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Abstract—We present a frequency-domain technique based
on PARAllel FACtor (PARAFAC) analysis that performs mul-
tichannel blind source separation (BSS) of convolutive speech
mixtures. PARAFAC algorithms are combined with a dimen-
sionality reduction step to significantly reduce computational
complexity. The identifiability potential of PARAFAC is exploited
to derive a BSS algorithm for the under-determined case (more
speakers than microphones), combining PARAFAC analysis with
time-varying Capon beamforming. Finally, a low-complexity
adaptive version of the BSS algorithm is proposed that can track
changes in the mixing environment. Extensive experiments with
realistic and measured data corroborate our claims, including the
under-determined case. Signal-to-interference ratio improvements
of up to 6 dB are shown compared to state-of-the-art BSS algo-
rithms, at an order of magnitude lower computational complexity.

Index Terms—Adaptive separation, blind speech separation, ,
joint diagonalization, PARAllel FACtor (PARAFAC), permutation
ambiguity, underdetermined case.

I. INTRODUCTION

B LIND source separation (BSS) aims to estimate multiple
source signals mixed through an unknown channel, using

only the observed signals captured by a set of sensors. There are
diverse potential applications of BSS in various areas, including
speech processing, telecommunications, biomedical signal pro-
cessing, analysis of astronomical data or satellite images, etc.
In this paper, we focus on BSS of speech signals recorded in
a reverberant environment. In this situation, multiple attenuated
and delayed versions of each speaker signal are captured by each
microphone, which results in a problem of blind separation of
convolutive speech mixtures. This is a key problem in applica-
tions such as teleconferencing or mobile telephony, where mul-
tiple speaker separation or speaker-background separation can
be crucial for human intelligibility and automatic speech recog-
nition.
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BSS techniques usually assume certain properties on the
sources or the mixing system and capitalize on a separation
criterion that imposes the same properties on their estimates.
In BSS of speech signals, a significant attribute that can be
exploited is the inherent nonstationarity of such signals. Speech
signals are in fact considered to be nonstationary for durations
greater than 40 ms [1]. Several BSS algorithms that exploit
nonstationarity have been proposed in the simple case of
instantaneous linear mixtures, e.g., [2]. In the more realistic
case of convolutive linear mixtures, time-domain [3], [4] and
frequency-domain [5]–[9] methods have been proposed. We
refer to [10] for a categorization of existing convolutive BSS
methods (see also Section II).

Exploiting the nonstationary nature of speech signals, the
BSS problem can be solved via the use of second-order-statis-
tics (SOS), assuming uncorrelated sources. Thus, the problem
reduces to estimation of the mixing matrix that minimizes
a measure of total cross-correlation. If the mixing system is
stationary, the solution can be obtained by considering multiple
cross-correlation lags, which yields a Joint-Approximate-Di-
agonalization (JAD) problem [11], [12]. Such an approach was
proposed in, e.g., [13], for BSS of instantaneous mixtures, and
in, e.g., [5], [6], [8], for BSS of convolutive mixtures in the
frequency domain. The main challenges towards engineering
pragmatic BSS algorithms for convolutive speech mixtures in
the frequency domain are the following.

1) Building a fast and robust separation algorithm that solves
the JAD problem for each frequency bin.

2) Dealing with under-determined cases, i.e., when the
number of sources exceeds the number of microphones.
This entails identifiability issues and requires appropriate
crosstalk reduction techniques, which have not been prop-
erly addressed to date in this context.

3) Effectively dealing with the frequency-dependent permu-
tation and scaling ambiguity problems.

4) Dealing with nonstationary mixing environments, i.e.,
solving the BSS problem adaptively.

In this paper, we propose original contributions for each
of these four challenges. First, we show that solving a JAD
problem for each frequency is equivalent to fitting a conju-
gate symmetric parallel factor (PARAFAC) model for each
frequency. PARAFAC is a powerful multilinear algebra tool
for tensor decomposition in a sum of rank-1 tensors. In this
sense, PARAFAC is one possible generalization of the matrix
SVD to higher order tensors. PARAFAC was introduced in [14]
in 1970 and slowly found its way in various disciplines such
as Chemometrics and food technology [15], exploratory data
analysis [16], wireless communications and array processing
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[17], [18], and BSS [19], [20]. In the context of this paper,
exploitation of the algebraic structure of the PARAFAC model
for each frequency allows a dimensionality-reduction step be-
fore the separation stage. This results in a far lower complexity
than state-of-art JAD techniques [5], [6], [8], with guaranteed
convergence.

Next, we show that, unlike state-of-art JAD algorithms, the
strong uniqueness properties of PARAFAC allow us to identify
the mixing matrix transfer function in certain under-determined
cases. For the simpler case of instantaneous mixtures, an anal-
ogous result was established in [20]. We propose to build the
de-mixing matrix by employing a time-varying Capon beam-
forming-based crosstalk reduction technique, and demonstrate
good performance for under-determined cases.

The third contribution of this paper is a low-complexity
technique to deal with the frequency-dependent permutation
problem. Our method consists of clustering the (properly
scaled) estimated source profiles via the k-means algorithm,
after which the permutation matrices are estimated in a single
step, in a non-iterative way. This clustering strategy results in a
significant reduction of the complexity, compared to the fully
iterative techniques proposed in [8], [21], and [22], without
sacrificing performance.

Finally, we derive an adaptive version of our batch blind
speech separation algorithm, based on one of the adaptive
algorithms that we have developed in [23] to track a PARAFAC
decomposition. This is important to track changes in the
acoustic environment (e.g., due to speaker movement), and it
also yields complexity savings as a side benefit—thus bringing
the overall solution closer to practice.

Preliminary results have appeared in conference form in [24]
and [25]. This journal version incorporates 1) a much faster sep-
aration algorithm, 2) a novel permutation-matching algorithm,
3) a technique to deal with the under-determined case, 4) an
adaptive version of the algorithm, and 5) extensive experiments.

This paper is organized as follows. In Section II, we give
the general formulation of the frequency-domain BSS problem
in terms of JAD of a set of matrices for each frequency bin.
In Section III, we establish the link between the JAD for-
mulation and its equivalent PARAFAC reformulation and we
report existing results concerning uniqueness of PARAFAC.
In Section IV, we explain our approach for batch compu-
tation of the PARAFAC decomposition for each frequency
bin. In Section V, we explain how scaling and permutation
ambiguities can be corrected. In Section VI, we address the
under-determined case and we show how a time-varying Capon
beamforming technique can be employed for crosstalk reduc-
tion. In Section VII, we discuss an adaptive version of our
batch algorithm. Section VIII reports numerical results, and
Section IX summarizes our conclusions.

Notation: A third-order tensor of size is denoted
by a calligraphic letter , and its elements are denoted by

and . A boldface cap-
ital letter denotes a matrix and a boldface lowercase letter

a vector. The transpose, complex conjugate, complex conju-
gate transpose and pseudo-inverse are denoted by
and , respectively. denotes the Frobenius norm of

. The Kronecker product is denoted by . The Khatri–Rao

product (or column-wise Kronecker product) is denoted by ,
i.e., . The

identity matrix is denoted by . denotes the expec-
tation operator. We will also use a Matlab-type notation for ma-
trix sub-blocks, i.e., represents the matrix built after
selection of rows of , from the th to the th, and

columns of , from the th to the th. is
used to denote selection of all rows and to denote se-
lection of all columns. Similarly, represents a selection
of samples of the vector , from the th to the th.

II. PROBLEM STATEMENT

A. Data Model

Let us consider mutually uncorrelated speaker signals
captured by microphones and

denote by the recorded mixtures.
The noise-free convolutive model is written as follows:

(1)

where is the linear convolution operator. The ma-
trix represents the mixing system at time-lag . Its
elements are coefficients of the room impulse re-
sponse (RIR) between source and microphone , modeled
as a finite-impulse response (FIR) filter. denotes the max-
imum (unknown) channel length. To estimate the sources

, the objective is to find an
approximate inverse-channel matrix , such that

(2)

where is the length of the inverse-channel impulse response.
To solve this problem, one can resort to a time-domain ap-

proach or a frequency-domain approach. In time-domain ap-
proaches, should be chosen at least equal to the unknown
true channel order for all reflections to be modeled, and much
larger than for accurate estimation. Time-domain methods
are sensitive to channel-order mismatch [10], and their identi-
fiability properties are not adequately understood, especially in
under-determined cases.

Frequency-domain BSS methods begin by mapping the
problem to the frequency domain by applying the dis-
crete-Fourier transform (DFT) on the observed signals

(3)

where is a frequency index, is a
frame index, , and

. The th column of
represents the spatial signature of the th speaker in the fre-
quency domain, at frequency . Note that the approximation
(3) is exact only for periodic signals , or equivalently, if the
time-convolution is circular. This approximation is satisfactory
if is significantly larger than the maximum length of the
mixing channels [6]. To limit the circularity effect, a spectral
smoothing approach is commonly used [26]. In practice, we



NION et al.: BATCH AND ADAPTIVE PARAFAC-BASED BLIND SEPARATION OF CONVOLUTIVE SPEECH MIXTURES 1195

will compute the DFT of consecutive overlapping windowed
frames (a Hanning window will be used).

The main advantage of a frequency-domain approach is to
transform the initial convolutive time-domain model into a set
of instantaneous BSS problems, for which several efficient algo-
rithms have been proposed in the literature. However, the main
difficulty with BSS in the frequency-domain is the need to cope
with the permutation and scaling ambiguities, i.e., the mixing
matrix is estimated up to an arbitrary permutation and scaling of
its columns for each frequency. Before converting the estimated
source signals back to the time domain, the scaling ambiguity
must be compensated and a permutation matching procedure
must be applied to associate the spectral components belonging
to the same source. Different methods have been proposed to
resolve the permutation ambiguity; see [10] for a recent survey.
In Section V, we will propose a new variation of the permu-
tation correction techniques proposed earlier in [8], [21], [22].
This yields significant complexity reduction relative to the fully
iterative methods in [8], [21], [22], without sacrificing perfor-
mance.

Before proceeding further, we list our main assumptions.
Assumption 2.1: The speaker signals are zero-mean, mu-

tually uncorrelated.
Assumption 2.2: The number of speakers is known, but not

necessarily smaller than the number of microphones 1.
Assumption 2.3: The impulse responses of all mixing filters

are assumed constant during the recordings2.

B. Channel Estimation

We consider that each recorded signal is
a vector of samples. Let us divide the whole data block into

non-overlapping sub-blocks, such that each sub-block con-
tains snapshots. These sub-blocks are indexed
by , and the th sub-block corresponds to the set
of snapshots between instants and . We denote by

the duration of each sub-block, where is the
sampling frequency. Under this framework, the autocor-
relation matrix can be written
as

(4)

where is the autocorrelation
matrix of the speaker signals in the th sub-block for fre-
quency-bin . Algorithms that exploit nonstationarity must
select such that the successive sub-blocks are uncorrelated.
For speech applications, the sub-block duration must be
at least 40 ms, as this is generally the lower bound for which
speech is considered nonstationary [1]. The statistics are then
sufficiently different from one time-lag to another, such that

1If the number of speakers is unknown, it can be estimated as outlined in
Section IV-B.

2If the mixing environment is varying, the BSS problem has to be solved
adaptively. This issue is addressed in Section VII.

one can simultaneously exploit the sub-blocks, for a given
frequency bin

...
...

... (5)

Since we assume mutually uncorrelated speaker signals, we
postulate diagonal autocorrelation matrices , for

and . Estimation of thus
resumes to a JAD problem for each frequency-bin.

In practice, the exact autocorrelation matrices are
unavailable but can be estimated from the samples of

. For each sub-block of samples, we compute the
-point DFT of several consecutive overlapping frames

(each consisting of temporal samples) with a -point window
(typically a Hanning window). For instance, if denotes the
overlapping factor (e.g., ), then the number of over-
lapping frames within each sub-block is

(6)

where is the number of samples in the overlap-
ping segment. The sample autocorrelation matrix estimate, for
frequency and sub-block , is then given by

(7)

where is a super-index that combines and as follows:

(8)

Typical JAD-based techniques such as [5], [6], and [8] require
, for , therefore they cannot be

employed in the under-determined case . In the following
section, we show that each JAD system (5) can equivalently
be written as the PARAFAC decomposition of the third-order
tensor , built by stacking the matrices

one after each other along the third
dimension. This PARAFAC-based reformulation was used in
[20] for instantaneous mixtures. Its generalization to convolved
mixtures implies that the PARAFAC model is now valid for each
frequency-bin. One major benefit of the PARAFAC reformu-
lation over the aforementioned JAD techniques is that it does
not necessarily require for the mixing matrix
to be unique (up to nonsingular scaling and permutation of its
columns).

III. LINK TO THE PARAFAC MODEL

A. Reformulation of the Problem

In this section, we show that (5) is equivalent to a
PARAFAC model. Each element of the tensor is
denoted by , with , and

. The elements of are denoted by .
We build the matrix whose element on the th row
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and th column, denoted , is the th diagonal element
of , i.e., the power spectral density of the th source
within the th sub-block at frequency-bin . It follows that the
elements can be written as a sum of triple products

(9)

Equation (9) is known as the conjugate-symmetric PARAFAC
decomposition of the tensor and the number of com-
ponents is the rank of this tensor [27]. By computing the
PARAFAC decomposition of independently for each fre-
quency-bin, we obtain the entire collection of frequency-do-
main mixing matrices and source power
spectra , up to frequency-dependent per-
mutation and scaling of columns. In the next section, we discuss
the uniqueness conditions for conjugate-symmetric PARAFAC,
under which these matrices are identifiable up to the stated in-
determinacies.

B. Identifiability

The tensor is built from elements of the matrices
and combined as in (9). The conjugate-symmetric

PARAFAC decomposition of in (9) is said to be es-
sentially unique if any other matrix pair and that
satisfies (9) is related to and via

(10)

with diagonal matrices satisfying
and a permutation matrix. Therefore, the ambiguities of
the PARAFAC model are the same as in JAD formulation,
i.e., and are estimated up to arbitrary scaling and
permutation of their columns. The way these ambiguities can
be corrected will be discussed in Section V.

A first uniqueness result requires the notion of Kruskal-rank
of a matrix [27].

Definition 1: The Kruskal rank or k-rank of a matrix , de-
noted by , is the maximum number such that any set of
columns of forms a linearly independent set.

The following theorem establishes a condition under which
essential uniqueness of the conjugate-symmetric PARAFAC de-
composition (9) is guaranteed [27], [28].

Theorem 1: The decomposition (9) is essentially unique if

(11)

It is worth noting that condition (11) is sufficient but not nec-
essary for identifiability. For a different uniqueness condition,
we assume that . In [29], a relaxed identifiability con-
dition for the conjugate-symmetric PARAFAC model has been
derived and is presented in the following theorem.

Theorem 2: Suppose that the elements of and are
drawn from a jointly continuous distribution. If and

(12)

where

if
if

then and are essentially unique with probability one.
In our context, corresponds to the number of microphones

and to the number of sources. The following Table gives the
upper bound for such that (12) is satisfied, for different values
of [20]:

From this table, it is clear that the PARAFAC reformulation
of the frequency-domain BSS problem allows, in theory, unique
identification of the mixing matrices , for ,
even in certain under-determined cases. This is a major advan-
tage over typical JAD techniques, which require to solve
(5). Note also that invoking uniqueness properties of PARAFAC
is a way to prove explicitly that joint-decorrelation of a set of
matrices is a sufficient criterion for unique separation.

In the next section, we discuss the batch implementation of
the PARAFAC decomposition to separate the sources in the fre-
quency domain, in a static mixing environment.

IV. BATCH IMPLEMENTATION

A. Matrix Representation of the Tensor

Most of the algorithms designed to compute the PARAFAC
decomposition of a tensor use the different matrix representa-
tions of this tensor. In this paper, we will use the following

matrix representation of :

(13)

with and . By virtue
of the conjugate-symmetric PARAFAC model, is linked
to the unknown matrices and as follows:

(14)

B. Computation of the PARAFAC Decomposition

In order to estimate the matrices and that fit
the PARAFAC model of optimally, an alternating least
squares (ALS) algorithm is commonly used. The idea of ALS
is to update these matrices in an alternating way at each itera-
tion. We can tentatively ignore symmetry in the model, i.e., treat

and as independent variables. Conjugate sym-
metry of the data in (14) ensures that there is little loss of ef-
ficiency in doing so; in the end we can either use one of the
two matrix estimates to extract , or average out the two.
We refer to [14], [17], and [30] for further details on ALS. The
advantage of ALS is that it works under minimal (model identi-
fiability) conditions; but it can be slow to converge when dealing
with ill-conditioned data. An enhanced line search scheme can
be inserted in the ALS loop to speed up convergence, as pro-
posed in [31] for the real case and in [32] for the complex case.
One can also resort to a Newton-type optimization technique
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such as the Levenberg–Marquardt algorithm [33]. Note also that
the complexity of these algorithms can be significantly reduced
by a dimensionality-reduction preprocessing step [34]. Another
very efficient algorithm to compute the PARAFAC decomposi-
tion was proposed in [35] and used in [20], [36]. This algorithm,
that we call PARAFAC-SD (for “PARAFAC via Simultaneous
Diagonalization”) computes the PARAFAC decomposition of
a rank- tensor via joint-diagonalization of
a set of symmetric matrices of size . It can be applied
only under the condition , where the roles of

and can be permuted. This condition is often met in
practice, where time is typically the longest dimension of the
observed tensor. Due to its high accuracy and low complexity,
the PARAFAC-SD algorithm is a good candidate to solve the
BSS problem in this paper. We now briefly describe the prin-
ciple of this algorithm, as it applies to our particular context.
Suppose that , which is a realistic assump-
tion for the BSS problem. Let us consider the matrix

of (14). If , then by virtue
of a Khatri–Rao product property, .
Under the assumption is generically rank- . As a
consequence, is rank- and its reduced-size SVD can be
written as

(15)

where is diagonal and
. Note also that when the number of speakers

is a priori unknown, it can be estimated as the number of sig-
nificant singular values of , for a given . The core idea
of PARAFAC-SD is to link (14) and (15). Given that is
rank- , there exists a nonsingular matrix , such
that

(16)

Estimation of is sufficient to compute the PARAFAC de-
composition. Obviously, . Also, the
columns of are the vectors

, which are the vectorized representations of the rank-1
matrices . As a consequence, ,
can be determined, up to a scaling factor, as the left singular
vector associated with the largest singular value of the corre-
sponding rank-1 matrix. The key point to finding is to im-
pose that has a Khatri–Rao structure. It was
shown in [35] for the general unsymmetric PARAFAC decom-
position that diagonalizes a set of symmetric ma-
trices by congruence. For further details
on the way these matrices are built, we refer to [20], [35], and
[36].

This reformulation has two major advantages over classical
JAD-based BSS algorithms: 1) PARAFAC is uniquely identifi-
able in certain under-determined cases (see Section III-B), thus
proving uniqueness of the (estimated) channel matrix,
2) while usual JAD-based techniques jointly diagonalize the ini-
tial system of matrices of size , PARAFAC-SD fully cap-
italizes on the strong algebraic structure of the PARAFAC model

to end up with a smaller JAD problem comprising matrices of
size . The resulting complexity reduction is very signifi-
cant, even with short signals. Let us consider a simple example
with microphones, speakers, and a short signal
split into epochs. For each frequency, instead of jointly
diagonalizing 12 matrices of size 4 4, PARAFAC-SD jointly
diagonalizes 2 matrices of size 2 2. With a large FFT length
(e.g., 1024 is typical), the complexity advantage over classical
JAD methods becomes very pronounced.

The compacted problem for each frequency bin can be solved
by any JAD (or PARAFAC) fitting algorithm. The overall accu-
racy of PARAFAC-SD depends on the algorithm used for this
last step. In practice, we will use the extended QZ-iteration [37],
as in the original paper [35].

Once the PARAFAC-based separation stage is complete, the
scaling and permutation ambiguities have to be corrected. This
second stage is addressed in the following section.

V. SCALING AND PERMUTATION AMBIGUITIES

Let denote an estimate of the matrix . In the case
of perfect estimation, these matrices are linked as follows:

(17)

where is an unknown permutation matrix and an
unknown diagonal matrix. In order to compensate scaling and
permutation ambiguities, the task is now to estimate and

.

A. Scaling Ambiguity

One possible approach to compensate the scaling ambiguity
is the so-called minimal distortion principle [26], [38]. We
choose as

(18)

where is a matrix all of whose entries are and
retains only the diagonal elements and makes the non-

diagonal elements zero. This choice of can be interpreted
as follows. If is full-column rank for every frequency

bin, we can form the demixing matrices
. The mixing system is characterized at frequency

by the following equation:

(19)

If we left-multiply both sides of (19) by , we get

(20)

It follows that

(21)

where denotes the th component of . In
case of perfect separation, the interpretation of (21) is that the th
output of the BSS algorithm is the average of all observations of



1198 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 6, AUGUST 2010

the th source across the sensors, when all other sources are
switched off. The task is now to estimate the permutation ma-
trices , such that the th output in
(21) strings together the spectral components originating from
the same source across all frequency bins.

B. Permutation Ambiguity

The spectral alignment is a very challenging problem. If
sources are present, there are possible permutations for each
frequency bin, which yields a difficult combinatorial problem.
Many techniques to solve the permutation problem have been
proposed in the literature and we refer to [10] for a survey. Sev-
eral techniques rely on geometric information, such as estima-
tion of the Direction Of Arrival (DOA), see [26] and references
therein. Other techniques rely on the consistency of the filter co-
effcients. The latter approach exploits prior knowledge about the
mixing filters and the solution can be achieved by requiring the
frequency response of the mixing filter to be continuous in

[39]. It is also possible to impose smoothness of the demixing
filter values in the frequency domain. This is done in [6] by re-
stricting the frequency domain updates of the demixing filter in
(2) to have a limited support in the time domain, i.e.,
for . Restricting the filter length may be problem-
atic in highly reverberant environments where long separation
filters are necessary to take all reverberations into account. It
is mentioned in [6] that if a long demixing filter length is
needed, one can choose an appropriately large frame size such
that the restriction due to the circular convolution ap-
proximation still holds. However, large values of significantly
increase the overall complexity. Another category of permuta-
tion correction techniques exploits properties of speech signals.
One commonly exploited property is the interfrequency correla-
tion of speech signal envelopes [40], [41], which is due to the na-
ture of speech production3. For instance, when the talker speaks
louder, all spectral components of the signal tend to increase
in level, and vice-versa. Based on this idea, several criteria and
associated sequential adjustment strategies have been proposed
to impose frequency-coupling between adjacent frequency bins,
see, e.g., [5], [9]. The major drawback of sequential adjustment
strategies is error propagation, i.e., an error made in the per-
mutation correction at frequency bin may strongly affect the
correction at following frequencies. To avoid this problem, one
possible approach is to use a clustering-based method to esti-
mate a frequency-independent reference profile (or centroid) for
each separated source, and then permute, for each frequency,
the frequency-dependent profiles such that they all match a
different reference profile. This clustering-based idea has been
exploited in, e.g., [8], [21], [22]. The three key ingredients of
these clustering-based techniques are as follows:

1) the definition of the quantities that are clustered, i.e., the
source profiles (e.g., signal envelopes, log-power profiles,
etc.);

3According to the popular source-filter model of speech production, the exci-
tation is filtered through a cascade of second-order oscillators resulting in strong
spectral correlation [1].

2) the measure used to quantify the matching level between
the centroids and the profiles (e.g., correlation, distance,
etc.);

3) the clustering strategy.
In [21], the profile of a separated signal is taken to be
its envelope, . In [22], the profile is
a certain dominance measure. In [8], the profile for the th sepa-
rated source is defined by its centered log-power spectral density

. The length of the
profiles is also an important parameter for clustering-based ap-
proaches to be accurate, especially for short signals. In prac-
tice, the profiles are computed for overlapping frames
over the whole signal. Once the profiles are computed, the task
is to compute the centroids and perform clustering. The under-
lying assumption of clustering-based approaches is that profiles
coming from the same source, but at different frequencies, are
still more similar than those from other sources. In order to as-
sociate each source profile to a centroid for each frequency, one
can possibly maximize correlation measures [21], [22] or mini-
mize distance measures [8] across the possible permutations
for each frequency. At this point, the clustering strategy is cru-
cial. In [8], [21], and [22], the centroids and the permutation ma-
trices are updated in an iterative way. For each iteration, the cen-
troids are first updated as the average over all frequencies of the
current source profiles. Then, the source profiles are permuted
so as to match the current centroids, according to the chosen
measure (distance in [8] or correlation in [21] and [22]). How-
ever, the computation of this measure for the permutations
and frequencies at each iteration entails a significant compu-
tational cost.

In this section, we propose a more efficient clustering strategy
to avoid this problem. Unlike the aforementioned fully iterative
methods, the updates of the centroids and permutation matrices
are not interleaved, which significantly reduces the complexity.
Our scheme can be summarized as follows.

Step 1. Computation of the Centroids: Let us define the
matrix that collects the profiles .

The matrix results from the concatenation of the
matrices . Since the profiles have been com-
puted for overlapping frames, holds a set of points varying
smoothly with time. The task is now to partition these points into

clusters. This can be done by application of the -means al-
gorithm on , which produces a frequency independent
centroid matrix . This centroid matrix is
such that the sum over all clusters, of the within-cluster sums of
point-to-cluster-centroid distances is minimized4.

Step 2. Finding the Permutation Matrices: For each fre-
quency bin, we now look for the permutation matrix

such that matches , according to the chosen
measure. One possible option [8] is to solve

(22)

4The �-means algorithm also produces a list of indices that assigns each of
the �� points to one of the � clusters. This list may assign more (or less) than
� points to each of the � clusters. We noticed through simulation results that
the assignment is however generally very close to � points per cluster which
confirms the validity of the aforementioned property of speech signals. Since
we have to assign exactly � points to each cluster, we only exploit the centroid
matrix�
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TABLE I
COMPLEXITY OF THE DIFFERENT PERMUTATION CORRECTION SCHEMES. � IS THE NUMBER OF ITERATIONS

where . Another option [21], [22]
is to solve

(23)

where denotes the correlation coefficient. To solve (22) or
(23), we compute the exhaustive set of measures for each fre-
quency and retain the permutation matrix that corresponds to
the best solution5.

The main feature in our scheme is that only Step 1 is iterative
and (22) or (23) is solved only once. This a major advantage over
the entirely iterative strategies used in [8], [21], [22], where (22)
or (23) are solved at each iteration.

C. Comparison Between Permutation Solvers

In this paragraph, we compare the complexity and the per-
formance of the following criteria to solve the permutation
problem: (C1) clustering of log-power profiles with a distance
measure (22), as proposed in [8], (C2) clustering of domi-
nance-profiles with a correlation measure (23), as proposed in
[22], (C3) clustering of envelope-profiles with a correlation
measure (23), as proposed in [21]. These criteria are combined
either with an entirely iterative clustering strategy, as in their
original version, or with the -means approach we proposed.
The complexity orders of the different combinations are re-
ported in Table I. It is clear that the clustering strategy that
we proposed has a lower complexity than its fully iterative
counterpart. This results from the benefit of only estimating the
centroids in an iterative way, instead of interleaving updates of
centroids and permutation matrices.

In Fig. 1, we compare the performance of the different permu-
tation solvers applied to arbitrarily permuted versions of the true
source profiles , i.e., we simulate the output of a perfect
separation stage. The residual frequency-independent permuta-
tion is resolved by a column-matching procedure, after which
we calculate the number of frequencies for which and

5To avoid the computation of �� distances at each frequency, one can use a
deflation approach. For a given frequency, the idea is to associate and remove
the best-matching centroid-profile pair from the list of candidates, then repeat
the process. This greedy approach is of course suboptimal, but works almost as
well in practice.

are perfectly aligned and we compute the percentage of
success. The latter is represented by Fig. 1 for sources.
The total execution time is also represented. From this figure, it
is clear that clustering the log-power-profiles seems to be a very
efficient solution to solve the permutation problem, since its per-
formance index is close to 100%, even with five sources of 2 s
only. In comparison, the two other criteria (dominance-profiles
and envelope-profiles) are more sensitive to the signal length.
As expected, the combination of our -means-based clustering
strategy with the three criteria allows a very substantial reduc-
tion of the complexity, relative to the entirely iterative approach.
Based on these observations, since clustering the log-power pro-
files with a -means-based strategy offers the best trade-off be-
tween complexity and performance, we will use this criterion
after the PARAFAC-based separation stage in real BSS situa-
tions. In Section VIII-H, we will compare the performance of
these different permutation-correction criteria, applied after a
PARAFAC-based separation stage, in a real BSS situation.

VI. UNDER-DETERMINED CASE

If is full-column rank for every frequency bin,
separation can be achieved in the frequency-domain by

, where is obtained
after correction of scaling and permutation ambiguities. The
separated sources are then estimated by applying the Inverse
DFT to . Alternatively, one can first
compute the demixing matrix filter in the time domain, by
taking the Inverse DFT of , after which
the deconvolution operation of (2) may be efficiently computed
via an overlap-add procedure. The latter approach will be used
in practice.

In the under-determined case, the problem is more difficult.
Under the uniqueness conditions reported in Section III-B,
PARAFAC allows to identify in a unique way, up to
scaling and permutation ambiguities. The latter are corrected
as explained in Section V. However, the resulting matrix
is not left pseudo-invertible and perfect separation is therefore
not possible. In this section, we show that substantial reduction
of crosstalk is still possible by using array processing methods,
in particular a time-varying version of Capon beamforming.
First, we notice that for a sufficiently short sub-block , the
probability that all sources have a high power spectral density
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Fig. 1. Performance of the three criteria C1, C2, and C3 in solving the permutation problem, combined either with the one-pass �-means clustering strategy or
the fully iterative strategy. In each figure, there are five clusters, each comprising six bars. Each cluster corresponds to a particular signal duration (2, 2.5, 3, 3.5,
or 4 s). Within each cluster, the bar labels from left to right are as follows. (1) C1 with k-means. (2) C1 iterative. (3) C2 with k-means. (4) C2 iterative. (5) C3 with
k-means. (6) C3 iterative. (a) Percentage of success, � � � sources, � � ����. (b) CPU time, � � � sources, � � ����.

simultaneously is low6 For instance, if sources among
have a long period of pause within sub-block , the under-deter-
mined problem almost resumes to a determined problem
for this sub-block. This suggests that crosstalk reduction should
be performed on a per-sub-block basis, to account for varia-
tions of crosstalk powers (note that our method automatically
adjusts to these variations; it does not require activity/pause
detection). The task is then to find a set of demixing matrices

, such that crosstalk
is reduced for each frequency and each sub-block. This can
be achieved by Capon beamforming. For a given source , a
given block and a given frequency , we look for a
beamforming vector such that

(24)

preserves the first term and suppresses the second. Here,
denotes the th column of after scaling and permutation
ambiguities correction. In (24), results from the sum of a
signal of interest and crosstalk signals. The vector that
minimizes the signal-to-interference ratio is the Capon beam-
former that solves

(25)

The solution of this problem is

(26)

6This is due to the time-varying spectral characteristics of speech sounds [1],
e.g., naturally occurring pauses in speech.

Capon beamforming is then applied at each frequency for each
source and each sub-block.

VII. ONLINE IMPLEMENTATION

In the previous sections, we considered a constant mixing en-
vironment and we proposed a batch PARAFAC solution of the
frequency-domain BSS problem. However, in real-world situa-
tions, the mixing system can be considered as constant only over
short time intervals, due to speaker mobility, fluctuations in the
environment, etc. Online adaptive BSS algorithms are therefore
of great interest [3], [42]. In this section, we show that the adap-
tation of the batch PARAFAC-based BSS technique to the online
case can be reduced to the problem of tracking one PARAFAC
decomposition for each frequency, for which we have recently
proposed efficient adaptive algorithms in [23].

Let us start with (14), which represents the PARAFAC model
of the output autocorrelation tensor , in terms
of its matrix representation . If the mixing
matrix is varying between two successive epochs, it has
to be indexed by time and the observed autocorrelation matrix
is now

(27)

where is the th column of . As a consequence,
the PARAFAC model, and equivalently the JAD formulation,
remain approximately valid only if the mixing-matrix
is almost constant over the consecutive time-lags. For a suf-
ficiently short time-interval , consisting of

successive time-blocks, we can thus write

(28)

where and
.
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Fig. 2. Impact of FFT length, 2-by-2 case, � � ���� s, � � ��� ms.

The problem can now be summarized as follows:

Given estimates of and estimate
and from the observed

matrices and

One possible solution to this problem is to apply a batch
PARAFAC algorithm repeatedly on the successive short inter-
vals . Although the batch PARAFAC-SD algorithm proved to
be very fast compared to existing JAD techniques, its adaptive
version would be very desirable. This is precisely the essence of
the PARAFAC-SDT (“PARAFAC via Simultaneous Diagonal-
ization Tracking”) algorithm proposed in [23]. PARAFAC-SDT
solves (16) adaptively by tracking first the SVD of be-
fore recursively updating and . For further details on
this algorithm, we refer to [23].

In principle, an adaptive permutation solver is also needed
to come up with a complete adaptive BSS solution. Thankfully,
as we explain in the next section, a side-benefit of tracking
using PARAFAC-SDT is that updates are inherently incre-
mental—thus naturally preserving the correct permutation,
provided that the adaptive algorithm is properly initialized.
Finally, there exist adaptive implementations of Capon beam-
forming, and these can be easily modified to derive a fully
online solution that is applicable in under-determined cases as
well.

VIII. SIMULATION RESULTS

A. Simulation Settings

In this section, we illustrate the performance of the batch
and online PARAFAC-based algorithms developed in this
paper. The autocorrelation tensor is computed as explained in
Section II-B, with a Hanning window and an overlap coefficient
fixed to 75%. In the simulations conducted in this section, we
compare our complete solution (PARAFAC-SD separation
stage followed by k-means clustering of log-power profiles
to align the separated spectral components) to the publicly
available complete JAD-based batch BSS algorithms proposed

in [6] and [5], labeled as “Parra” and “Rahbar,” respectively.
Parra’s algorithm is tested with a demixing-filter of length

, as in the original paper [6]7. Rahbar’s algorithm requires
the same input parameters as our algorithm, which allows a
totally fair comparison. In experiments with sources and

microphones, we will also compare our algorithm to the
JAD-based algorithm of [8], labeled as “Pham,” used with the
optimal parameters found by preliminary simulations (note that
only the implementation for the 2 by 2 case was found on the
web for this algorithm).

We have collected a set of nine different signals, consisting of
speakers (three females and six males) reading sentences during
approximately 30 s, with a sampling frequency kHz.
These signals are truncated to a chosen length, varying from ex-
periment to experiment. For the comparison between algorithms
to be fair, we average the performance over ten random draws
of sources chosen among the nine collected.

In the sequel, performance is assessed in a wide variety of
operational scenarios. In Sections VIII-C and VIII-D, we use
real recordings of RIRs, resulting from experiments conducted
in the context of hearing aid design [43], with two microphones.
In Section VIII-E, we use the RIRs measured by Westner in a
conference room [44]. In Sections VIII-F–VIII-H, we use artifi-
cial RIRs generated by the method proposed in [45], in order to
study the impact of several parameters such as the reverberation
time or the location of sources and microphones.

B. Performance Evaluation

From (2), the separated sources are given by

(29)

The output SIR for is defined as the ratio of the power of
the portion of coming from source , to the power
from crosstalk signals [7]:

SIR (30)

In the experiments of this section, we will convolve speech
signals with pre-measured real-world or artificially generated
RIRs, so we have access to the microphone signals

, recorded when only the th source is present. There-
fore, we calculate the SIR for source as8

SIR (31)

We will use the SIR averaged over all sources as a single overall
performance measure. The input SIR, i.e., the SIR obtained
without any processing, will also be given as a baseline.

7Preliminary results with other filter lengths have shown that ��� offers the
best performance in most (but not all) of the cases considered in this section.

8In the under-determined case where Capon beamforming is used on a per-
sub-block basis, the inverse filter varies across sub-blocks. In this case, ���
is computed in a similar way, except that �� 		
 and �� 		
 in (30) are built by
concatenation of their successively estimated sub-blocks.
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Fig. 3. Impact of signal duration, 2-by-2 case, � � ����� � � ���� s, � � ��� ms. (a) Evolution of SIR. (b) Evolution of execution time.

C. Experiment 1: Two-by-Two Case

In this first experiment (Figs. 2 and 3), we compare the dif-
ferent batch algorithms with sources and micro-
phones. We have used real recordings of RIRs, resulting from
experiments conducted in the context of hearing aid design [43].
The chosen room is a semi-reverberant classroom with dimen-
sions by by (named PC335 in the database).
The reverberation time is around 130 ms. These recordings
allow to choose between different positions of the speakers on
a circle around the microphones by selection of angles between
0 and 338 . The radius of the circle is . The signal duration
is fixed to 10 s and the duration of each sub-block is
s, i.e., the recordings are partitioned in segments. Per-
formance is averaged over five different pairs of positions, one
source being fixed at 0 while the second is successively posi-
tioned at 45 , 90 , 135 , 180 , and 225 . As mentioned pre-
viously, performance is also averaged over ten random pairs of
sources.

In Fig. 2, we illustrate the impact of the FFT length on
the output SIR. The average input SIR was 2.1 dB in this
experiment. It turns out that PARAFAC-SD and Pham’s algo-
rithms achieve similar SIR and outperform Rahbar’s and Parra’s
techniques. Comparison of execution times (not shown here) re-
vealed that PARAFAC-SD was between 1 and 2 decades faster
than the three other batch algorithms.

In Fig. 3, we test the four algorithms on truncated recordings,
whose duration is varying from 2 to 10 s. The FFT length is
fixed to . Figs. 3(a) and (b) represent evolution of the
output SIR and execution time, respectively. For a short signal
(between 2 and 4 s), our method substantially outperforms
Parra’s and Rahbar’s techniques and slightly outperforms
Pham’s method. This results from the combination of a fast
and accurate PARAFAC-based separation stage, followed by a
fast and accurate permutation correction scheme, which proved
to work well even with short signals (see Section V-C). From
4 s, PARAFAC-SD and Pham’s algorithms perform similarly,
and outperform Rahbar’s and Parra’s algorithms. Note that
PARAFAC-SD is always faster than the three other algorithms,
and becomes much faster when the signal duration increases.
The signal duration has little impact on the execution time of
the PARAFAC-based separation stage since the latter always

Fig. 4. Performance of PARAFAC-SDT algorithm in the 2-by-2 case. � �

������ � ����� s, � � �� (�� s), � � 	� ms. Average Input
SIR � ����� dB. Static environment. Speakers positioned at 0 and 90 . Evo-
lution of SIR versus signal duration (average over ten random pairs of sources).
Comparison between batch PARAFAC and online PARAFAC-SDT (with or
without solving the permutation problem at each step of the online mode).

reduces the dimension of the problem to a set of matrices
to jointly diagonalize (the number of matrices to diagonalize
is reduced from to in this experiment).
Of course, the execution time of the global solution shown in
Fig. 3(b) increases with time, since the permutation correction
scheme has to cluster profiles of increasing length.

D. Experiment 2: Adaptive PARAFAC

In this second experiment (Figs. 4 and 5), we illustrate the
performance of the online PARAFAC-SDT algorithm. We used
room PC323c from the same database [43], with sources
and microphones. The reverberation time is around
70 ms. The FFT length is fixed to and the epoch
duration to s.

In Fig. 4, the mixing environment is constant. We com-
pare the performance of the batch PARAFAC-SD algorithm
applied repeatedly on signals of increasing length to that of
its online counterpart (PARAFAC-SDT), used with a sliding
exponentially decaying window of length ten sub-blocks and
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Fig. 5. Performance of PARAFAC-SDT algorithm in the 2-by-2 case. � �

����� � � ����� s, � � �� (�� s), � � �� ms. Varying environment.
Evolution of output SIR for each speaker. Sequence 1: initialization with batch
PARAFAC-SD on � � �� sub-blocks, speakers positioned at 0 and 90 .
Sequence 2: online mode, positions are the same as in Sequence 1. Sequence 3:
speaker 2 keeps the same position, while speaker 1 is moved instantaneously.
Average Input SIR � ���	� dB for Sequences 1 and 2, and ����� dB for
Sequence 3.

a forgetting factor equal to 0.8 (see [23] for details on this
algorithm). We have plotted the evolution of the SIR averaged
over both users and ten random pairs of sources. For a given
sub-block , the SIR of a given user is computed by (31),
where is substituted by its estimate for this block
and and consist of all available samples (i.e.,

samples) of the recorded signals up to the th block.
PARAFAC-SDT is initialized with the mixing matrix esti-
mated by batch PARAFAC-SD applied on the first
sub-blocks (i.e., approximately 2 s). Then, PARAFAC-SDT is
combined with one of the two following options for the rest
of the recording: (O1) the permutation problem is globally
resolved for each new block (after the recursive updates) by
taking into account all previous blocks; or (O2) it is never
solved in online mode. From Fig. 4, it is clear that both options
yield similar performance. The reason is that PARAFAC-SDT
recursively updates the new matrices explicitly as a function
of the old estimates, such that the tracking stage does not
introduce new arbitrary permutations. Consequently, since the
frequency-dependent permutation problem is well solved in the
initialization step (this is due to the effectiveness of the permu-
tation correction scheme for short signals), it is not necessary
to solve it again in online mode. From this first observation, we
deduce that the small performance gap (around 1 dB only) be-
tween batch PARAFAC-SD and its online version results from
the separation stage only. On the other hand, PARAFAC-SDT
has a much lower complexity than its batch counterpart [23];
it was on average 20 times faster than PARAFAC-SD in this
experiment.

In Fig. 5, we illustrate the tracking capability of PARAFAC-
SDT. During the first 5 s, the sources are fixed at 90 and 0 ,
respectively. After 5 s, the first source is instantaneously moved
from 90 to 135 , while the second source is kept fixed. The

Fig. 6. Westner’s RIRs recordings. Impact of FFT length. � � 
 sources, � �

	 microphones, � � ��� s. � � 
�� ms. Input SIR � ���� dB.

Fig. 7. Westner’s RIRs recordings. Impact of the number of microphones. � �

 sources, � � ��� s, � � ���	� � � 
�� ms. Input SIR between �
��
dB and ����	 dB, depending on the value of � .

SIR of each speaker was computed as follows. In the first se-
quence (initialization) of blocks, we applied the
batch PARAFAC-SD algorithm, and the SIR of each user re-
sulting from (31) is replicated times in the figure. In the
second sequence (online mode between s and s),
both users have the same position as in the first sequence, and
we compute the SIR as before. In the third sequence, SIR for
the second speaker (who remains in the same position) is com-
puted on the whole data up to present time, whereas SIR for
the first speaker (who moves instantaneously at sec) is
only computed over samples corresponding to s. The key
point is that the update of the demixing filter for this speaker
does not exploit the benefit of a “good” initialization (with batch
PARAFAC-SD), since the mixing-environment has been instan-
taneously changed. We observe that after 4 sub-blocks (about
half a second), the SIR of the first speaker reaches a level close
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Fig. 8. Performance of PARAFAC-SD followed by time-varying Capon beamforming in the under-determined case, � � ����� � � ����� s. Comparison
with the determined case with PARAFAC-SD, Parra’s or Rahbar’s algorithms. Input SIR between ����� dB and ����� dB, depending on the value of � . (a)
� � � sources. (b) � � � sources.

to its initial value, which illustrates the very good tracking ca-
pability of the PARAFAC-SDT algorithm. Note that this good
tracking capability is also illustrated in [23], in a completely dif-
ferent context (tracking the trajectories of multiple targets in a
MIMO radar system).

E. Experiment 3: Highly Reverberant Environment

Although the database used in the first two experiments pro-
vides real world RIRs recordings, it is limited to sensors
only, since it was built in the context of hearing aid design [43].
In this third experiment, we use the RIRs measured by Westner
in a conference room of size 3.5 m 7 m 3 m, with eight mi-
crophones [44]. The duration of these RIRs is 750 ms, such that
the full room acoustics is captured, and the reverberation time

is around 300 ms, which characterizes a highly reverberant
environment. The duration of the sources is fixed to 10 s and
performance is averaged over ten random draws of the sources.

In Fig. 6, we illustrate the impact of the FFT length with
sources and sensors. As observed in the 2-by-2 case,
PARAFAC-SD outperforms Parra’s and Rahbar’s techniques in
terms of output SIR. In terms of execution time, PARAFAC-SD
was approximately ten times faster than Parra’s algorithm and
100 times faster than Rahbar’s algorithm.

In Fig. 7, is fixed to 4096 and we illustrate the impact of
the number of microphones, with sources. Contrary to
Parra’s and Rahbar’s techniques, PARAFAC-SD achieves “sat-
isfactory” separation quality with only 3 microphones. When
increases, the quality of separation improves for the three algo-
rithms but PARAFAC-SD yields the best output SIR.

F. Experiment 4: Under-Determined Case

In this fourth experiment (Fig. 8), we consider under-deter-
mined cases and we illustrate the performance of PARAFAC-SD
algorithm followed by Capon beamforming, as described in
Section VI. The sources have 10-s duration and they are con-
volved with artificial RIRs, generated by the method proposed
in [45]9. Artificial RIRs generators allow to test BSS algorithms

9http://home.tiscali.nl/ehabets/rir_generator.html

in various situations, since the dimensions of the room, the
locations of the sources and microphones and the reverberation
time can be freely chosen. In this experiment, the dimensions
of the chosen room are 5 m 5 m 2.3 m. The RIRs are
generated for sources and microphones. The
and coordinates of the five sources are fixed to 2 and 1.6,
respectively, while the coordinates are . The

and coordinates of the five sensors are fixed to 3 and 1.6,
respectively, while the coordinates are .

is fixed to 2048 and to 0.5 s. The performance is averaged
over ten random draws of the sources.

In Fig. 8(a), only the first four sources have been mixed and
we represent the evolution of the SIR averaged over all sources
as a function of the reverberation time in the two following
situations.

1) The first four microphones are used. In this exactly de-
termined case, the estimated mixing matrix is invertible
and the same demixing filter is therefore used for
all sub-blocks. The performance of PARAFAC-SD, Parra’s
and Rahbar’s algorithms is plotted.

2) The first three microphones only are used. In this under-
determined case, the mixing matrix is first estimated by
PARAFAC, after which the demixing filters are
estimated by Capon beamforming for each sub-block.

In Fig. 8(b), we proceed similarly to compare the 5 by 5 ex-
actly determined case to the 5 by 4 under-determined case.

As a conclusion, though the separation quality naturally de-
creases with an increasing reverberation time, PARAFAC-SD
(followed by Capon beamforming) performs very well in the
under-determined case. In particular, it significantly outper-
forms Parra’s and Rahbar’s techniques even when the latter
two are given the benefit of using one more microphone,
thus operating in the exactly determined regime. This is in-
dicative of the strengths of the proposed approach. It is also
worth noticing that the gap between the under-determined
and the exactly determined cases can be quite small for
PARAFAC-SD Capon, see Fig. 8(b). Additional experi-
ments for challenging under-determined cases can be found at
http://www.telecom.tuc.gr/~nikos/BSS_Nikos.html.
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Fig. 9. Impact of sources and sensors locations. � � � sources, � � � microphones. � � ����� � � ����� s. Room of size 12 m� 9 m� 3 m, � � ���
ms. (a) Impact of inter-microphone distance. Sources: ����	� 	��
� ����� 	��
�. Microphones: ��		� �� � 	
� � 	� 	��
� , with distance � varying
from 0.1 m to 0.5 m. Average Input SIR � ����� dB. (b) Impact of inter-source distance. Sources: ����	� 	��
� ��� 	 � 	 � 	��
�, with 	 varying from 0.2 to
5. Microphones: ��������� � 	
 � 	� 	��
� . Average Input SIR � ����� dB. (c) Impact of the distance between sources and microphones. Sources:
��
 � 	� 	��
� �
 � �� 	��
�, with 
 varying from 2 to 10.5. Microphones: ��		������ � 	
 � 	� 	��
� . Average Input SIR � ���� dB.

G. Experiment 5: Variable Source and Microphone Positions

In this fifth experiment (Fig. 9), we compare the performance
of the three batch algorithms as a function of the locations of the
sources and the microphones. The number of sources is
and the number of microphones . Performance is averaged
over ten random draws of the sources. As in the previous section,
we use artificial RIRs [45]. The size of the room is 12 m 9
m 3 m and the reverberation time is fixed to ms.
The signals have 5-s duration.

In a first scenario [Fig. 9(a)], we observe the impact of the
distance between the microphones. PARAFAC-SD significantly
outperforms Parra’s and Rahbar’s algorithms. When the dis-
tance between microphones increases, the performance of the
three techniques improves. This was expected, since increasing
this distance decreases the correlation between the different
RIRs, which in turn, makes the simultaneous diagonalization
problem better conditioned.

In a second scenario [Fig. 9(b)], we proceed similarly, but
this time we vary the distance between the sources. We observe
that the separation performance improves when this distance
increases, up to a certain point. Notice also that PARAFAC-SD
works very well (giving SIR of 12 dB) when the sources are
only 20 cm apart.

In a third scenario [Fig. 9(c)], we observe the impact of the
distance between sources and sensors. Again, PARAFAC-SD
significantly outperforms Parra’s and Rahbar’s algorithms.
When the sources are getting closer to the microphone array,
the performance of the three algorithms improves. This was
expected since the convolutive mixing problem is then getting
closer to a simpler instantaneous mixing problem (one dom-
inant direct path with high energy, relatively to the reflected
paths).

H. Experiment 6: Comparison of Permutation Criteria

In this last experiment (Fig. 10), we apply the different
permutation-correction criteria proposed in Section V-B after
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Fig. 10. Comparison between several permutation correction criteria after the
same PARAFAC-SD separation stage. � � � sources, � � � microphones,
� � ���� and � � ����� s.

a PARAFAC-SD separation stage, for varying reverberation
times. The room has the same dimensions as in the previous
experiment. The number of sources is , and the number
of microphones . The signal duration is 5 s. The
coordinates of the sources are and

. The and coordinates of the eight sensors are
fixed to 11 and 1.6, respectively, while the coordinates are

. It can be observed that criteria
C1 (clustering log-power profiles with a distance measure)
and C2 (dominance profiles with a correlation measure) yield
similar performance and outperform criterion C3 (envelope
profiles with a correlation measure). This confirms the obser-
vations made in Section V-C. Computation of C1 and C2 via
the -means-based approach we proposed yields performance
that is similar to the entirely iterative clustering strategy, but
the -means strategy has a far lower complexity (see Table I).

Several additional experiments (including challenging under-
determined cases and speech-music mixtures) are available at
http://www.telecom.tuc.gr/~nikos/BSS_Nikos.html.

IX. CONCLUSION

In this paper, we have proposed a PARAFAC-based approach
to solve the BSS problem for convolutive speech mixtures in
the frequency domain. Our approach is very competitive, since
it provides better separation performance at much lower com-
plexity relative to the state-of-art. These benefits come from
combining a fast and accurate PARAFAC algorithm for the sep-
aration stage, with an efficient frequency-dependent permuta-
tion correction scheme.

Contrary to earlier work in blind speech separation, the link to
PARAFAC allows estimation of the mixing matrix in under-de-
termined cases—there is proof of identifiability. Although per-
fect separation is not even theoretically possible in under-deter-
mined cases, we have shown that exploitation of the estimated
(fat) channel matrix together with time-varying Capon beam-
forming affords significant crosstalk reduction. We have also
constructed an adaptive solution that features good tracking per-
formance and low complexity. Finally, extensive experiments

with realistic and measured data have been conducted to cor-
roborate our findings, including a performance comparison with
two BSS algorithms from the state of the art, in a large variety
of mixing scenarios.
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