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A Semidefinite Relaxation Approach to MIMO
Detection for High-Order QAM Constellations

Nicholas D. Sidiropoulos and Zhi-Quan Luo

Abstract—A new and conceptually simple semidefinite relax-
ation approach is proposed for MIMO detection in communication
systems employing high-order QAM constellations. The new ap-
proach affords improved detection performance compared to
existing solutions of comparable worst-case complexity order,
which is nearly cubic in the dimension of the transmitted symbol
vector and independent of the constellation order for uniform
QAM, or affine in the constellation order for nonuniform QAM.

Index Terms—High-order QAM, integer least squares, lattice
search, multiple-input multiple-output (MIMO) detection, multi-
user detection, semidefinite programming, semidefinite relaxation
(SDR).

1. INTRODUCTION

AXIMUM-LIKELIHOOD (ML) detection in memory-
less multiple-input multiple-output (MIMO) commu-
nication systems with Gaussian noise is equivalent to a least-
squares lattice search problem that is NP-hard. For this reason,
several computationally efficient approximate solutions have
been developed. The current state-of-the-art includes two main
families of high-performance MIMO detectors: those based on
sphere decoding (SD) [1], [2], [11], [12], [14] and those based
on semidefinite relaxation (SDR) [5]-[7], [13]. SD detectors
can provide the exact ML solution at low computational cost,
provided that the signal-to-noise ratio (SNR) is relatively high,
and the aggregate transmission rate is relatively low. However,
SD cannot efficiently handle high problem dimensions (long
symbol vectors) or high-order symbol constellations, especially
at low SNR, and it has recently been shown that its expected
complexity is exponential [4], under certain conditions that
are relatively mild and general in our context. Worst-case
complexity of computing the exact ML solution is generically
exponential, due to NP-hardness.
In contrast, SDR approaches feature polynomial worst-case
complexity and very competitive performance. Initially, SDR
multiuser/MIMO detection was developed for binary phase-
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shift keying (BPSK) constellations, but the ideas were later ex-
tended to M-PSK [5]-[7] and, very recently, to 16-quadrature
amplitude modulation (16-QAM) [13] and general QAM con-
stellations [8]. While [13] deals exclusively with 16-QAM, the
approach can, in principle, be extended to higher-order QAM
alphabets. This, however, entails the introduction of additional
slack variables, and complexity becomes O (K55 N6-2), where
N = O(M), M is the number of symbols, and K is the square
root of the order of the constellation. The idea in [13] is fruitful
for 16-QAM but impractical for higher orders. Likewise, the
complexity of the methods in [8] ranges from O(K%°N*%) to
O(K6'5N6'5).

In this letter, we propose a different, O(N 3'5) relaxation for
high-order QAM alphabets. Our approach can be viewed as fur-
ther relaxation of [13], only utilizing upper and lower bounds
on the symbol energy in the relaxation step. The key features of
our approach are that 1) it provides significant performance im-
provements relative to existing solutions of comparable worst-
case complexity order; and 2) its complexity is independent of
the constellation order for uniform QAM and affine in the con-
stellation order for nonuniform QAM. For BPSK and 4-QAM,
our approach reduces to the one in [7].

II. PROBLEM STATEMENT AND PRELIMINARIES

For any separable QAM constellation,! ML detection in
memoryless MIMO communication systems with Gaussian
noise can be formulated as the following optimization problem
(possibly after noise prewhitening):

min ||d — Ms|[3 (1
subject to : Re {s(7)} € Arear, Im {s(7)} € Aimag, Vi. (2)

For brevity of exposition, we will assume that A,ca1 = Aimag =
A in the sequel, although our approach generalizes trivially to
different alphabets for the real and imaginary parts. We thus
consider

min ||d — Ms||3 3)
subject to : Re {s(i)} € A,Im {s(7)} € A, Vi 4)
where d is the complex baseband received vector, M is a known

baseband-equivalent channel matrix, and s is the symbol vector.
Upon defining

7= [Re{d}TIm{d}T]T )

ISeparable constellations are almost always adopted for ease of decoding,
even in the single-input single-output case.
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| Re{fM} -Im{M}
H=110M}  Re{M} ©
r:.= [Re{s}TIm{s}T]T (7

we may convert the problem to real-valued form

min ||z — Hr|3 8)
subject to : r(7) € A, Vi. )

III. PROPOSED SOLUTION

Assume that .4 is symmetric about the origin (always the case
for QAM constellations). In this case, if r satisfies the finite
alphabet constraints in (9), then so does tr, for ¢t € {—1,1}.
Furthermore

|z — Hr||3 = rTH Hr — 227Hr + 27z (10)
It follows that the minimization in (8) subject to (9) is equivalent
to

min(rTHTHr — 227 Htr) (11)
subjectto : r(i) € A, Vi, t € {-1,1}. (12)
Further defining x := [rT #]7 € RN and
H'H -H'z
Q:= |:_ZTH 0} (13)

the minimization of (11) subject to (12) can be put in homoge-
neous quadratic form

minx” Qx (14)
subjectto : x(i) € A,Vie {1,.---,N — 1}
x(N) € {—1,1}. (15)

Using x”Qx = Trace(x” Qx) = Trace(Qxx"), and de-
noting X := xx', we can equivalently rewrite the minimiza-
tion in (14) under (15) as

min Trace(QX) (16)
subjectto : X > 0, rank(X) =1, (17)
X(i,i) € A%, Vi€ {1,---,N —1},X(N,N) =1 (18)

where A2 contains the squared alphabet values. Problem
(16)—(18) entails nonconvex constraints: the rank(X) = 1
constraint, as well as the finite (squared) alphabet con-
straints X (i,4) € A% Vi € {1,---,N — 1}. Dropping the
rank-one constraint, and relaxing the constraints X (i,4) € A2,

Vi € {1,---,N — 1} to the convex half-space constraints
L := mingeqa® < X(iyi) < maxgeqa® =: U,
Vi € {1,---,N — 1}, we obtain the following convex re-
laxation:

min Trace(QX) (19)

subjectto: X > 0 (20)
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L<X(,i1) <UVie{l,---,N -1}
X(N,N)=1. 21

Note that (19)-(21) is not a Lagrangian relaxation of
(16)—(18), because, in addition to the rank-one constraint, we
have relaxed the alphabet constraints. This means that the bi-
dual interpretation does not hold for our relaxation in (19)—(21).
For a bi-dual relaxation, see [13]. Our proposed relaxation in
(19)—(21) can be viewed as further relaxation of [13], and it
affords lower complexity for large |.A| compared to [13].

The relaxed problem in (19)—(21) can be solved using any of
the available modern SDP solvers, such as SeDuMi [10], based
on interior point methods. After this step, an approximate so-
lution to the original problem can be generated using Gaussian
randomization: that is, drawing random vectors x ~ N(0,X,),
where X,, denotes the solution of (19)—(21), quantizing each el-
ement of x to the nearest point in A, reconstructing s from the
quantized x, and picking the s that yields the smallest costin (3).

A. Complexity

The worst-case complexity of solving a generic SDP problem
involving a matrix variable of size N x N and O(N) linear con-
straints is O(N%-3). That would imply a complexity of O(N¢-5)
for problem (19)—(21). However, exploiting the fact that the con-
straints in (21) are separable and only apply to the diagonal ele-
ments of X, that figure can be reduced to O(N3-3), which is very
competitive (N = 2M + 1, where M is the number of QAM
symbols). The complexity of the randomization step is O(N?)
per draw. We emphasize that, unlike [13], the complexity of the
overall algorithm is independent of the constellation order for
uniform QAM and affine in the constellation order for nonuni-
form QAM. This is because the quantization step in the random-
ization loop amounts to simple scaling and rounding for uniform
constellations but may require a linear search for nonuniform
constellations.

IV. SIMULATIONS

We conducted Monte Carlo (MC) simulation experiments for
two indicative MIMO transmission scenarios: a 16 x 16 system
using 64-QAM and an 8 x 8 system using 16-QAM. In both
cases, the channel matrix comprised i.i.d. elements drawn from
a circularly symmetric zero-mean complex normal distribution
of unit variance (CA/(0, 1)), and a new channel realization was
drawn for each vector transmission (MC trial). The SNR is de-
fined as SNR := 10log; (M E,/N,), where M is the length of
the transmitted QAM symbol vector s, F is the mean symbol
energy of the QAM constellation, and the noise vector is i.i.d.
CN(0, N,).

In order to gauge performance as a function of the number
of randomizations, we tested our SDR algorithm with 100,
300, and 1000 randomization samples per decoded vector. As
baselines for comparison, we employed 1) the Schnor—Euchner
variant of SD (SE-SD) with an infinite radius so that the optimal
solution is always obtained and 2) two commonly used sub-
optimal solutions of complexity O(M?): the quantized output
of the zero-forcing linear receiver (QZF) and the (nonlinear)
block MMSE-DFE (BMMSE-DFE) [3], [9]. Two performance
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Fig. 1. SER versus SNR: 16 X 16 system, 64-QAM symbols.
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Fig. 2. Worst-case execution time versus SNR: 16 x 16 system, 64-QAM
symbols.

metrics were used: symbol error rate (SER) and worst-case ex-
ecution? time. SE-SD was implemented as a Matlab executable
(mex) compiled from optimized C code; SDR was implemented
using the general-purpose SeDuMi toolbox [10]. As a result, ex-
ecution time estimates are somewhat biased in favor of SE-SD.
The reason for using a measure of worst-case (as opposed to
average) complexity is that in online applications, we have to
decode within a specified time, and bad channels do happen
with positive probability. The choice between execution time
or number of floating point operations is debatable, especially
because SE-SD was implemented in mex/C; however, we are
interested in order-of-magnitude estimates, and differences in
execution time are easier to appreciate.

Figs. 1 and 2 show the SER versus SNR and worst-case ex-
ecution time versus SNR, respectively, for the 16 x 16 system
using 64-QAM (6416 ~ 8 x 10?®). From Fig. 2, itis evident that
SE-SD is too complex for this configuration; very long runs are

20n an Intel Centrino 1.6-GHz system, with 512M RAM.
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Fig. 3. SER versus SNR: 8 X 8 system, 16-QAM symbols.

gsymbols, 16-QAM, 8 x 8 iid CN(0,1) channel, MC=1000, new channel per MC

10 T T T
s
[$3
g
s ¢ 7
Qo
£
>
2]
B i
'8 N
8 1074
o
g —o&— SE-SD
B LR —A— SDR/100
S —p— SDR/300
§ -------- —<— SDR/1000
g —*— QZF

—&— BMMSE-DFE
10 ~ T W\%
5 10 15 20 25 30
SNR, in dB

Fig. 4. Worst-case execution time versus SNR: 8 X 8 system, 16-QAM
symbols.

actually not atypical. Due to this, Fig. 2 actually shows a lower
bound on the worst-case execution time of SE-SD, computed
from far fewer realizations. The associated SER cannot be esti-
mated in reasonable time and is therefore not reported in Fig. 1.
SDR provides a performance improvement of up to 7.5 dB over
BMMSE-DEFE. Note that the worst-case complexity of SDR is
essentially independent of SNR. In fact, the point-wise com-
plexity of SDR is very stable and predictable for any problem
realization. This is good at low to moderate SNR but a drawback
at high SNR, where the detection problem becomes easier. Also
note that the number of randomization samples used in SDR
does not affect the grosso modo complexity order, as expected,
and a moderate number of randomizations is sufficient.

Figs. 3 and 4 show corresponding results for the 8 x 8 system
using 16-QAM (16% ~ 4.3 x 10%). Notice that, in this (far) sim-
pler scenario, SE-SD is much more efficient computationally
than SDR, and it always yields the exact ML solution. SDR is
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up to 7.5 dB away from SE-SD, at a uniformly higher computa-
tional cost across the range of SNR of interest. It clearly makes
no sense to use SDR in this case.

Summarizing, the SD family of detectors exhibits a threshold
behavior: it either works very well (for low-enough symbol
vector dimension, order of the individual symbol constella-
tion, and high-enough SNR) or it “freezes.” The threshold
between the two regimes depends on a combination of these
three factors. When SD works, it outperforms SDR in terms of
complexity and SER performance. In difficult scenarios, SDR
offers an attractive alternative relative to earlier solutions.

V. CONCLUSIONS

We have proposed a new SDR approach for MIMO detec-
tion of high-order QAM constellations. The new approach is the
simplest one in the class of SDR detectors for high-order QAM:
its worst-case complexity is nearly cubic in the dimension of
the transmitted symbol vector and independent of the constella-
tion order for uniform QAM/affine in the constellation order for
nonuniform QAM. Under certain conditions, the new approach
affords significant improvements in SER over prior methods.
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