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Abstract—The problem of transmit beamforming to multiple
cochannel multicast groups is considered for the important special
case when the channel vectors are Vandermonde. This arises when
a uniform linear antenna antenna (ULA) array is used at the
transmitter under far-field line-of-sight propagation conditions,
as provisioned in 802.16e and related wireless backhaul scenarios.
Two design approaches are pursued: i) minimizing the total trans-
mitted power subject to providing at least a prescribed received
signal-to-interference-plus-noise-ratio (SINR) to each intended
receiver; and ii) maximizing the minimum received SINR under
a total transmit power budget. Whereas these problems have
been recently shown to be NP-hard, in general, it is proven here
that for Vandermonde channel vectors, it is possible to recast
the optimization in terms of the autocorrelation sequences of the
sought beamvectors, yielding an equivalent convex reformulation.
This affords efficient optimal solution using modern interior point
methods. The optimal beamvectors can then be recovered using
spectral factorization. Robust extensions for the case of partial
channel state information, where the direction of each receiver is
known to lie in an interval, are also developed. Interestingly, these
also admit convex reformulation. The various optimal designs
are illustrated and contrasted in a suite of pertinent numerical
experiments.

Index Terms—Broadcasting, convex optimization, downlink
beamforming, multicasting, semidefinite relaxation.

Manuscript received October 23, 2006; revised February 1, 2007. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Eran Fishler. An earlier version of part of this work ap-
pears in conference form in the Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Toulouse, France, May
14-19, 2006, pp. 973-976. The work of E. Karipidis was supported in part by the
03ED918 research project, implemented within the framework of the Reinforce-
ment Programme of Human Research Manpower (PENED) and co-financed by
National and Community Funds (75% from the E.U.-European Social Fund and
25% from the Greek Ministry of Development-General Secretariat of Research
and Technology). The work of N. D. Sidiropoulos was supported in part by
the U.S. ARO under ERO Contract N62558-03-C-0012, and the EU under FP6
project WIP. The work of Z.-Q. Luo was supported in part by the National Sci-
ence Foundation, Grant No. DMS-0312416.

E. Karipidis and N. D. Sidiropoulos are with the Department of Electronic
and Computer Engineering, Technical University of Crete, 73100 Chania-Crete,
Greece (e-mail: karipidis @telecom.tuc.gr; nikos @telecom.tuc.gr).

Z.-Q. Luo is with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455 USA (e-mail: luozq@ece.
umn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2007.897903

I. INTRODUCTION

S network technology evolves towards seamless intercon-

nection and triple-play! services, multicasting techniques
become increasingly important in delivering batch updates
and streaming media content. Multicasting is a network layer
issue for wired and optical networks, where multicast routing
has received considerable attention, and associated tools (e.g.,
MBONE) have long been available for the Internet.

In recent years, there is a clear trend and emerging consensus
that wireless is the access method of choice for the last hop,
or even the last few hops. This is partially due to accessibility
and cost issues, but, perhaps more important, for ease of use
and mobility considerations. This is evident in the proliferation
of wireless local area and wireless backhaul solutions, in addi-
tion to the convergence of cellular phones and wireless-enabled
handheld computers.

Wireless is an inherently broadcast medium, thus opening
the door to multicasting at the physical layer, in addition to
multicast routing at the network layer. Access points nowa-
days are typically equipped with antenna arrays. Baseband
beamforming can be used to create suitable beampatterns to
serve multiple multicast groups simultaneously over the same
bandwidth. Physical-layer multicasting can yield significant
rate, energy, and latency advantages over network-layer multi-
cast routing, in which duplicate transmissions are unavoidable.
However, wireless multicasting requires some level of physical
channel state information (CSI) to be effective, and it obviously
cannot be employed over the optical or wired backbone. Thus,
physical-layer multicasting and network-layer multicast routing
are complementary techniques.

The first reference to consider the concept of physical-layer
multicasting was the Ph.D. dissertation of Lopez [2], who
posed the problem of designing a beamformer that maximizes
the average received signal power across a user population,
under a transmitted power constraint. The drawback of such
an approach is that it does not guarantee a minimum multicast
rate. The next step was taken in [3] and [4], which formulated
the problem of minimizing transmitted power under a received
signal power constraint for each of the users, as well as a fair
approach maximizing the smallest received signal power under
a transmitted power constraint. Surprisingly, both problems
were shown to be NP-hard in general; however, computation-
ally efficient approximate solutions were also developed, based
on semidefinite relaxation (SDR) ideas [3], [4].

ITriple-play is voice, Internet, video on-demand, video broadcasting/
multicasting.
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In follow-up work [5], [6], the general problem of simulta-
neously designing beamformers for several cochannel multicast
groups was considered under quality of service (QoS), i.e., min-
imum attained signal-to-interference-plus-noise ratio (SINR) at
each receiver, and max—min fair criteria. Again, these prob-
lems are NP-hard in general; however, computationally effi-
cient, high-quality approximate solutions can be derived using
SDR coupled with randomization and multicast power control.
Interestingly, in extensive numerical experiments, the resulting
algorithms were shown to attain close to optimal performance
for both simulated and measured channel data [6].

In [5] and [6], the multicast power control problem was recast
as a linear program and solved using interior-point methods.
Building on [4] and [5], iterative multicast power control
algorithms based on the concept of interference functions were
proposed in [7]. However, unlike [5] and [6], the multicast
power control algorithms in [7] do not converge when the
power control problem is infeasible, as it often happens during
randomization.

While both formulations are NP-hard in general, numerical
findings in [5] and [6] suggest that, for Vandermonde channel
vectors, exact solutions are often generated with remarkable
consistency. Vandermonde channel vectors arise when a uni-
form linear antenna array (ULA) is used at the transmitter under
far-field, line-of-sight propagation conditions. Such conditions
are quite realistic in wireless backhaul scenarios, such as the
line-of-sight mode of 802.16e. In this paper, we prove that, in-
deed, the aforementioned design problems are convex (and thus
“easy” to solve exactly) under such conditions. We also show
that the natural (Lagrange bi-dual) SDR of both problems is
tight for Vandermonde channel vectors. Furthermore, we depart
from the perfect CSI assumption and allow the user angles to
be known only within a certain tolerance. We formulate robust
design problems under both QoS and fair service criteria and
show that these too are convex problems that can be optimally
and efficiently solved using modern interior point methods. We
conclude the paper by providing several illustrative simulation
results for all algorithms considered.

II. QUALITY OF SERVICE MULTICAST BEAMFORMING

Consider a communication scenario where an access point
employing an antenna array of IV elements is used to feed con-
tent, simultaneously and over the same frequency channel, to M
single-antenna? receivers. Each receiver listens to a single mul-
ticast stream k € {1,...,G}, where 1 < G < M is the total
number of multicasts. Each multicast group, denoted by Gy, is
formed by the indexes of the participating receivers; these sets
are nonoverlapping and collectively contain all the users, i.e.,
GrNGe=0,0#k,and UG = {1,..., M}. Note that G = 1
corresponds to the case of (selective) broadcasting [4], whereas
G = M corresponds to the case of individual information trans-
mission to each receiver (the multiuser downlink problem; see,

e.g., [8]).
The channel from each transmit element to the receive
antenna of user ¢ € {1,..., M} is considered frequency-flat

quasi-static, and the N X 1 complex vector h; models the
respective propagation loss and phase shift. In the beamforming

2Single-antenna receives are assumed for brevity of exposition; our designs
can be generalized to account for multiantenna receivers.
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designs presented herein, optimization is performed with re-
spect to the N x 1 complex weight vectors { wk}kgzl, applied
to the transmit antenna elements to generate the spatial channel
for transmission to each multicast group. The temporal infor-
mation-bearing signal sj(t) directed to receivers in multicast
group k is assumed zero-mean, temporally white with unit
variance, and the waveforms {s;(¢)}$_; mutually uncorre-
lated. Then, the signal vector transmitted from the antenna
array is Z,?:l wisk(t), and the total radiated power is equal
0 25 1wl

The joint design of transmit beamformers can be posed as
the QoS problem of minimizing the total radiated power subject
to meeting prescribed SINR constraints ~y; at each of the M
intended mobile receivers

Q:
. G 2
min Wi
(i, k; Iwell2
Hy |2
s.t.: |Wk hz|2 > i
Z |wfhi| +0i2
0k
Vie G, VEkLe{l,...,G}.

Problem Q was considered in [5] and [6], where it was found to
be NP-hard for general channel vectors, based on arguments in
earlier work [4]. Therefore, a two-step approach was proposed
and shown to yield high-quality approximate solutions at man-
ageable complexity cost. In the first step, the original nonconvex
quadratically constrained quadratic programming problem Q
is relaxed to a suitable semidefinite program (SDP). This re-
laxation can be interpreted and motivated [9] as the Lagrange
bi-dual of Q and also derived by changing the optimization vari-
ables to {Xj, := wywi }le and dropping the associated non-
convex constraints {rank(Xy) = 1},?:1. Using Q; := h;h#
and introducing M real nonnegative “slack” variables { st}f\il,
the resulting relaxation is

Q-

5 tr(Xy)

min
{XpeCNxNYd  {s;eR}M | =1
s.t.: tI‘(QiXk) — Y% Z tI‘(QiX[) — 8§ = ’71'01-2
iZk
Vie g, Vk,Le{l,...,G},
$; >0Vie{l,...,M},
Xy =0Vked{l,...,G}

where tr() denotes the trace operator. In the second step, a ran-
domization procedure is employed to generate candidate beam-
forming vectors from the solution of Q,. For each candidate
set of vectors, a multigroup power control linear programming
problem is solved to ensure that the constraints of the original
problem Q are met. The final solution is the set of feasible beam-
forming vectors yielding the smallest power control objective.
The overall complexity of the algorithm is manageable, since
the SDP and linear programming problems can be solved effi-
ciently using interior point methods and the randomization pro-
cedure is designed so that its computational cost is negligible.
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When the transmitter employs a ULA under far-field line-of-
sight propagation conditions, the N x 1 complex vectors that
model the phase shift from each transmit antenna element to the
receive antenna of user ¢ € {1,..., M} are Vandermonde

. . . T
h; = v(b;) = [1 ed0i i20: eJ(Nfl)eii| (1)
where the angles 0, are given by §; = —27wd sin(¢;)/A. Here, d
denotes the spacing between successive antenna elements, \ is
the carrier wavelength, and the angles ¢; define the directions
of the receivers.

In such a propagation scenario, it was observed from the
simulation results of [5] and [6] that there exist configurations
of users’ directions for which the optimal solution blocks
{szt}le of the relaxed problem Q,, when feasible, turn out
all being rank one. Then, the second step of the overall algo-
rithm (comprising the randomization—multicast power control
loop) is no longer needed, and the set of optimum beamforming
vectors {w kp } +— can be formed by the principal components

of the blocks {szt} x—1- In such an occasion, problem Q, is
equivalent to, and not a relaxation of, the original problem Q.
In Section II-A, this fact is proven to hold for any feasible con-
figuration, in the case of Vandermonde channel vectors, and it
suggests that the original problem Q is no longer NP-hard, but
may be equivalently posed as a convex optimization problem.
A suitable convex reformulation, in terms of the autocorrelation
of the beamforming vectors, is developed in Section II-B.

A. Semidefinite Relaxation Is Tight for Vandermonde Channels

Claim 1: The SDR Q — Q, is always tight for Vandermonde
channels, i.e., if Q, is feasible, then it always admits an equiv-
alent solution whose blocks are all rank one.

Proof: Let XZpt € CV*N be one of the G blocks com-
prising the optimal solution of the SDR problem Q,. Let pj, > 1
denote the rank of szt, and consider the outer product decom-

t : t t .
position3 X' = Y7 wilt(wh ) . The signal power re-

ceived at node 1 by multicast k can then be written as

tr (XpP'Q;) =tr (X"pth-hH )

i [§ i ]
- Z“‘ [wk;f
= Ztr [hszz"
= Z [ wyy"
= Z |v(6;

using the linearity of the trace operator and the property that
tr(AB) = tr(BA), for any matrices A and B of appropriate

(wip")" hinf]

(wir')" ]

opt

2)

3Such decomposition is not unique, but this is irrelevant for our purposes; we
simply use one such decomposition.
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dimensions. The last equality comes from the assumption that
channel vectors are Vandermonde [cf. (1)].

The result of (2) is a real-valued complex trigonometric poly-
nomial, which is nonnegative for any value of 6; € [0,2).
Thus, according to the Riesz—Féjer theorem [10], there exists
a vector wiP" € R x CNV~1 that is independent of §; such that
for all 6,

ZIV

Wit |? = Ve

tr (|h,HwOpt 2)
tr [ ovt (wort) hH}
tr (xothZ)

3)

v opt | opt opt H
where X7P" = w” (W)

(3), we obtain

. Combining the results of (2) and

tr (XP'Q;) = tr (X77'Qi) )

which shows that for every optimum (generally high-rank)
beamforming matrix szt, there exists a rank-one posi-
tive-semidefinite matrix Xipt, which is equivalent with respect
to the power received at each node. Therefore, the blocks
{szt}le form a feasible solution set of the SDR problem

Integrating out #; in the first equality of (3) yields (cf.
Parseval’s theorem)

Z || opt
tr [Z wopt opt ‘| —tr [ opt (WZpt)Hj| o

fr (X5P) = tr (X5P) .

opt||2
k

&)

Hence, the feasible set of rank-one blocks {Xom}f ; is an op-
timum solution of the SDR problem Q,, since it has the same

objective value as {XOpt} 1" [

B. Convex Reformulation for Vandermonde Channels

In this subsection, we reformulate the nonconvex quadratic
inequality constraints of the original QoS multicast beam-
forming problem Q in terms of the autocorrelation of the
beamforming vectors. Towards this end, the signal power re-
ceived at each user ¢ by multicast k can be equivalently written,
for Vandermonde channel vectors (1), as

Hh2:(

|Wk

i) (')

wkn tTLE wkm i,m

I
Mz

3
Il
iR

* *
wk,mwk7n hi,n hi,m

I
WE
M=

3
Il
=
3
Il
-

wk7mwz7nej€i(n71)67]9i (m—1)

I
=]
WE

3
Il
-
3
Il
-
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N—1 min(N+¢,N)
E 6;¢
= U)kymwz,m_[e 7
{=—(N—-1) m=max(1+¢,1)
N-1
= E rree 0" (6)
t=—(N—-1)
where
T
Wi 1= [wk,17 Wk, 2, - - - >wk,N]
and

h; :=[hi1, hio, ... hin]T. @)

In (6), we have denoted ¢ := m — n and for all £ € {—N +
1,...,N =1}

min(N+¢,N)
Tk 1= E
m=max(1+¢,1)

Wk,m,’w;:,m_[. (8)

Itis easy to see that 7, ¢ is conjugate-symmetric about the origin,
which allows us to rewrite the received signal power in terms of

{’I"k_[}év:_ol Ol’lly
N—
|wkHv(9 =Tro+

,_\

—76:¢ 10 ¢
rkle J +Tk7_g€] )

(rk/e J0€+r e]&l)
=1
N-1
=Tko0+ 2 RG[’I"kle_Jei[]

l—h"‘

(=
=Re [v(6:)"Ir, ©

where we have defined the autocorrelation vectors rip € R x

CN-VVE € {1,...,G} as
— T
Th = [Th,0, Tk s - -5 Th,N—1) (10)
and the NV x N diagonal matrix
= 1 0
i= [0 2IN—1:| (11)

where Iy _; denotes the (

- 1])\7 X — 1) identity matrix.
Furthermore, note that 7, o =

—1 Wh,mWy, m = ||Wk||2~
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It therefore follows that problem Q can be equivalently
written as

Q'
i >
min Tk.0
{rieRxc(¥-n}7 k=1
Re [v(@i)Hirk]
s.t.: i
ZRG [ II‘[] + (7
£k
Vi€ G, Yk, L e {1,...,G},
ry is an autocorrelation vector Vk € {1,...,G}.

Each of the M inequality constraints can be written as

Re [V(H Irk} — ZRe [

0#£k

Il‘z} >0 &

Re |v(6;)P1 rk—%‘,zl‘i >vi0; &

(#£k
Re I:V(HZ)HiAII‘} Z’yidiz <

v(0)TTA;r + & + 5i =vio?  (12)

where in the first step, the fact that the terms in the denomi-
nator are all nonnegative was taken into account. In the third
step, the N x GN matrix A; = a; ® Iy was introduced,
where a; = (v; + 1)e] — ;1% is the 1 x G vector whose
kth element is equal to 1, whereas all others are set to —-,.
Here, 1¢ is the G x 1 all-1 vector, e is the G x 1 vector
indicating the multicast group k that user 7 belongs to, and ®
denotes the Kronecker product. Furthermore, the autocorrela-
tion vectors are stacked in the GN x 1 optimization variable
vectorr = [r7 - rZ]" . In the last step, the real (unconstrained
sign) “slack” variables {¢; € R}fil were inserted to compen-
sate the terms Im[v(6;)”TA,r]. Finally, the real nonnegative
“slack” variables {s; € R}, were introduced to convert the
linear inequalities to equalities.

Each of the GG autocorrelation constraints admits an equiva-
lent linear matrix inequality representation (see, e.g., [11] and
[12]). Specifically, ry , V¢ € {0,..., N — 1} belongs to the set
of finite autocorrelation sequences if and only if

e =tr[(B)" Xa| Veefo.. N

—1}  (13)

for some positive-semidefinite matrix X;, € CN*V where
EY is the N x N Toeplitz matrix with 1’s in the /th lower
subdiagonal and zeros elsewhere (note that E?\, = Iy). Thus,
introducing G positive-semidefinite N x N auxiliary matrices
X}, one for each autocorrelation vector r;, the G autocor-
relation constraints are equivalently converted to GN linear
equality constraints plus G positive-semidefinite constraints.
Substituting the constraints of problem Q’, with the equivalent
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representations of (12) and (13), the QoS multicast beam-
forming problem is reformulated to

Qc:

min [1c ®e1]Tr
{red i {Xa L, {si€RMY L {GEeRYY,

v(0:)HIAT + j&i + si=7i0F,
Vi € G, Yk € {1,...,G},
Tk — Vec (Ef\,)Tvec(Xk) =0,
vee{0,...,N—-1}Vke{l1,...,G},
si>0Vie{l,...,M},
X, >=0Vke{l,...,G},

s.t.:

where vec() denotes the “vectorization” operator, which stacks
the columns of a matrix to form a vector.

Problem Q. is an SDP problem, expressed in the primal
standard form. It can therefore be efficiently solved by any
general-purpose SDP solver, such as SeDuMi [13], by means
of interior point methods. Problem Q. consists of G vector
variables of size N x 1, G matrix variables of size N x N,
and M + GN linear constraints. Interior point methods will
take O[vVGN log(1/¢)] iterations, with each iteration requiring
at most O[G®N® + (M + GN)GN?] arithmetic operations
[14], where the parameter ¢ represents the desired solution
accuracy at the algorithm’s termination. Actual runtime com-
plexity will usually scale far slower with G, N, and M than
this worst-case bound.# Once the optimum autocorrelation

G .
sequences {rzpt} w— are found, they can be factored to obtain

G
opt .
} 1 using

the respective optimum beamforming vectors {w}’
spectral factorization techniques (see, e.g., [15]).

The QoS multicast beamforming problem Q for Vander-
monde channels can thus be solved equivalently in two distinct
ways. First, by the principal components of the optimum
solution blocks of the SDP problem Q,, when these turn out
all being rank one. Second, by spectral factorization of the op-
timum autocorrelation sequences solving the SDP problem Q..
However, problem Q, is not guaranteed to consistently yield
rank-one solutions for Vandermonde channel vectors; Claim
1 only proves the existence of such a solution, and counter
examples in which SDP yields higher-rank solutions do arise in
practice. Postprocessing via spectral factorization is needed in
such cases in order to obtain an equivalent rank-one solution.
The first approach (via Q,) is computationally cheaper when
general-purpose interior point SDP software is used, because
Q. involves a higher number of optimization variables and
associated constraints. However, the dual of Q. involves signifi-
cantly fewer variables and can be solved via application-specific
interior point methods, which can drop the arithmetic opera-
tions per iteration by two to three orders of magnitude (see, e.g.,
[11]). Finally, and perhaps most importantly, the reformulation
of the QoS constraints in terms of autocorrelation sequences as
inequalities on (the real part of) trigonometric polynomials [cf.
(12)] enables us to extend the multicast beamforming problem
to the case where there is partial knowledge of the angles 6,
determining the Vandermonde channel vectors. The respective
robust design is considered in Section IV-A.

4This is true for all problems considered here.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 10, OCTOBER 2007

III. JOINT MAX-MIN FAIR MULTICAST BEAMFORMING

In this section, we consider the related problem of max-
imizing the minimum received SINR, subject to an upper
bound P on the total transmitted power. Specifically, the joint
max—min fair (JMMF) transmit beamforming design can be
formulated as

F:
{Wk Gcrg?g’)il, teR t
s.b.: [wi'h|" > ¢,
M wihi| +0? =

l#k
Vi€ G, Yk, L e {1,...,G},

Sy w3 =P, and t>0.

Problem F was considered in [6], and it was found to be
NP-hard in the case of general channel vectors, based on
arguments in earlier work [4]. Therefore, a two-step approach
was proposed and shown to yield high-quality approximate
solutions at manageable complexity cost. In the first step, the
original nonconvex problem F is relaxed to

l#k
Vie gy Vk,Le{l,...,G},

Yoy tr(Xg) = P,

Xr>=0Vke{l,...,G},

Fr:
max t
{XLECNXN}E | teR
s.t.: tI‘(QiXk) —1 [Z tI‘(Qng) + U? >0,

and t>0

by changing the optimization variables, as for the QoS problem
presented in Section II, to {X, := wkwkH }1—, and discarding
the associated nonconvex constraints {rank(Xy) = 1}?21.
Again, such relaxation can be motivated [9] as the Lagrange
bi-dual of problem F. A solution to the relaxed problem F,
can be found by means of bisection, for the nonnegative real
variable ¢, over SDP feasibility problems. In the second step,
postprocessing of the relaxed solution is needed when the

optimum solution matrices {szt}le do not turn out being
all rank one, so as to yield an approximate solution to the
original JMMF problem F. This can be accomplished by using
a combined randomization—joint power control procedure.

As we have already noted in Section II, when a ULA array
is used for far-field line-of-sight transmit beamforming, the
channel vectors are Vandermonde [cf. (1)]. In such a scenario,
Claim 1, proven in Section II-A for the QoS formulation, holds
for the JIMMF formulation as well: the relaxation ¥ — F, is
always tight. The proof is similar to the one for the QoS case.
Using (4) and (5), it is seen that the set of rank-one blocks
{szt}le form a feasible solution of problem F,, giving the
same objective value as the (generally higher-rank) optimum
solution set {X*'},"_ .

In the following, an approach similar to the one in
Section II-B is followed to reformulate the original JMMF
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multicast beamforming problem F in terms of the autocorrela-
tion of the beamforming vectors. Using (9) for the signal power
received at each user by each multicast, problem F may be
equivalently written as

F
max t
{rr ERXCN-1}¢  teR
Re [V(ﬂi)HiI‘k}
s.t. : - Z t7
ZRG I:V(HZ)HII'[:| + a’iz
(#k
Vie G Vk,Le{l,...,G},
ry is an autocorrelation vector Vk € {1,...,G},
Zi’;l reo=/PFP, and t>0.

The resulting JMMF multicast beamforming problem F’
comprises a linear cost, M nonlinear inequality constraints, G
autocorrelation constraints, a linear equality constraint, and a
nonnegativity constraint. The autocorrelation constraints can
be recast as linear matrix inequalities, introducing G posi-
tive-semidefinite /N x N auxiliary matrix variables Xy, as in
Section II-B. Hence, except for the first M nonlinear inequality
constraints, the JMMF problem is an SDP problem expressed
in the standard primal form.

Each of the nonlinear inequalities can be equivalently written
as

following the same steps as in (12) of Section II-B. The sole dif-
ference is that the value ~; is replaced by the variable ¢ so that
the auxiliary vectors a;(t) = (¢t + 1)ef — t1% and the auxiliary
matrices A;(t) = a;(¢t) ® Iy are now functions of ¢. Hence,
contrary to the QoS case, the equalities of (14) are nonlinear.
The key here is that i) by fixing ¢ the equalities become linear
in the remaining variables; and ii) the objective is to maximize
t. It follows that F' can be solved by bisection over SDP prob-
lems.5 Specifically, let [, U] denote the interval containing the
optimum value ¢* of problem F’. Due to the nonnegativity of
t* and the Cauchy—Schwartz inequality, we may set L = 0 and
U= ‘e{11ninM} PN/o? for the lower and the upper bound, re-
spectively. Given [L, U], the SDP feasibility problem F%, shown
in the box below, is solved at the midpoint t = (L + U)/2 of
the interval. If problem F¢ is feasible for the given choice of ¢,
we set L := t; otherwise U := t. Thus, in each iteration, the
interval is halved. This bisection algorithm terminates when the
interval length becomes smaller than the desired accuracy.

Fi:

find x
st v(0)TIA; () + j& + s; = to?,
Vi€ G, Vk € {1,...,G},
S ko =P,
Tk — VeC (EﬁV)Tvec(Xk) =0,
vee{0,...,N-1}Vke{l,...,G},
X, >0Vke{l,...,G}

SBisection is a standard trick in this context, and it has also been used in [7].

4921

In the above, x denotes the optimization variable vector

T
x= [r] - xh €S vee(X)) - vee(X)T| (19)

where the vectors s € RM, and € € RM contain the “slack”
variables. The solution vector obtained by the last feasible iter-
ation of the bisection acljgorithm contains the sought autocorrela-
tion sequences {ry""

wzpt} x— can then be found using spectral factorization tech-

niques (see, e.g., [15]).

For each iteration of the bisection, the algorithm tries to find a
solution to the feasibility problem ¢, which is an SDP problem
expressed in the standard primal form. Problems of this form can
be efficiently solved by any standard interior point SDP solver,
such as SeDuMi [13]. The use of interior point methods is con-
venient, because they not only yield a solution to problem F;
when the latter is feasible, but also provide a certificate of infea-
sibility otherwise. Similar to problem Q., problem F; consists
of GG vector variables of size N x 1, G matrix variables of size
N x N,and M 4+ 1+ GN linear constraints. Computing an op-
timal solution of tolerance € using an interior point method will
have an overall iteration count of O[v/GN log(1/¢)], with each
iteration costing O[G3N® + (M + G N)GN?] in the worst case
[14].

As for the QoS problem considered in Section II, we have
two algorithms to solve the JMMF multicast beamforming
problem for Vandermonde channels, both employing bisection
over SDP problems. Again, going through F, entails lower
complexity when using a general-purpose interior point solver;
however, the dual of F; is cheaper to solve using custom
interior point methods developed specifically for problems
involving autocorrelation constraints (see, e.g., [11]). Further-
more, problem F; forms the basis for the robust extension
considered in Section I'V-B.

}1— - The respective beamforming vectors

IV. ROBUST MULTICAST BEAMFORMING FOR
VANDERMONDE CHANNELS

In the multicast beamforming problems presented so far in
Sections II and III, the beamformers are designed under the as-
sumption that full CSI is available at the transmitter. For the
case of Vandermonde channel vectors, considered throughout
this paper, full CSI boils down to exact knowledge of users’
directions { ¢i}£\il (equivalently, of the angles { Gi}f\il). In a
more realistic scenario, only partial CSI is available at the de-
sign center, due to errors in the estimation of the angles {6; }i\il
It is often reasonable to assume that errors are bounded, in which
case 0; lies in some interval [«;, 3;]. In the following, robust de-
signs for the QoS and JMMF multicast beamforming problems
are presented, in the sense that the constraints are still met for
all possible channel vectors {v(@l)}f‘il, where 6; € [a, 3i].

A. QoS Problem Formulation

A robust extension of the QoS multicast beamforming
problem Q., considered in Section II-B, would be to jointly
design the transmit beamformers so that the received SINR
targets are reached (or exceeded) for all possible values of
the angles 6; € [w;,(3;], which determine the Vandermonde
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channel vectors. In such a scenario, the QoS SINR constraints
are posed [cf. (12)] as

Re [v(ﬂz)HiAlr] > ’yiUiZ Vo, € [Oézﬂz] (16)
Vi € {1,..., M}. An interpretation of these constraints is that
they require (the real part of) certain trigonometric polynomials
to be nonnegative over a segment of the unit circle. As proved in
[12], constraints of this form can be equivalently reformulated
to the linear matrix inequality constraints

IA;r + jéier —vioier = p(Yi) + a(Zi; i, B;),  (17)
Vi € {l,...,M}. Here Y; € CVN » 0,Z; €
CIV-Dx(N=1) >~ 0, & € R is unconstrained in sign,
and e; denotes the N x 1 indicator vector whose first
element is 1 and all others are 0. The linear operator
p(Y) = [p1,p2,...,pn]T € R x CN~1 is defined [12]
by the equations

p1 = <E?VY>
per1 :=2(EL,Y) Vee{l,...,N-1}

where the inner product between two (generally complex) ma-
trices A and B is defined as

(18)

(A, B) = tr(ATB) = vec(A)vec(B). (19)

The linear operator q(Z; o, 3) = [q1,q2,---,qn]7 € CVN is
defined [12] by

g1 :=di (o, B) (EX_1,Z) + d5(a, ) (En_y, Z)
qet1 =2d1 (e, B) (EN_1, Z) + do(a, B) (EN,, Z)
+d3(o, B) (BN, Z) Ve € {1,...,N - 3}
an—1 :=2d1 (e, B) (ENZ3,Z) + do(e, B) (ENT3, Z)
gy =dy(a, ) (ENT, Z) (20)

where, for given o, € [0,27), the vector d(«o, ) =
[d1(c, B) d2(cr, )] € R x C is defined as

d(a, §) = cos a + cosﬂ - cos([)’.— a)—1
[1 = exp(ja)] [exp(75) — 1]

Hence, introducing M positive-semidefinite N x [V auxiliary
matrices Y;, M positive-semidefinite (N — 1) X (N — 1) aux-
iliary matrices Z;, and replacing the SINR constraints of (16)
with the representation of (17), the robust QoS multicast beam-
forming problem is equivalently written as

OR :

21

' min [lg®e]|Tr
{rk})?:w {Xk'}fzw {Yi}éip {Zi}éily {ﬁl}iil

st 0 IA;r+j&er—p(Y)—a(Zis g, B;) = yioZen,
Vi€ G VEk € {1,...,G},
Thk¢—Vec (EfV)Tvec(Xk) =0,
Vee{0,...,N—1}, Vk e {1,...,G},
Xr = 0Vke{l,...,G},
Y, =0Vie{l,...,M},
Z;=0Vie{l,...,M}.
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Problem OR is therefore an SDP problem, expressed in
the standard primal form, since it consists of a linear cost,
MN + GN linear equality constraints, and G + 2M posi-
tive-semidefinite constraints. Standard SDP solvers, such as
SeDuMi [13], can be used to efficiently solve problem OR, by
means of general-purpose interior point methods. A solution of
tolerance ¢ entails O[\/(G 4+ 2M )N log(1/¢)] iterations, each
of complexity O[(G + 2M)3N® + (M + G)(G + 2M)N?3]
[14]. More efficient solutions of significantly lower complexity
can be found by means of application-specific interior point
methods (see, e.g., [11]). The optimum beamforming vectors
{ wzpt} w—1 can be computed from the solution of problem QR
using spectral factorization techniques (see, e.g., [15]).

It is interesting to note that the robust version of the QoS mul-
ticast beamforming problem developed in this subsection is still
convex and of the same form as the original problem Q.. The
price paid for the extension to the partial CSI case is higher com-
putational complexity due to the larger size of the optimization
variable vector and the larger number of constraints.

B. JMMF Problem Formulation

A robust extension of the JMMF multicast beamforming
problem F’ can be found in a manner similar to the respec-
tive QoS problem considered in the previous subsection. The
inequality constraints that must be fulfilled here are posed as

Re [v(ei)HiAi(t)r} > to? VO € o, ] (22)
Vi € {1,...,M}, where A;(t) is a function of ¢, defined in
Section III. Exactly as in (17), these inequalities can be equiva-
lently represented [12] as

TA;(t)r + jéiey — totey = p(Y;) + a(Zi; i, Bi)

Vi € {l,...,M}. Fixing the value of the variable ¢, (23)
represents linear matrix inequality constraints. Thus, the ro-
bust JIMMF multicast beamforming problem can be efficiently
solved, by means of bisection over the following SDP feasibility
problem FR¢. The optimization variable vector y is defined by

(23)

y = [&T vec(Y1)T -+ vee(Yar)T

vec(Zy)" - vec(ZM)T]T (24)

where the vector x is equal to the vector x, defined by (15),
excluding from its contents the vector s, as follows:

FRe:

find y

IA;(t)r + j&er — p(Yi)—a(Zi; i, 3;) = toZey,
Vi€ Gr, Yk € {1,...,G},

Y1k =P,

Tk — Vec (EfV)Tvec(Xk) =0,
vee{0,...,N -1}, Vk € {1,...,G},

X = 0Vke{l,...,G},

Y; = 0Vie{l,...,M},

Z; = 0Vie{l,...,M}.

s.t.:
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TABLE I
MULTICAST TRANSMIT BEAMFORMING

lre [~ |m|c] P [ ~B) | Timeps |

1 6 | 30 | 3 | 28.32 10 0.26
2 12130 | 3 10.44 10 0.52
3 12 [ 30 | 3 12.35 10 12
4 6 |44 2 9.56 10/6 0.31
5 12 | 44 | 2 6.03 10/6 0.45
6 6 | 44| 2 10.82 10/6 33
8 [ 22 ] 2 10 9.45 0.20
8 8 [ 22 ] 2 10 7.97 0.26
9 8 122 2 10 7.49 2.34

Feasibility problem F7R; is an SDP problem, expressed
in the standard primal form, consisting of MN + 1 + GN
linear equality constraints and G' + 2M positive-semidefinite
constraints. As in the QoS case, it is of the same form as the
original problem Fy, where full CSI is available, but now of
higher dimensionality. Standard SDP solvers, such as SeDuMi
[13], can be used to efficiently solve problem FR¢, by means
of general-purpose interior point methods. A solution of toler-
ance e entails O[\/(G + 2M)N log(1/e)] iterations, each of
complexity O[(G + 2M)3N® + (M + G)(G + 2M)N3] [14].
More efficient solutions, of significantly lower complexity, can
again be found by means of application-specific interior point
methods (see, e.g., [11]), and the optimum beamforming vec-
tors {wzpt}le can be computed using spectral factorization
techniques (see, e.g., [15]).

V. NUMERICAL RESULTS

In this section, we provide some representative numerical
results illustrating and contrasting the various transmit beam-
former design methods presented in Sections II-IV. For each de-
sign, the resulting optimized transmit beam pattern in the plane
of the ULA is plotted in linear scale. All patterns are symmetric
with respect to the vertical axis, due to the inherent radiation
symmetry of the ULA. The Vandermonde channel vector of
each user is calculated by plugging the respective angle in (1).
The directions of the users comprising each multicast group are
shown in the caption of each plot, for ease of reference. The
noise variance of all channels is setto o2 = 1, except for the sce-
nario in Fig. 8. The basic parameters for all simulation configu-
rations considered are gathered in Table I. Columns two, three,
and four contain the number /N of transmit antenna elements
(spaced d = A\/2 apart), the total number M of users served, and
the number G of multicasts, respectively. Column five contains
the minimum (over all intended users) received SINR (in deci-
bels). For the QoS problems in Figs. 1-6, the value in column
five is the SINR constraint (input parameter), whereas for the
JMMF problems in Figs. 7-9, it is the attained objective value.
Column six reports the total transmitted power, which is the
objective value (constraint) for the QoS (respectively, IMMF)
problems. The last column lists the time (in seconds) spent on
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QoS Multicast Beamforming

% 0

270

N = 6 antenna elements; M = 30 users in G = 3 groups

Fig. 1. QoS,v = 10dB, N = 6;G; = {26° : 4° : 62°},G» = {—18° :
4° 1 18°}, Gy = {—62° : 4° 1 —26°}.

QoS Multicast Beamforming
% 15

180

270

N = 12 antenna elements; M = 30 users in G = 3 groups

Fig.2. QoS,y = 10dB, N = 12;G; = {26° : 4° : 62°},G, = {—18° :
4°: 18°}, Gy = {—62° : 4° : —26°}.

a typical desktop computer to solve the core SDP problem for
each design, using SeDuMi [13]. The reported values are aver-
ages values over ten problem instances.

In the simplest configuration considered (Fig. 1), the transmit
ULA consists of six antenna elements, and 30 intended receivers
are clustered in three multicast groups. For the first multicast
group, ten users are evenly distributed in the range 26°—62° at 4°
apart. This is henceforth compactly denoted as {26° : 4° : 62°}.
The users of the second group are placed at {—18° : 4° : 18°},
while the third group is the reflection of the first, with respect to
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Robust QoS Multicast Beamforming
90

20

180

270
N = 12 antenna elements; M = 30 users in G = 3 groups
Fig. 3. Robust QoS,6 = 1°,7v = 10dB, N = 12; G, = {26° : 4° : 62°},
Gy = {—18°:4°:18°},Gs = {—62° : 4° : —26°}.

QoS Multicast Beamforming

90 5

270

N = 6 antenna elements; M = 44 users in G = 2 groups

Fig. 4. QoS,~v = {10,6} dB for {G1,G>}, N = 6;G1 = {—60° : 2° :
—40°,10° : 2° : 30°},Go = {—30° : 2° : —10°,40° : 2° : 60°}.

the horizontal axis. Exact knowledge of all user directions is as-
sumed at the design center (the transmitter). An SINR threshold
of 10 dB is prescribed for all users. This is a typical scenario
(the angles of the users listening to the same multicast are close
and the number of transmit antenna elements is small) under
which each beamvector forms a single main lobe to serve all
users in the respective multicast group. Then, it is natural to ex-
pect that the optimum solution blocks of Q, will be rank one,
and this is indeed the case. The algorithm proposed in [5] and
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QoS Multicast Beamforming
90

20

180

270

N = 12 antenna elements; M = 44 users in G = 2 groups

Fig. 5. QoS, v = {10,6} dB for {G:,G-}, N = 12; G, = {—60° : 2° :
—40°,10° : 2° : 30°},Go = {—30° : 2° : —10°,40° : 2° : 60°}.

Robust QoS Multicast Beamforming

90 25

270

N = 6 antenna elements; M = 44 users in G = 2 groups

Fig. 6. Robust QoS, § = 0.5°,v = {10,6} dB for {G1,G=}, N = 6;G, =
{—60° : 2° : —40°,10° : 2° : 30°}, G = {—30° : 2° : —10°,40° : 2° :
60°}.

[6] (principal components of the optimum rank-one solution
blocks of the SDR problem Q) and the algorithm developed
in Section II-B (spectral factorization of the autocorrelation se-
quences that solve problem Q.) yields equivalent solutions, i.e.,
the beam pattern of Fig. 1.

It is apparent from the shape of the beams in Fig. 1 that the
SINR constraint is oversatisfied for all users except the ones
on the edges of the lobes. Note that, in such scenarios, the im-
portant design parameter is the direction span of each multicast
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JMMF Multicast Beamforming
90

20

180

270
N = 8 antenna elements; M = 22 users in G = 2 groups

Fig.7. JIMMF, P =10, N = 8;G; = {—60° : 5° : —40°,5° : 5° : 30°},
Go = {—30°:5°: —5°,40° : 5° : 60°}.

JMMF Multicast Beamforming

90 25

270

N = 8 antenna elements; M = 22 users in G = 2 groups

Fig.8. JMME P =10, N = 8;G, = {—60° : 5° : —40°,5° : 5° : 30°},
Gy = {—30° : 5° : —5°,40° : 5° : 60°}; 02 = 2 for directions other than
{=30° : 30°}.

group and not the actual number of users in the group. More sub-
scribers can be added within the span of a given group without
modifying the design. Repeating the design with the same pa-
rameters but this time using N = 12, the resulting beam pattern
is plotted in Fig. 2. Due to the extra degrees of freedom, far less
power is wasted in oversatisfying the constraints in the middle
of the lobes. For proper interpretation of the results, it is impor-
tant to note that the scale of the polar plots varies from figure to
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Robust JMMF Multicast Beamforming
90

20

180

210\

270
N = 8 antenna elements; M = 22 users in G = 2 groups

Fig. 9. Robust IMMF, 6 = 2°, P = 10, N = 8; G, = {—60° : 5° :
—40°,5° :5° : 30°},G> = {—30° : 5° : —5°,40° : 5° : 60°}.

figure for better visualization. The same SINR threshold is guar-
anteed to all users with smaller cost in terms of total transmitted
power (cf. lines 1 and 2 of Table I), at the expense of additional
hardware and complexity, because of the larger number of de-
sign variables. Fig. 3 plots the robust QoS design (presented in
Section IV-A) for the same parameters and N = 12. The tol-
erance in the user directions is § = 1°. Compared with Fig. 2,
the beams are broader in Fig. 3, where higher total transmission
power is required to assure the same minimum SINR level to
wider ranges of directions. The runtime is also higher due to the
additional auxiliary variables and constraints.

A more challenging scenario is considered in Figs. 4-6. The
are two multicast groups, and the users in each group are split in
two separate direction spans. Furthermore, the SINR threshold
is 10 and 6 dB for the users listening to the first and the second
multicast, respectively. Figs. 4 and 5 depict the optimum beam
patterns for N equal to 6 and 12, respectively, and perfect CSI.
Due to the interleaving of direction spans of the two groups, two
main lobes are formed to serve each group. As expected, more
power is transmitted towards the users of the first group which
demand higher assured SINR. Again, the availability of more
antenna elements at the transmitter results in less total radiated
power. The respective robust design for N = 6 and maximum
ambiguity § = 0.5° is illustrated in Fig. 6. A comparison with
Fig. 4 supports the findings discussed in the previous scenario.

Figs. 7-9 illustrate an example of the JMMF beamformer de-
sign for N = 8, G = 2, and two clusters of users per multicast
group. The power budget is set to 10, and the relative accuracy
of the bisection to 1073, resulting in 13 iterations. Figs. 7 and 8
show the optimized beam patterns of the JMMF problem (pre-
sented in Section III) under the assumption of perfect CSI. In
Fig. 8, the noise variance is doubled (02 = 2), for the users in
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directions 40° or higher. Note that more power is transmitted to-
wards the users who suffer from larger noise variance (or, equiv-
alently, from larger path loss) to ensure fairness. The respective
robust design (presented in Section IV-B) for § = 2°, is shown
in Fig. 9. Relative to Fig. 7, the SINR level assured to all users is
smaller (cf. lines 7 and 9 of Table I), since wider direction spans
are served with the same power budget.

VI. CONCLUSION

We considered problem of far-field multicast beamforming
of transmit ULAs, under line-of-sight propagation conditions.
We adopted both QoS (minimum SINR)-oriented and max—min
fair design criteria, and exploited the Vandermonde structure of
the channel vectors to derive equivalent convex reformulations,
which are amenable to exact and efficient solution using modern
interior point methods. This proves that, whereas the general
multicast beamforming problem is NP-hard, the important spe-
cial case considered here is not. In addition, we showed that the
natural (Lagrange bi-dual) SDR of the problem is tight in the
case of Vandermonde channel vectors. The key tool behind these
developments is spectral factorization and the representation of
finite autocorrelation sequences via linear matrix inequalities.
Departing from the idealized assumption of perfect CSI, we also
considered the situation where the receiver directions are (only)
known to lie in a certain interval. We formulated robust design
problems for this case, under both QoS and max—min fair cri-
teria and showed how these can also be reformulated as SDP
problems. The proposed designs have potential for practical use
in a number of current and emerging wireless systems.
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