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Fig. 1. Error in the reconstruction of the sum of the three sine functions used
by [1] and [3] in their Fig. 1, respectively. The S-transform has been computed
by discretizing its time-domain expression rather than its frequency-domain
expression.

Fig 1(b) of [3] shows the error in the reconstruction of the data
from Fig. 1(d) of [1] (sum of three sine functions at 0.3, 2, and
3.5 Hz). Reference [3] uses the time-IST and freq-IST in combination
with the freq-ST. In analogy, Fig. 1 shows the measured error of
the time-IST and freq-IST in combination with the time-ST of the
same data. By comparison with Fig. 1(b) of [3], it can be seen that
the freq-IST and time-IST perform best on spectra obtained with the
freq-ST and time-ST, respectively. The error is largest for the mixed
combinations, that is, time-IST and freq-ST and freq-IST and time-ST.
Furthermore, the error at the fundamental frequency vanishes for
the time-IST in combination with the time-ST [Fig. 1(b)]. It seems
from this example that the original signal is better retrieved using the
freq-IST. Nevertheless, the time-IST provides a good approximation
as also noticed in [3]. The S-transform, both inverse S-transforms, and
the discretization errors are further discussed and illustrated in [2].
They show also examples where the time-IST performs better than the
freq-IST. Furthermore, it is shown why the time-IST works.

As observed by Pinnegar, there is a mistake in the plots concerning
the traces obtained with the freq-ST (u�lt [t]). This has no influence on
the time-IST by [1] and does not change the physics, our understanding,
and conclusions concerning our new approach. Pinnegar writes, “The
long and short of this is that the new filtering technique, in its corrected
form, does still appear to give a faster time taper than the older method,
but the improvement is not as marked as implied by [1].” Reference [2]
shows that the improvement depends on the filter and data as also on
how one has discretized the S-transform.

As already mentioned in [1], the S-transform is a powerful method
used in several motivating studies to analyze time-varying signals. As
with any method, one should be aware of limitations, and the choice of
the proper approach depends on the data and application.
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Abstract—Given a set of pairwise distance estimates between nodes, it is
often of interest to generate a map of node locations. This is an old nonlinear
estimation problem that has recently drawn interest in the signal processing
community, due to the emergence of wireless sensor networks. Sensor maps
are useful for estimating the spatial distribution of measured phenomena,
and for routing purposes. We propose a two-stage algorithm that combines
algebraic initialization and gradient descent. In particular, we borrow an
algebraic solution known as Fastmap from the database literature, adapt
it to the sensor network context, and motivate the placement of anchor/
pivot nodes on the edges of the network. When all nodes can estimate their
distance from the anchors, the overall algorithm offers very competitive
performance at low complexity (quadratic in the number of nodes).

Index Terms—Multidimensional scaling, node localization, sensor
networks.

I. INTRODUCTION

The problem of node localization from pairwise distance estimates
has recently attracted interest in the signal processing community,
owing to the growing interest in wireless sensor networks [2], [3], [5],
[8], [9]. Given a matrix of pairwise distances, the localization problem
aims to determine the (relative) node locations that generate these
distances. In other words, one seeks a map of node locations with
a given (approximate) distance structure. This is a classic problem
originating in psychometrics [10], [11], known as multidimensional
scaling (MDS) [6]. There are many MDS flavors and variants; perhaps
the single most important one is metric MDS.

The classical approach to solving MDS is based on computing the
principal components of a double-centered version of the matrix of
squared distances. This works reasonably well (albeit not optimally
in the least squares sense, due to the double centering), but its com-
plexity is cubic in the number of nodes, and thus does not scale well
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with network size. A popular alternative to principal component anal-
ysis (PCA) is the use of gradient descent or other numerical optimiza-
tion tools that aim to optimize a stress function of the error between
the measured distances and those reproduced by a given configuration
of points. The drawback of gradient descent and related approaches is
that they require accurate initialization, due to the multimodal nature
of the stress function.

We propose a two-stage MDS algorithm that employs an algebraic
initialization procedure followed by gradient descent. The algebraic
initialization step is based on the Fastmap algorithm [4], borrowed from
the database literature. Fastmap is a linear-complexity mapping tool,
which is, however, sensitive to measurement errors. This is not par-
ticularly relevant in the database context; therein, actual distances are
computed from complete representations. Noise sensitivity is an impor-
tant issue in wireless ranging applications, due to shadowing, fading,
and the use of approximate path loss models.

Due to the fact that distances are invariant to coordinate frame trans-
formations (rotation, reflection, shift), there is a need to employ three
so-called anchor nodes, whose position is accurately known (e.g., via
GPS) in order to fix a desired coordinate frame. Unfortunately, Fastmap
is very sensitive to coordinate alignment, because the estimated posi-
tion of every node (and thus anchor nodes as well) is only based on
distances to selected pivot nodes—there is no averaging. In order to
mitigate this problem, we advocate a judicious choice of anchor/pivot
nodes, placed at the outer edges of the network. This placement also
bypasses the need for alignment and thus alignment errors, thereby pro-
viding a higher quality initialization to the gradient descent. When all
network nodes can estimate their distance from the anchors, the overall
algorithm affords better localization accuracy than PCA-based MDS, at
substantially lower complexity cost (quadratic in the number of nodes).
Our algorithm is also competitive with respect to recent solutions of
the same complexity order, developed specifically for node localiza-
tion in sensor networks [3]. For relatively dense networks, our algo-
rithm yields comparable estimation performance at a significantly re-
duced complexity relative to [3], even when the latter is initialized using
our adaptation of Fastmap. An exception is the case of very sparse net-
works, wherein [3] with Fastmap initialization may be preferable when
accuracy is more important than complexity.

We remark that there are other algorithms in the recent literature that
assume a different measurement model (e.g., 0–1 node connectivity
information only, as in [9]), or propose solutions of considerably higher
complexity (e.g., as in [2]). We aim for the low-complexity regime, for
simplicity and scalability considerations.

II. MULTIDIMENSIONAL SCALING

We denote the dissimilarity measure (the estimated distances in our
case), between objects i and j as dij . The set of dissimilarities yields
a measured distance matrix D. We also let d̂ij denote the Euclidean
distance between (generated by) two points Xi = (xi1; xi2; . . . ; xim)
and Xj = (xj1; xj2; . . . ; xjm), i.e.,

d̂ij =

m

k=1

(xik � xjk)2: (1)

In classical metric MDS [10], [11], [6], we estimate the node coor-
dinates by computing the m principal components of an elementwise
squared and double-centered version of the matrix D, denoted by B,
as follows:

B = �
1

2
JPJ (2)

where P = D �D is the matrix of squared distances (� denotes the
elementwise matrix product), and J is the centering operator

J = I� ee
T =N (3)

withN denoting the number of objects (sensors/nodes), and e denoting
the N � 1 vector of all 1’s. For an N �N matrixD and for m dimen-
sions, it can be shown that

�
1

2
d2ij �

1

N

N

j=1

d2ij �
1

N

N

i=1

d2ij +
1

N2

N

j=1

N

i=1

d2ij

=

m

k=1

xikxjk (4)

thus the node coordinates can be estimated from them principal eigen-
vectors of the matrixB, scaled by the square roots of the corresponding
eigenvalues. That is, with Ur containing the m principal eigenvec-
tors andVr diagonal containing the corresponding eigenvalues,Br =
UrVrU

T
r is an optimal least-squares approximation ofB, andXr =

UrV
1=2
r is an approximation of the node coordinates in m-dimen-

sional space, up to a common coordinate rotation, reflection, and shift.
An alignment procedure is necessary to transform the estimated node
locations to a desired frame of reference.

It is important to note that, due to the preprocessing steps prior to
PCA, this approach is not equivalent to nonlinear least-squares param-
eter fitting using the original measurements.

Direct minimization of a suitable stress function is an alternative to
PCA-based MDS [10]. A common1 stress function is

stress2 =
i;j

wij(d̂ij � dij)
2: (5)

where [wij ] is the weight matrix, whose elements are equal to 1 if node
j is in the measurement range of node i and 0 otherwise. Minimization
starts with an initial guess of the node positions, followed by gradient
descent iterations. Initialization matters a lot in this context, because
the stress function is multimodal. Furthermore, the number of iterations
required for convergence depends on the quality of the initialization.

III. FASTMAP AND PROPOSED APPROACH

The basic element of Fastmap [4] is the projection of the nodes
on a properly selected line. This is achieved by selecting two objects
Oa; Ob, called pivots, and projecting all other objects on the line that
passes through them. A pair of pivots is chosen for each of the m di-
mensions. The coordinates (i.e., projections on the pivot line) of the
objects are found by employing the cosine law [4]. Thus, the first co-
ordinate for object Oi (measured from Oa, on the line connecting Oa

and Ob) is given by

xi =
d2ai + d2ab � d2bi

2dab
(6)

where dij is the measured distance between nodes i and j and a; b are
the pivot objects. After computing these coordinates for each object
Oi, we consider a hyperplane that is orthogonal to the pivot line. We

1The negative log-likelihood of the observed data under a suitable measure-
ment noise model would seem to be the natural choice of stress function. This
is not fortuitous in our context, however, because the resulting function is not
only multimodal, but also leads to numerical difficulties. For this reason, a
least squares criterion is preferred. While still multimodal, the adopted least-
squares criterion is much more benign from a numerical optimization view-
point, and it often yields performance close to the pertinent CRB, as will be
seen in the simulations.
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then project the objects on this hyperplane, and repeat the process, this
time using

~d2ij = d
2

ij � (xi � xj)
2
; i; j = 1; . . . ; N: (7)

Fastmap works for arbitrary placement of the three pivot nodes in the
noiseless case—the formula in (6) can be derived from two applications
of the Pythagorean Theorem and subtraction of the resulting equations.
In noisy scenarios, the placement of pivot and anchor nodes matters. A
heuristic method is proposed in [4] for choosing the pivots as far as
possible from one another.

In database applications, there is no “natural” or preferred coordi-
nate frame of reference; thus, the final alignment step is not used, and
anchors are not needed. In the context of sensor networks, however,
obtaining absolute position estimates is important. In Fastmap, the es-
timated position of every node (and thus anchor nodes as well) is only
based on distances to the chosen pivot nodes—there is no averaging.
The alignment of anchors is inaccurate due to noise in the anchor posi-
tions estimated from the distance information, leading to error ampli-
fication in the final estimates.

If the three pivots are chosen to form an orthogonal triangle, and the
orthogonal sides of this triangle are chosen as coordinate basis vec-
tors (which should of course be known, hence pivots = anchors),
then all projections in Fastmap are computed directly onto the “na-
tive” coordinate basis. Thus, there is no need to estimate the positions
of anchors and subsequently align (rotate, shift, reflect) the entire set of
point estimates. If an orthonormal basis is required, then simple scaling
of one coordinate suffices. Therefore, any orthogonal placement of an-
chors/pivots (whether inside or outside the sensor distribution area) is
advantageous, because it avoids alignment errors.

Despite its conceptual and computational simplicity, Fastmap is a
highly nonlinear estimator, and its performance analysis is compli-
cated, perhaps more than one would expect at first sight. While analysis
is difficult, simulations suggest that placing the anchors/pivots on the
edge of the network is optimal. This is illustrated in Fig. 1, for a net-
work of 103 nodes uniformly spread over a square of side 1 centered at
the origin, and a multiplicative Gaussian noise model for the measured
distances [see (9) in Section IV]. Note that the minimum mean-squared
error (MSE) occurs at baseline = 1 (the same holds for other values
of noise variance), meaning that anchors should be on the edges of the
network. Also note that when estimating the x coordinate, it is prefer-
able to place the anchors halfway through the distribution area in the
y coordinate; but the difference is small. We are typically interested
in estimates of equal accuracy in both axes; this implies a symmetric
configuration, i.e., placing the anchors/pivots on three vertices on the
edges of a minimal square that covers the sensor distribution area, as
illustrated in Fig. 2.

We assume that the anchor/pivot nodes that are used by Fastmap can
take distance measurements from all the sensor nodes (even if we do
not have full connectivity for the rest of the nodes). This is reasonable
if the anchor/pivot nodes are airborne, in higher ground, or on a mast.
If the anchors are randomly dropped along with the rest of the nodes,
Fastmap still applies, but its performance will be worse.

In our approach, Fastmap estimates are used as initialization for gra-
dient descent. Denoting by (xi; yi) the estimated position of node i,
the partial derivative of the stress function in (5) is given by

@stress
@xi

=
j 6=i

wij

( (xi � xj)2 + (yi � yj)2 � dij)(xi � xj)

(xi � xj)2 + (yi � yj)2
:

(8)

with a similar expression for the partial derivative with respect to yi.
Each step of gradient descent costs O(N2). For simplicity, but also

Fig. 1. MSE in Fastmap x-coordinate estimate as a function of (exactly known)
anchor/pivot baseline. Sensors are uniformly spread over a square of side 1
centered at the origin. Zero-mean Gaussian multiplicative noise model for the
measured distances. The minimum MSE point is stable with respect to noise
variance.

Fig. 2. Anchor/pivot node placement.

to bound complexity, a fixed small number of gradient descent steps
(denoted by p) is used in our simulations.

IV. MEASUREMENT NOISE MODEL AND CRAMÉR–RAO BOUND

Pairwise distance estimates will inevitably contain measurement er-
rors, which are typically amplified with increasing distance between
nodes. The choice of measurement noise model depends on many fac-
tors, and is application specific. We shall adopt a certain multiplicative
normal noise model from the recent literature on node localization in
wireless sensor networks [2], [9], in which the distance measurement
error is proportional to the actual distance between the pair of nodes.
Thus, the measured distance dij between nodes i; j is assumed to be
drawn from

dij � �ij + �ijN 0; e2r (9)

where �ij is the actual distance between nodes i; j, and N (0; e2r) de-
notes a zero-mean normal random variable of variance e2r (henceforth
referred to as range error variance). We also assume that the measure-
ments are reciprocal (or symmetrized by averaging prior to further pro-
cessing); i.e., dij = dji.

In this section, we derive the CRB for node localization using the
above multiplicative normal noise model. Analogous derivations for
different noise models [3], [8] can be found in [8]. An explanation of
the difference between the received signal strength (RSS) noise model
described therein and our multiplicative noise model can be found in
the Appendix.
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Define the vector of sensor parameters  = (12 � � � N ). Each
i contains the location coordinates for node i, i.e., i = (xi; yi)
in the 2-D case. The unknown parameter vector for the N � 3 sen-
sors whose locations are unknown2 is defined as ��� = (���x ���y), with
���x = (x1; x2; . . . ; xN�3) and ���y = (y1; y2; . . . ; yN�3). Sensors i; j
perform pairwise observations dij . We assume that the observations
dij are statistically independent for i < j. The density function of
the observations dij given the locations of nodes i; j is denoted by
f(dij ji; j). Thus, the joint log-likelihood is

l(D; ) =

N

i=1 j2H(i);j<i

li;j

li;j = log f(dij j i; j) (10)

where H(i) is the set of nodes that are in the range of node i.
The CRB for coordinate �i is cov(�i) � [F�1��� ]ii, where F��� is the

Fisher information matrix (FIM), given by

F��� =
Fxx Fxy

F
T
xy Fyy

: (11)

The elements for the submatrix Fxx are given by

Fxx(k; l) =
�

j2H(k) E
@

@x
lk;j ; k = l

�IH(k)(l)E
@

@x @x
lk;l ; k 6= l

(12)

where IH(k)(l) is the indicator function (1 if l is in the range of k,
0 otherwise). Similar expressions hold for the Fxy;Fyy submatrices.
For the model in (9), these specialize to

Fxx(k; l) =

1
e j2H(k)

(x �x )

�
1 + 2e2r ; k = l

� 1
e
IH(k)(l)

(x �x )

�

2e +4

�
� 3 ; k 6= l:

(13)

The expression forFyy(k; l) is the same, with the x’s replaced by y’s,
whereas

Fxy(k; l) =

1
e j2H(k)

(x �x )(y �y )

�
1 + 2e2r ; k = l

� 1
e
IH(k)(l)

(x �x )(y �y )

�
1 + 2e2r ; k 6= l:

(14)

V. SIMULATION RESULTS

In this section, we compare various MDS algorithms in the context of
node localization in sensor networks. In addition to the aforementioned
approaches, we also include in the comparison an iterative algorithm
recently proposed by Costa et al. in [3]. Costa’s algorithm is based on
the principle of majorization. The idea behind majorization is simple.
Instead of directly minimizing a complicated cost/stress function, ma-
jorization uses a simpler (usually quadratic) majorizing function that
lies over the said cost/stress function and is equal to it at the current
parameter estimate. Minimizing the majorizing function thus yields a
new parameter estimate whose cost/stress is lower than or equal to that
of the previous one. Continuing in this fashion yields a sequence of pa-
rameter estimates of decreasing cost/stress values. When the difference
between the previous and the current cost values becomes smaller than
a threshold � the algorithm terminates. This is guaranteed due to the
fact that a single iteration can reduce or maintain, but cannot increase
the cost, which is also bounded from below. Costa’s algorithm can be
executed in a distributed fashion [3].

Network nodes are considered to be uniformly distributed in a square
with area equal to 1, i.e., the x and y coordinates of the sensor nodes
are uniformly distributed in [0; 1]. We employ the alignment procedure

2In the 2-D case, we need thre anchor nodes.

TABLE I
COMPUTATIONAL COMPLEXITY ORDERS FOR FULL CONNECTIVITY (N IS

NUMBER OF NODES, m IS NUMBER OF SPATIAL DIMENSIONS)

TABLE II
COMPUTATIONAL COMPLEXITY ORDERS FOR PARTIAL CONNECTIVITY (s IS THE

AVERAGE NUMBER OF DISTANCE MEASUREMENTS COLLECTED BY A NODE)

described in [5], where necessary, in order to estimate the absolute co-
ordinates, and adopt root mean-squared error (RMSE) as our estimation
performance metric, as follows:

RMSE :=
N

i=1 (xri � xei)2 + (yri � yei)2

N
(15)

where xei; yei are the estimated coordinates, and xri; yri are the actual
coordinates of sensor i. The computational complexity orders of the
various algorithms under consideration are listed in Tables I and II, for
the case of full and partial connectivity, respectively.

The baseline3 MDS algorithm performs PCA of the doubly centered
matrix of squared distances, and is henceforth referred to as PCA-based
MDS. For Costa’s algorithm, we tried both random initialization and
the alternative initialization strategy suggested in [3]. The former yields
unsatisfactory results that do not improve with decreasing error vari-
ance; the latter often yields complex coordinates when the triangle in-
equality fails due to measurement errors. It is clear that Costa’s algo-
rithm is sensitive with respect to initialization and could benefit from a
better “warm start.” For this reason, we also tried using our adaptation
of Fastmap to initialize Costa’s iteration.

Fig. 3 shows the RMSE performance of the various algorithms
(PCA, Fastmap, Fastmap + SD; Fastmap + Costa, and Costa with
random initialization) for a network of 80 sensors, as a function of
e2r . Distance measurements were drawn from the multiplicative noise
model in (9). The corresponding CRB is also plotted as a benchmark.
For the SD step of the proposed algorithm (Fastmap+SD), a step-size
of � = 0:01 and p = 10 SD iterations were used. The convergence
threshold in Costa’s algorithm was set to � = 0:1. From Fig. 3,
we observe that stand-alone Fastmap exhibits poor performance,
which quickly degrades with increasing range error variance. When
randomly initialized, Costa’s algorithm also performs poorly in this
setup, and its performance does not improve with decreasing error
variance. Fastmap + SD and Fastmap + Costa are the best options
from the viewpoint of RMSE performance, and remain relatively close
to the CRB, especially for low-range error variance. Interestingly, the
proposed algorithm is not only less complex, but also more accurate
than PCA. This is partially attributed to the fact that PCA uses double
centering, which colors the noise, whereas the proposed algorithm
directly aims to minimize the stress function.

Fig. 4 shows corresponding results for a network of 200 nodes (� =
0:005; the remaining setup is the same as in Fig. 3). The estimation

3PCA-based MDS is not directly applicable in the case of partial connectivity.
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Fig. 3. RMSE performance versus measurement range error variance; N =

80, fully connected network, multiplicative normal measurement noise, 100
Monte Carlo runs.

Fig. 4. RMSE performance versus measurement range error variance; N =

200, fully connected network, multiplicative normal measurement noise, 100
Monte Carlo runs.

accuracy of PCA, Fastmap+SD, and Fastmap+Costa, improves rela-
tive to Fig. 3, as expected. Fastmap does not benefit, due to the lack of
(implicit or explicit) averaging, while Costa’s algorithm with random
initialization performs slightly worse than in Fig. 3.

We also tried an additive measurement noise model, and the resutls
were qualitatively similar. The same is true when the multiplicative
noise is log-normal, instead of normal.

Fig. 5 shows the average computational cost in floating-point opera-
tions (FLOPS) of Fastmap + SD and Fastmap+Costa, as a function of
the number of nodesN . We observe that Fastmap+SD exhibits signifi-
cantly lower complexity (up to five times lower) than Fastmap+Costa.
The values of the step-size� used for the different values ofN are listed
in Table III.

In all simulation results presented so far, the network was assumed
to be fully connected, i.e., distance measurements were available for
each pair of nodes in the network. We now switch to partially con-
nected scenarios. We assume that nodes which are further apart than

Fig. 5. Average computational cost in FLOPS versus number of nodes; fully
connected network, e = 0:1, 50 Monte Carlo runs. For Costa’s algorithm,
� = 0:1.

TABLE III
CHOICE OF STEP-SIZE � AS A FUNCTION OF THE NUMBER OF NODES N

Fig. 6. RMSE performance and CRB for limited measurement range = 0:14

(weights corresponding to actual distances greater than this limit are set to zero);
N = 80; � = 0:015, 100 Monte Carlo runs. For Costa’s algorithm, � = 0:1.

a certain threshold (radio range) cannot hear each other, the corre-
sponding distance measurement is marked as unavailable, and the as-
sociated weight in the stress function is set to zero. An exception is
that every node is assumed to be within range from each of the three
anchor/pivot nodes. We adopt the multiplicative normal noise model in
(9), and consider two cases: in the first, the measurement range is 0.14,
and in the second it is 0.3. Figs. 6 and 7 show the RMSE performance of
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Fig. 7. RMSE performance and CRB for limited measurement range = 0:3;
N = 80; � = 0:013, 100 Monte Carlo runs. For Costa’s algorithm, � = 0:1.

TABLE IV
CHOICE OF STEP-SIZE � AS A FUNCTION OF

MEASUREMENT RANGE (N = 80 NODES)

Fig. 8. Average computational cost in FLOPS versus number of nodes for lim-
ited measurement range = 0:14 (measurements corresponding to actual dis-
tances greater than 0.14 are missing); multiplicative normal measurement noise,
e = 0:1, 50 Monte Carlo runs.

Fastmap+SD; Fastmap+Costa, and the CRB (which accounts for the
missing data) for the two cases, as a function of range error variance,
forN = 80 nodes. Table IV lists the values of � used in the SD iteration
for the three different connectivity scenarios (fully connected, partially
connected with measurement range equal to 0.3, or 0.14) and N = 80.
For Fastmap + SD, we tried two different values for the number of
SD iterations: p = 10 and p = 30. From Figs. 6 and 7, we observe

Fig. 9. Average computational cost in FLOPS versus number of nodes for lim-
ited measurement range= 0:3; multiplicative normal measurement noise, e =

0:1, 50 Monte Carlo runs.

that the RMSE performance of Fastmap + Costa is better than that of
Fastmap+SD with p = 10 iterations, and comparable to Fastmap+SD
with p = 30 iterations. The corresponding FLOP counts in Figs. 8 and
9 show that Fastmap + SD with p = 10 maintains its computational
complexity advantage compared to Fastmap+Costa, although the gap
is somewhat smaller than in the case of full connectivity. Increasing
p improves the RMSE performance of Fastmap + SD, but at the cost
of computational complexity. For very sparse networks, it appears that
Fastmap+Costa is preferable to Fastmap+SD if accuracy is the prime
consideration.

VI. CONCLUSION

We have proposed a hybrid two-stage (Fastmap + SD) node local-
ization algorithm that offers good performance at low complexity when
every node can estimate its distance from the anchor nodes. The new al-
gorithm employs Fastmap, coupled with judicious selection of anchor
nodes that double as pivots, to generate a computationally cheap yet
sufficiently accurate initialization for gradient descent. We also pro-
posed using our adaptation of Fastmap as initialization for Costa’s
algorithm. Extensive simulations indicate that, in the context of our
present application: i) Fastmap + SD uniformly outperforms the clas-
sical PCA-based MDS, both in terms of complexity and in terms of
estimation accuracy; ii) our adaptation of Fastmap is an effective ini-
tialization for Costa’s algorithm, leading to a substantial reduction in
RMSE; and iii) Fastmap+ SD and Fastmap+Costa yield comparable
RMSE performance, but Fastmap + SD affords considerable reduc-
tion in computational complexity, especially for dense networks. For
very sparse networks, it appears that Fastmap + Costa is preferable to
Fastmap + SD if accuracy is the prime consideration. We have also
derived the pertinent CRB for the multiplicative noise model in [2],
[9], which was adopted for most of our simulations. Fastmap+SD and
Fastmap+Costa operate close to the CRB for dense networks, but there
is a measurable performance gap for sparse networks.

Wireless sensor nodes are battery-operated, so energy is an issue.
Energy spent in communication typically far outweighs that spent
in processing. Energy costs associated with communication between
nodes can be controlled by restricting communication to nearby
neighbors, and developing distributed implementations. The Fastmap
step of the proposed algorithm is naturally distributed, whereas
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distributed implementation of gradient descent can be developed
along known lines [1], [7].

APPENDIX

NORMAL VERSUS LOG-NORMAL

MULTIPLICATIVE NOISE MODELING

In [3] and [8], the power received at node i from node j, mea-
sured in decibels (dB), is modeled as Pij = �Pij + v, where
�Pij is the mean power, and v is a zero-mean Gaussian random
variable of standard deviation �. The mean power is modelled as
�Pij = P0 � 10nplog10(�ij=�0), where P0 is the mean power for a
reference distance, �0, and np is the path loss exponent. It follows that

P0 � Pij = P0 �
�Pij � v = 10np log10

�ij
�0
� v (16)

and the associated distance estimate is given by [3]

di;j = �010
(P �P )=10n : (17)

Substituting Pij = �Pij+v and �Pij = P0�10np log10 (�ij=�0) yields

dij = �i;j10
�v=10n : (18)

Notice that the noise factor is log-normal, whereas in the model of [2]
and [9] (also adopted herein), the noise factor is normally distributed.
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