithmically equivalent, i.e., had we
had an optimal algorithm that provides the exact solution to
one, it could have also been used to obtain the exact solution to
the other. What we have instead is two generally approximate
algorithms, obtained by direct relaxation of the respective
problems. The link between the two formulations can still
be exploited. For example, we may obtain an approximate
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Fig. 2. Transmit precoding for VDSL multicasting.

Fig. 3. Comparison of direct and indirect solutions to the max–min-fair
problem.

solution to the max–min-fair problem by first running the QoS
algorithm in Table I with all the , then scaling the
resulting solution to the desired power level . Of course, we
can also use the direct relaxation of the max–min-fair problem
in Table II. Due to approximation, there is no a priori reason to
expect that the two solutions will be identical, even in the mean.

In order to address this issue, we have compared the two
strategies by means of Monte Carlo simulation. We chose

, , , , and , and ran both algo-
rithms for 300 i.i.d. Rayleigh fading channels. All three random-
izations (randA, randB, randC) were employed in parallel,
for 30 randomization samples each. For each channel, we
recorded the percent gap (100 times the gap over the relaxation
bound) of each algorithm. Fig. 3 shows a portion of the results,
along with the mean percent gap attained by each algorithm (av-
eraged over all 300 channels). By “direct” we refer to the algo-
rithm in Table II, whereas by “indirect, ” we refer to the algo-
rithm in Table I with all , followed by scaling.

Fig. 4. Percent gap outcomes for 300 real Gaussian channel realizations.

We observe that the mean percent gaps of the two algorithms
are virtually identical, and in fact most of the respective per-
cent gaps are very close on a sample-by-sample basis. How-
ever, there are instances wherein each algorithm is significantly
better than the other (over 10% difference in the gap). Two pro-
nounced cases are highlighted by arrows in Fig. 3. We conclude
that, while both approaches are equally effective on average, it
pays to use both, if possible, in certain cases.

2) On the Dependence of Gap Statistics on Channel Statis-
tics: We have seen that, for i.i.d. circular Gaussian (Rayleigh)
channel matrices, the gap between our relaxation–randomiza-
tion approximate solutions and the relaxation/duality bound
might not be insignificant. We have also seen cases wherein
the gap is very small, cf., the far-field uniform linear transmit
antenna array example, and a good proportion of the VDSL
channels tested earlier.

It is evident that the gap statistics depend on the channel sta-
tistics. Interestingly, the gap statistics are far more favorable for
real (as opposed to complex circular) i.i.d. Gaussian channels.
This is illustrated in Fig. 4, using the QoS algorithm in Table I
for , , , , and 300 real i.i.d.
Gaussian channels. All three randomizations (randA, randB,
randC) are employed in parallel, for 30 randomization
samples each. For each channel, we recorded the percent gap
(100 times the gap over the relaxation bound) of the algorithm
in Table I. Observe that for about 95% of the channels the per-
cent gap is down to numerical accuracy in this case. Contrast
this situation with Fig. 5, which shows the respective results for
complex circular Gaussian channel matrices—the difference is
remarkable.

There are other cases where we have observed that the relax-
ation approach operates close to zero gap. One somewhat con-
trived case is when the real and imaginary parts of the channel
coefficients are nonnegative. This is illustrated in Fig. 6, where it
is worth noting that the scaling of the axis is . In this case,
the gap hovers around numerical accuracy, without exhibiting
any bad runs at all for the 300 channel matrices considered.
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Fig. 5. Percent gap outcomes for 300 complex circular Gaussian (Rayleigh)
channel realizations.

Fig. 6. Percent gap outcomes for 300 channel realizations with positive real
and imaginary parts (uniformly distributed between 0 and 1). Note that the
scaling of the y axis is 10 .

In conclusion, the complex circular Gaussian channel case
appears to be the least favorable of the scenarios considered.

IX. CONCLUSION

We have taken a new look at the broadcasting/multicasting
problem when channel state information is available at the
transmitter. We have proposed two pertinent problem formula-
tions: minimizing transmitted power under multiple minimum
received power constraints, and maximizing the minimum
received power subject to a bound on the transmitted power. We
have shown that both formulations are NP-hard optimization
problems; however, their solution can often be well approxi-
mated using semidefinite relaxation tools. We have explored
the relationship between the two formulations and also insights

afforded by Lagrangian duality theory. In view of i) our ex-
tensive numerical experiments with simulated and measured
data, verifying that semidefinite relaxation consistently yields
good performance, ii) proof that the basic problem is NP-hard,
and thus approximation is unavoidable, and iii) corroborating
motivation provided by duality theory, we conclude that the
approximate solutions provided herein offer useful designs
across a broad range of applications.

It would be useful to analyze the duality gap for the problem
at hand, for this would yield a priori bounds on the degree of
suboptimality introduced by relaxation, as opposed to the a pos-
teriori bound that we now have by virtue of Theorem 1. Our nu-
merical results indicate that the degree of suboptimality is often
acceptable in our intended applications. In an effort to under-
stand the apparent success of the SDR approach (e.g., in the
case where the channel vectors have nonnegative real and imag-
inary parts), one can consider the following simple linearly con-
strained convex quadratic program (QP) restriction of the QoS
problem:

subject to: for all

Notice that the feasible region of this problem is a subset of that
of the original nonconvex (and NP-hard) QoS formulation .
Thus, , where and denote the minimum beam-
forming power obtained from optimal solutions of and ,
respectively. We have recently shown [16] that the gap between

and is never more than , where is the max-
imum phase spread across the different users measured at each
transmit antenna and is assumed to be less than . Notice that
the two cases where channel vectors i) are real and nonnegative
or ii) have nonnegative real and imaginary parts correspond to

and . Thus, provides an exact solution in
the first case and a factor of 2 approximation in the second case.
These results indicate that problem is well approximated by

if the phase spread is small.
There are many other interesting extensions to the algo-

rithms developed herein: e.g., robustness issues, and multiple
cochannel multicasting groups. These are subjects of ongoing
work and will be reported elsewhere. Furthermore, aside
from transmit beamforming/precoding, there are also more
traditional signal processing applications of the proposed
methodology. One is linear filter design, in particular, the de-
sign of a linear “batch” filter that responds to certain prescribed
frequencies in its input and attenuates all other frequencies. In
this setting, the vectors will be Vandermonde, with genera-
tors and . One may easily envision scenarios
wherein such a problem formulation can be appropriate:
radio-astronomy applications, frequency-diversity combining,
and frequency-hopping communications. The context can
be further generalized: design a linear filter that responds to
prescribed but otherwise arbitrary signals in its input, while
attenuating all else.
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APPENDIX I
PROOF OF CLAIM 1

Before dealing with Claim 1 directly, we first consider the
following restriction of the QoS problem : the case when all

are real, and optimization is over . We will show that10

subject to:

contains

subject to:

as a special case and that problem is at least as hard as the
following problem:

Partition Problem : Given integers , do
there exist binary variables , such that

?
This is known to be NP-complete [4].
It is easy to check that the optimal value of problem is equal

to if and only if the answer to problem is affirmative. Thus,
solving problem is at least as hard as solving problem .

To show that problem contains problem (i.e., an arbi-
trary instance of problem can be posed as a special instance
of problem ), note that can be written as ,
where and contains one in the th posi-
tion and zeros elsewhere. Furthermore

where , and . The matrix
is positive definite. Let , and . Then

, , and can be written
as , or, with , as

. This shows that an arbitrary instance of problem can be
transformed to a special instance of problem (with ).
Thus, is at least as hard as , which is at least as hard as the
partition problem.

Proof of Claim 1: The QoS Problem is NP-hard: Con-
sider the problem

subject to: (1)

Define the matrix , and the
vector , with . Consider the case that ,

10We henceforth use h to denote possibly scaled channel vectors, dropping
the tilde for brevity.

and is full row-rank . Then , where
denotes the right pseudoinverse of , and the

problem in (1) is equivalent to

subject to: (2)

where , a positive semidefinite matrix of
rank ; and denotes the th element of the vector .
We will show that problem (2) is NP-hard in general. To this
end, we consider a reduction from the NP-complete partition
problem [4]; i.e., given , decide
whether or not a subset, say , of exists, such that

(3)

Let and let the complex-valued decision vector be

Let us denote

where denotes the length- vector of ones, and is the
length- vector of zeros.

Next we show that a partition satisfying (3) exists if and
only if the optimization problem (2) has a minimum value of

. In other words, the existence of is equivalent to the fact
that there is such that and , for
all . Since

it follows that

for all

is equivalent to

for all

The latter gives rise to a set of linear equations

(4)

(5)
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The ’s are all constrained to be on the unit circle; thus let
for . Using (4), we have

(6)

(7)

where . These two equations imply that
for all . This, in particular, means that

for , implying that

Therefore, (5) is satisfied if and only if

with for all , and thus
, which is equivalent to the existence

of a partition of such that (3) holds. In fact, we
can imply take .
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