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Joint Power and Admission Control for Ad-Hoc and
Cognitive Underlay Networks: Convex

Approximation and Distributed Implementation
Ioannis Mitliagkas, Nicholas D. Sidiropoulos, Ananthram Swami

Abstract—Power control is important in interference-limited
cellular, ad-hoc, and cognitive underlay networks, when the ob-
jective is to ensure a certain quality of service to each connection.
Power control has been extensively studied in this context, includ-
ing distributed algorithms that are particularly appealing in ad-
hoc and cognitive settings. A long-standing issue is that the power
control problem may be infeasible, thus requiring appropriate
admission control. The power and admission control parts of the
problem are tightly coupled, but the joint optimization problem
is NP-hard. We begin with a convenient reformulation which
enables a disciplined convex approximation approach. This leads
to a centralized approximate solution that is numerically shown
to outperform the prior art, and even yield close to optimal
results in certain cases - at affordable complexity. The issue
of imperfect channel state information is also considered. A
distributed implementation is then developed, which alternates
between distributed approximation and distributed deflation -
reaching consensus on a user to drop, when needed. Both phases
require only local communication and computation, yielding
a relatively lightweight distributed algorithm with the same
performance as its centralized counterpart.

Index Terms—Power control, admission control, convex opti-
mization, distributed implementation, dual decomposition, sub-
gradient, ad-hoc, peer-to-peer, and cognitive radio networks.

I. INTRODUCTION

POWER control has been extensively studied in the context
of cellular networks, as a way of mitigating intra-cell and

inter-cell interference [31], [11]. Power control is also im-
portant in infrastructure-less ad-hoc wireless networks, where
multiple co-channel links operate simultaneously, causing in-
terference to one another. Originally motivated by the need
to support circuit-switched-quality voice services (now voice-
over-IP and other applications requiring guaranteed rate), the
prevailing formulation of power control aims to ensure a
certain quality of service, measured in terms of a link’s signal
to interference plus noise ratio (SINR), to every user in the
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network. A key difficulty that has long been recognized is
that the problem is often infeasible: it is not possible to
simultaneously satisfy all user demands in the same time or
frequency slot. This brings up the issue of admission control,
and a natural objective is to maximize the number (or weighted
sum) of admitted users. The joint admission and power control
problem is NP-hard, but important in practice [1], [7], [3].

The work to date on joint admission and power control
has focused on gradual removals (e.g., [1], [7], [3]) until the
problem becomes feasible, or gradual admissions (e.g., [30],
[27], [2], [24], [25], [26]) when possible. In both cases, the
issue is whether or not to remove or admit a single user, and
adjust transmission powers if necessary. Distributed admission
control algorithms that accept or reject an incoming call in a
power-controlled cellular network can be found in [30] and
[27]. Joint admission and power control strategies offering
active user protection (i.e., maintaining the required quality
of service [minimum SINR] for existing users even when a
new user is admitted) have been investigated in a series of
papers [2], [24], [25], [26]. Active user protection makes sense
from a customer experience point of view (e.g., few dropped
calls). On the other hand, it can be far from optimal in terms of
accomodating the maximum possible number of users, or other
‘social’ metrics; and it limits agility, which can be crucial in
certain scenarios. Admission control for maximal throughput
in power-controlled networks has been considered in [17].

Efficient utilization of the wireless spectrum has been a
growing concern lately, owing to the inherent scarcity of the
resource and the plethora of emerging mobile devices and
services competing for bandwidth. It has now become clear
that exclusive licensing of bands to specific users or services
is very inefficient from the viewpoint of spectrum utilization,
and it lacks the agility needed to support new applications.
Cognitive radio has thus emerged as an adaptive cohabitation
paradigm for wireless communication. Cognitive radio nodes
sense and learn from their environment, and adapt their trans-
mission mode to enable efficient spectrum sharing. The idea is
to enable secondary spectrum usage while avoiding or limiting
interference to licensed primary users, in a way that is fair to
other peers. Building upon the functionality offered by (then
nascent) software radio, cognitive radio was conceived in the
late ’90’s [22]. The concept started gaining momentum a few
years later, after a U.S. Federal Communications Commission
(FCC) Spectrum Policy Task Force report [8] highlighted that
the typical utilization of licensed bands is under 20%. There
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is plenty of idle spectrum in most places, most of the time;
the issue is how to discover it in a timely fashion and use it
in an efficient manner. This realization sparked considerable
research, regulatory, and standardization activity, starting in
2003 and growing fast nowadays.

Two basic modes of operation of cognitive radio have
emerged so far [34], [33], [18]: spectrum overlay, in which
secondary users seek idle time-frequency slots (transmission
opportunities) and try to avoid colliding with the primary users
(e.g., see [35]); and spectrum underlay, in which secondary
users try to limit the amount of interference they cause to
the primary users, but otherwise forego activity detection and
may transmit ‘at will’ - even in the same time-frequency
slot(s) as the primary users. Both modes require some level of
situational awareness - spectrum sensing and activity detection
for spectrum overlay, interference channel gain estimation for
spectrum underlay - but at different accuracy and time scales.
Overlay systems are collision-limited, but may transmit at
relatively high power when transmission opportunities arise.
Underlay systems require proper power control, but afford
relatively seamless coexistence without stringent sensing re-
quirements.

Taking advantage of spatial reuse, secondary spectrum
underlay is closer in spirit to the traditional point of view
of interference-limited wireless networks. This has facilitated
migration of research results on power control, transmit beam-
forming, and scheduling from the cellular to the cognitive
regime [13], [12], [32]. An uplink beamforming and power
control scenario where the objective is to maximize the sum
rate of the secondary users under interference constraints on
the primary users has been considered in [32]. Explicit user
admission is not needed in a sum-rate context. A downlink
beamforming scenario for the secondary users is considered
in [13], under SINR constraints on the primary and secondary
users. Infeasibility and user selection issues were not dealt
with in [13]. In the same context, a suboptimal user selection
strategy was recently proposed in [12], based on pairwise
orthogonality of the channel vectors.

The joint power and admission control problem is consid-
ered in this paper, for a cognitive underlay scenario where:

∙ Primary users must be guaranteed a premium service rate,
measured by their signal to interference plus noise ratio
(SINR);

∙ Secondary users, if admitted, should be provided with at
least a basic service rate;

∙ The number of admitted secondary users should be
maximized, and the total power required to serve them
should be minimized.

The ad-hoc setting can be viewed as a special case wherein
all users are peers, and there are no primary interference
constraints. A disciplined convex approximation approach is
adopted in this paper. Instead of aiming for the hard-to-get
optimal solution or directly trying to approximate it, the idea
is to approximate the problem per se by a suitable convex
problem that is “close” to the original one. The solution of the
convex problem is then used to guide the search for a good
feasible solution of the original problem. In our particular
context, linear programming relaxation is used for convex
approximation, and the final approximate solution is obtained

through a sequence of linear programs. The issue of imperfect
channel state information (CSI) is also considered. Assuming
bounded CSI errors, and insisting that the SINR constraints
be met in the worst case, a robust reformulation of the joint
power and admission control problem is obtained. This admits
a second order cone programming (SOCP) relaxation, and
approximate solution through a sequence of SOCP programs.
Simulation results are included to illustrate the merits of the
approach. Two scenarios are considered: with or without a
primary user. In the latter, several good heuristic algorithms
are available in the literature, and the prevailing one is used
as a baseline. A brute-force enumeration algorithm is used in
both cases to assess the gap from the optimal solution.

An appealing feature of classical power control solutions is
that they lend themselves to distributed implementation. When
the power control problem is feasible, the global optimum
can be reached using only local updates. Each link uses
local interference plus noise measurements at the receiver
to update the corresponding power at the transmitter. Dis-
tributed implementation is important for a number of reasons,
including scalability, agility (the ability to track changes in
the operational environment), and reduced vulnerability to
node failures. Depending on the kind of feedback required,
distributed implementation can also be more lightweight in
terms of signaling overhead. These considerations motivate
distributed implementation of the proposed algorithm. This
is the subject of the last part of the paper. The resulting
implementation alternates between distributed approximation
and distributed deflation - reaching consensus on a user
to drop, when needed. The approximation phase uses dual
decomposition - each node updates its local primal variables,
while subgradient iterations are used to update the dual
variables. The deflation phase employs a consensus-on-the-
max algorithm to reach agreement on which user to drop,
if needed. Both phases require only local communication
and computation, yielding a relatively lightweight distributed
algorithm that converges to the same approximate solution as
its centralized counterpart.

II. PROBLEM FORMULATION

Consider a channel that is used by a single primary user 𝑈0

and 𝐾 secondary users 𝒰 := {1, . . . ,𝐾}. By ‘user’ here we
mean a transmitter - receiver pair (directed link). A single
primary user is considered for brevity of exposition. It is
straightforward to include additional constraints to account
for more primary users; this does not change the structure
of the problem in any way. User 𝑘 transmits with power
𝑝𝑘 ≤ 𝑃𝑀𝐴𝑋

𝑘 . The primary user’s transmission power 𝑝0 is
fixed, because cooperation cannot be assumed. For each link
𝑘 we define 𝑐𝑘 as the SINR threshold that must be attained
for the link to meet its QoS requirement. Let 𝜎2

𝑘 denote the
thermal noise power at the reviver of link 𝑘 and 𝐺𝑖𝑗 the link
gain from the transmitter of link 𝑖 to the receiver of link 𝑗.

Our purpose is to allow secondary users to use the channel
without disrupting the primary user’s communication. One
way to achieve this is by controlling the secondary user
transmission powers. When there are many secondary links
competing for service and/or the SINR constraints are tighter
than can be satisfied, power control alone cannot solve the



4112 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 12, DECEMBER 2011

problem. In this case we need to employ some form of admis-
sion control. Admission control should be optimized together
with power allocation, because the two are intertwined.

The problem of interest can be described in two stages:
maximize the number of secondary users that can be admitted,
and then minimize the total power required to serve them.
Let ∣𝑆∣ denote the cardinality of set 𝑆, and ℝ+ be the non-
negative reals. Mathematically, the first stage can be expressed
as follows.

𝑆𝑜 = argmax𝑆⊆{1,...,𝐾},{𝑝𝑘∈ℝ+}𝐾
𝑘=1
∣𝑆∣ (1)

s.t. 𝑝𝑘 ≤ 𝑃𝑀𝐴𝑋
𝑘 , ∀𝑘 ∈ {1, . . . ,𝐾} (2)

𝐺𝑘𝑘𝑝𝑘∑𝐾
𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 +𝐺0𝑘𝑝0 + 𝜎2

𝑘

≥ 𝑐𝑘, ∀𝑘 ∈ 𝑆 (3)

𝐺00𝑝0∑𝐾
𝑙=1 𝐺𝑙0𝑝𝑙 + 𝜎2

0

≥ 𝑐0 . (4)

Here (3) is the SINR constraint for the secondary users,
and (4) is the SINR constraint for the primary user. Notice
that the term 𝐺0𝑘𝑝0 in the denominator of (3) accounts for
the interference caused by the primary user to user 𝑘.

Once a maximal admissible subset of secondary users is
found, what remains is to adjust their powers to minimize the
total transmitted power. This can be written as

min
{𝑝𝑘∈ℝ+}𝑘∈𝑆𝑜

∑
𝑘∈𝑆𝑜

𝑝𝑘 (5)

s.t. 𝑝𝑘 ≤ 𝑃𝑀𝐴𝑋
𝑘 , ∀𝑘 ∈ 𝑆𝑜 (6)

𝐺𝑘𝑘𝑝𝑘∑
𝑙 ∕=𝑘,𝑙∈𝑆𝑜

𝐺𝑙𝑘𝑝𝑙 +𝐺0𝑘𝑝0 + 𝜎2
𝑘

≥ 𝑐𝑘, ∀𝑘 ∈ 𝑆𝑜 (7)

𝐺00𝑝0∑
𝑙∈𝑆𝑜

𝐺𝑙0𝑝𝑙 + 𝜎2
0

≥ 𝑐0 (8)

Remark 1: There may be multiple equivalent (in terms of
cardinality) solutions of (1)-(4), which may lead to different
sum-power in (5)-(8). If multiple solutions do exist, one may
wish to solve (5)-(8) for each candidate solution of (1)-(4), and
pick the one that yields the overall smallest sum power in the
end. In what follows, we will reformulate the overall problem
in a way that will take us directly to the global minimum
power solution through a single optimization problem.

The power control problem in the second stage (5)-(8) is a
Linear Program (LP) and thus easily solved. If we ignore the
primary interference constraint (8), there exist specialized and
distributed solutions that are far more efficient than generic
LP solvers for (5)-(7), see [9], [11] and references therein.
The main challenge lies in the first (subset selection) stage:

Claim 1: The subset selection problem in (1)-(4) is NP-
hard.

Proof: Consider the following special case of (1)-(4):

𝑆𝑜 = argmax𝑆⊆{1,...,𝐾},{𝑝𝑘∈[0,1]}𝐾
𝑘=1
∣𝑆∣ (9)

s.t.
𝑝𝑘∑𝐾

𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 + 1
≥ 1, ∀𝑘 ∈ 𝑆 (10)

We will show that it contains the maximal independent set
problem, which is known to be NP-hard [10]. Let Γ = (𝑉,𝐸)
be an undirected graph, with ∣𝑉 ∣ = 𝐾 vertices, one for each
user, and edges 𝑒𝑙,𝑘 ∈ 𝐸. A subset of vertices 𝑆 ⊆ 𝑉 of Γ
is independent when no two vertices in 𝑆 are connected by
an edge in 𝐸. Given any Γ = (𝑉,𝐸), define a corresponding
instance of (9)-(10) by setting

𝐺𝑙𝑘 =

{
1, 𝑒𝑙,𝑘 ∈ 𝐸
0, otherwise

(11)

Let 𝑆𝑖 be a maximal independent set in Γ. Setting

𝑝𝑘 =

{
1, 𝑘 ∈ 𝑆𝑖

0, otherwise
(12)

will satisfy

𝑝𝑘∑𝐾
𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 + 1

= 1, ∀𝑘 ∈ 𝑆𝑖 (13)

because, by definition of independent set and 𝐺𝑙𝑘 , the nodes
in 𝑆𝑖 do not interfere with one another, and the power of any
remaining nodes has been switched off. It follows that 𝑆𝑖 is
feasible (but not necessarily optimal) for problem (9)-(10);
thus ∣𝑆𝑜∣ ≥ ∣𝑆𝑖∣. Conversely, let {𝑝𝑘 ∈ [0, 1]}𝐾𝑘=1 be such that

𝑝𝑘∑𝐾
𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 + 1

≥ 1, ∀𝑘 ∈ 𝑆 (14)

for some 𝑆 ⊆ {1, . . . ,𝐾}. The only way for this to hold is to
have 𝑝𝑘 = 1, ∀𝑘 ∈ 𝑆, hence it must be that 𝐺𝑙𝑘 = 0 for all
pairs 𝑙 ∈ 𝑆, 𝑘 ∈ 𝑆. By definition of 𝐺𝑙𝑘, this implies that 𝑆
is an independent set, whose size is therefore bounded by the
size of the maximal independent set: ∣𝑆𝑖∣ ≥ ∣𝑆∣. This is true
for any 𝑆 for which suitable {𝑝𝑘 ∈ [0, 1]}𝐾𝑘=1 can be found to
satisfy (14), including 𝑆 = 𝑆𝑜 in particular - cf. the definition
in (9)-(10). Hence ∣𝑆𝑖∣ ≥ ∣𝑆𝑜∣.
Note that NP-hardness of joint admission and power control
in a cellular context has been considered in [1], but the proof
there is incomplete1.

III. CONVEX APPROXIMATION

A. Step 1: Single-stage Reformulation

We next reformulate the two-stage problem in (1)-(4) and
(5)-(8) into an equivalent single-stage optimization problem.
This is in the spirit of the approach in [19], albeit it does
not follow as a special case. Let us consider the following
problem:

min
{𝑝𝑘∈ℝ+,𝑠𝑘∈{−1,+1}}𝐾

𝑘=1

𝜖

𝐾∑
𝑘=1

𝑝𝑘+(1−𝜖)
𝐾∑

𝑘=1

𝜆𝑘(𝑠𝑘+1)2 (15)

s.t. 𝑝𝑘 ≤ 𝑃𝑀𝐴𝑋
𝑘 , ∀𝑘 ∈ {1, . . . ,𝐾} (16)

1[1] does not show that an arbitrary instance of the chosen NP-hard
problem can be posed as an instance of (1)-(4).
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𝐺𝑘𝑘𝑝𝑘 + 𝛿−1
𝑘 (𝑠𝑘 + 1)2∑𝐾

𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 +𝐺0𝑘𝑝0 + 𝜎2
𝑘

≥ 𝑐𝑘, ∀𝑘 ∈ {1, . . . ,𝐾}
(17)

𝐺00𝑝0∑𝐾
𝑙=1 𝐺𝑙0𝑝𝑙 + 𝜎2

0

≥ 𝑐0 (18)

We have introduced binary scheduling variables 𝑠𝑘 which
take the value -1 for an admitted user and 1 for a dropped one.
Notice that variable 𝑠𝑘 also appears in the SINR constraint
of user 𝑘. For sufficiently small 𝛿𝑘 and 𝑠𝑘 = 1, the SINR
constraint of user 𝑘 becomes inactive; whereas for 𝑠𝑘 = −1
the constraint remains active. The cost function (15) accounts
for both admission and power control. The admission control
component of the cost is discrete-valued, whereas the power
component is bounded. By choosing 𝜖 small enough, we can
ensure that admission control has absolute priority over power
control: dropping any user costs more than can possibly be
saved in terms of transmission power for the rest. A ruler
analogy in which the decimal ticks correspond to the discrete
admission cost and the intervals between ticks are (partially)
spanned by the power cost can be helpful to intuitively
appreciate the following result:

Claim 2: For 𝜆𝑘 = 1, ∀𝑘 ∈ {1, ⋅ ⋅ ⋅ ,𝐾}, and

0 < 𝜖 <
4∑𝐾

𝑘=1 𝑃
𝑀𝐴𝑋
𝑘 + 4

(19)

𝛿𝑘 ≤ 4

𝑐𝑘

(∑𝐾
𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑃𝑀𝐴𝑋

𝑙 +𝐺0𝑘𝑝0 + 𝜎2
𝑘

) (20)

the single-stage reformulation in (15)-(18) is equivalent to
solving the two-stage problem in (1)-(4) and (5)-(8). In fact,
if there are multiple solutions to (1)-(4), solving (15)-(18) will
yield one of minimum sum power.
The proof is by contradiction, similar to the line of argument
in [19]. We skip it here for space considerations.

The reason for introducing the weights 𝜆𝑘 is that these can
be used to promote ‘social welfare’ or ‘fairness’. For example,
setting 𝜆𝑘 proportional to the 𝑘th user’s queue length will
optimize system throughput; setting it inversely proportional
to a running average estimate of the user’s service rate will
encourage fairness. Do note, however, that the equivalence to
(1)-(4) and (5)-(8) is lost when the weights are not equal, as
this differentiates the users.

The reformulation in (15)-(18) remains NP-hard. To see this,
pick 𝜆𝑘 = 𝑃𝑀𝐴𝑋

𝑘 = 𝑐𝑘 = 𝜎𝑘 = 1, ∀𝑘, 𝑝0 = 𝑐0 = 0 (no
primary user), 𝜖 as in (19), 𝛿𝑘 as in (20), and link gains as
in the proof of Claim 1. Let 𝑆𝑖 be an independent set of Γ.
If 𝑘 ∈ 𝑆𝑖, set 𝑠𝑘 = −1 and 𝑝𝑘 = 1; else set 𝑠𝑘 = 1 and
𝑝𝑘 = 0. Then all constraints in (16)-(17) are satisfied at cost
𝜖∣𝑆𝑖∣+(1−𝜖)4(𝐾−∣𝑆𝑖∣). Conversely, suppose (16)-(17) admits
a solution {𝑝𝑘, 𝑠𝑘}𝐾𝑘=1 of cost ≤ 𝜖∣𝑆𝑖∣+(1−𝜖)4(𝐾−∣𝑆𝑖∣), and
let 𝑆 := {𝑘 ∣ 𝑠𝑘 = −1}. From (16)-(17) it follows that 𝑠𝑘 =
−1 ⇒ 𝑝𝑘 = 1, and 𝑆 must be an independent set of Γ. The
cost of {𝑝𝑘, 𝑠𝑘}𝐾𝑘=1 is ≥ 𝜖

∑
𝑘∈𝑆 𝑝𝑘 + (1− 𝜖)

∑
𝑘/∈𝑆(𝑠𝑘+1)2

= 𝜖∣𝑆∣ + (1 − 𝜖)4(𝐾 − ∣𝑆∣). Using the last two inequalities
yields ∣𝑆∣ ≥ ∣𝑆𝑖∣ (note: (19) and 𝑃𝑀𝐴𝑋

𝑘 = 1 ⇒ 𝜖 < 4/5).
It follows that Γ contains an independent set of size ∣𝑆𝑖∣ if

and only if (15)-(17) admits a solution of cost ≤ 𝜖∣𝑆𝑖∣+(1−
𝜖)4(𝐾 − ∣𝑆𝑖∣).

B. Step 2: Isolating Non-convexity

The problem in (15)-(18) is not directly amenable to convex
approximation. The following equivalent reformulation explic-
itly reveals the non-convex part of the problem, thus getting
us closer to a convex one:

min
{𝑝𝑘∈ℝ+,𝑆𝑘∈ℝ2×2}𝐾

𝑘=1

𝜖

𝐾∑
𝑘=1

𝑝𝑘+(1−𝜖)
𝐾∑

𝑘=1

𝜆𝑘Tr(12×2𝑆𝑘) (21)

s.t. 𝑝𝑘 ≤ 𝑃𝑀𝐴𝑋
𝑘 , ∀𝑘 ∈ {1, . . . ,𝐾} (22)

𝐺𝑘𝑘𝑝𝑘 + 𝛿−1
𝑘 Tr(12×2𝑆𝑘)∑𝐾

𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 +𝐺0𝑘𝑝0 + 𝜎2
𝑘

≥ 𝑐𝑘, ∀𝑘 ∈ {1, . . . ,𝐾}
(23)

𝐺00𝑝0∑𝐾
𝑙=1 𝐺𝑙0𝑝𝑙 + 𝜎2

0

≥ 𝑐0 (24)

𝑆𝑘 ≥ 0, rank(𝑆𝑘) = 1, 𝑆𝑘(1, 1) = 𝑆𝑘(2, 2) = 1 ∀𝑘 ∈ {1, . . . ,𝐾}
(25)

where 𝑆𝑘 ≥ 0 means that matrix 𝑆𝑘 is positive semidefinite.
Its diagonal elements are 1’s and its off-diagonal elements
hold the original scheduling variable 𝑠𝑘. Matrix 12×2 is the
2× 2 matrix of all 1’s.

The rank-one constraint restricts the scheduling variables in
the set {−1,+1}. This is the only source of non-convexity in
(21)-(25).

C. Step 3: Semidefinite Programming Relaxation

Dropping the rank-one constraints (which is equivalent to
allowing the 𝑠𝑘’s to take any value in [−1 + 1]) leaves us
with a Semidefinite Programing (SDP) problem. In [28], it is
shown that this rank relaxation yields the Lagrange bi-dual
problem, which is the closest convex problem to (21)-(25) in
a certain sense, thus motivating rank relaxation; see also [15]
and [16] for further insights and motivation.

Any real symmetric 2 × 2 matrix 𝑆𝑘 with unit diagonal

elements can be written as

[
1 𝑥𝑘

𝑥𝑘 1

]
. The two columns

are proportional if and only if 𝑥𝑘 ∈ {−1, 1}; the determinant
is non-negative iff 𝑥𝑘 ∈ [−1, 1]. Notice that matrix 𝑆𝑘 comes
into play in the cost and constraints of (21)-(25) only via the
trace 𝑡𝑘 := Tr(12×2𝑆𝑘); and, with the above parametrization,
𝑡𝑘 = 2(1 + 𝑥𝑘). Thus dropping the rank-one constraints
from (21)-(25) and translating the remaining [−1, 1]-interval
constraints on the 𝑥𝑘’s into the induced equivalent [0, 4]-
interval constraints on the 𝑡𝑘’s yields the following linear
program:

min
{𝑝𝑘∈ℝ+,𝑡𝑘∈ℝ+}𝐾

𝑘=1

𝜖

𝐾∑
𝑘=1

𝑝𝑘 + (1− 𝜖)

𝐾∑
𝑘=1

𝜆𝑘𝑡𝑘 (26)

s.t. 𝑝𝑘 ≤ 𝑃𝑀𝐴𝑋
𝑘 , ∀𝑘 ∈ {1, . . . ,𝐾} (27)
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𝐺𝑘𝑘𝑝𝑘 + 𝛿−1
𝑘 𝑡𝑘∑𝐾

𝑙=1, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 +𝐺0𝑘𝑝0 + 𝜎2
𝑘

≥ 𝑐𝑘, ∀𝑘 ∈ {1, . . . ,𝐾}
(28)

𝐺00𝑝0∑𝐾
𝑙=1 𝐺𝑙0𝑝𝑙 + 𝜎2

0

≥ 𝑐0 (29)

0 ≤ 𝑡𝑘 ≤ 4, ∀𝑘 ∈ {1, . . . ,𝐾} (30)

which further simplifies computation. The solution of (26)-
(30) yields a lower bound on the objective of (21)-(25), and
thus a way to assess the quality of suboptimal solutions to
(21)-(25). Still, solving the relaxed problem in (26)-(30) is
certainly not equivalent to solving the original problem in
(21)-(25). How to obtain a good approximate solution of (21)-
(25) using (26)-(30) is addressed in the next section.

D. Step 4: Approximation Algorithm

The main idea is to employ deflation over (26)-(30). That
is, solve (26)-(30), and check if all the original constraints are
satisfied. If not, choose a user to drop and repeat until the
problem becomes feasible.

Algorithm 1: Linear Programming Deflation (LPD):

1) 𝒰 ← {1, ...,𝐾}
2) Solve (26)-(30) for the users in 𝒰 only.
3) If all links in 𝒰 attain target SINR, then terminate. Else

use a heuristic (see text below) to choose a link, remove
it from 𝒰 and go to Step 2.

A quite important factor for the performance of this al-
gorithm is the heuristic employed to drop links at each
iteration. We tried many, and the most promising one is as
follows. At each step, after solving (26)-(30), we calculate
a metric for each link. Let 𝑝𝑒𝑘 be the excess transmission
power needed for link 𝑘 to attain its target SINR, assuming all
other link powers are as calculated from (26)-(30). This excess
transmission power for link 𝑘 causes excess interference to
all other links. Let 𝑥𝑒

𝑘 = 𝑝𝑒𝑘
∑

𝑙 ∕=𝑘 𝐺𝑘𝑙 be the sum of excess
interference powers caused to all other links due to 𝑝𝑒𝑘. Let
𝑦𝑒𝑘 =

∑
𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝

𝑒
𝑙 be the excess interference caused to link 𝑘

due to the excess transmission powers of all other links. The
link metric used for choosing the link to drop is 𝑚𝑘 := 𝑥𝑒

𝑘+𝑦𝑒𝑘.
The link that has the largest 𝑚𝑘 is dropped, and the process
continues by solving again (26)-(30) for the remaining links,
until a feasible solution (requiring no excess power for any
link) is found.

IV. IMPERFECT CHANNEL STATE INFORMATION

An important issue in practice is what happens when the
channel gains are not known exactly, but only estimates are
available. Assuming that the estimation errors are bounded,
it is possible to extend the basic approach to incorporate
uncertainty, as explained next. The key is the LP relaxation
in (26)-(30), for robust LP with bounded uncertainty in the
constraint parameters is SOCP (see, e.g., section 4.4.2 in [5]).

The SINR constraints in (28) can be compactly written as

𝒈𝑇
𝑘 𝒑𝑎 −

𝛿−1
𝑘

𝑐𝑘
𝑡𝑘 ≤ −𝜎2

𝑘, ∀𝑘 ∈ {1, . . . ,𝐾} (31)

where

𝒈𝑘 = [𝐺0𝑘, 𝐺1𝑘, ⋅ ⋅ ⋅ , 𝐺(𝑘−1)𝑘,−𝐺𝑘𝑘

𝑐𝑘
, 𝐺(𝑘+1)𝑘, ⋅ ⋅ ⋅ , 𝐺𝐾𝑘]

𝑇

(32)
and the augmented power vector (note that 𝑝0 is not an
optimization variable)

𝒑𝑎 = [𝑝0, 𝑝1, ⋅ ⋅ ⋅ , 𝑝𝐾 ]𝑇 . (33)

Likewise, the primary user’s SINR constraint in (29) can be
expressed as

𝒈𝑇
0 𝒑𝑎 ≤ −𝜎2

𝑘, ∀𝑘 ∈ {1, . . . ,𝐾} (34)

where
𝒈0 = [−𝐺00

𝑐0
, 𝐺10, 𝐺20, ⋅ ⋅ ⋅ , 𝐺𝐾0]

𝑇 (35)

Now, assume that the true vectors 𝒈𝑘 and vector 𝒈0 lie
inside ellipsoids ℰ𝑘 and ℰ0 with centers the respective nominal
estimates 𝒈𝑘 and 𝒈̄0:

𝒈𝑘 ∈ ℰ𝑘 = {𝒈̄𝑘 + 𝐸𝑘u ∣ ∣∣u∣∣2 ≤ 1} , ∀𝑘 ∈ {0, . . . ,𝐾}
(36)

where matrix 𝐸𝑘 ∈ ℝ
𝐾+1×𝐾+1 determines the size, shape and

orientation of ellipsoid ℰ𝑘. The uncertainty-aware counterpart
of (31) is

𝒈𝑇
𝑘 𝒑𝑎 −

𝛿−1
𝑘

𝑐𝑘
𝑡𝑘 ≤ −𝜎2

𝑘, ∀𝒈𝑘 ∈ ℰ𝑘, ∀𝑘 ∈ {1, . . . ,𝐾} (37)

or equivalently, for each 𝑘,

sup

{
𝒈𝑇
𝑘 𝒑𝑎 −

𝛿−1
𝑘

𝑐𝑘
𝑡𝑘 ∣ 𝒈𝑘 ∈ ℰ𝑘

}
≤ −𝜎2

𝑘

sup
{
𝒈𝑇
𝑘 𝒑𝑎 ∣ 𝒈𝑘 ∈ ℰ𝑘

}− 𝛿−1
𝑘

𝑐𝑘
𝑡𝑘 ≤ −𝜎2

𝑘

𝒈̄𝑇
𝑘 𝒑𝑎 + sup

{
u𝑇𝐸𝑇

𝑘 𝒑𝑎 ∣ ∣∣u∣∣2 ≤ 1
}− 𝛿−1

𝑘

𝑐𝑘
𝑡𝑘 ≤ −𝜎2

𝑘

𝒈𝑇
𝑘 𝒑𝑎 + ∣∣𝐸𝑇

𝑘 𝒑𝑎∣∣2 −
𝛿−1
𝑘

𝑐𝑘
𝑡𝑘 ≤ −𝜎2

𝑘 (38)

To ensure that the inequality holds when link 𝑘 is not admitted,
we have to pick a 𝛿𝑘 that satisfies it for 𝑝𝑙 ≤ 𝑃𝑀𝐴𝑋

𝑙 , ∀𝑙 ∕= 𝑘,
𝑝𝑘 = 0 and 𝑡𝑘 = 4. For diagonal 𝐸𝑘, 𝛿𝑘 should satisfy

𝛿𝑘 ≤ 4

𝑐𝑘

(∑𝐾
𝑙=0, 𝑙 ∕=𝑘 𝐺𝑙𝑘𝑃𝑀𝐴𝑋

𝑙 + ∣∣𝐸𝑇
𝑘 𝑷

𝑀𝐴𝑋
−𝑘 ∣∣2 + 𝜎2

𝑘

)
(39)

where 𝑷𝑀𝐴𝑋
−𝑘 is the vector of maximum link powers, includ-

ing the primary user, with a zero in element 𝑘. Note that the
primary user transmits with a fixed power 𝑝0 = 𝑃𝑀𝐴𝑋

0 . For
general 𝐸𝑘, since in order to find a suitable 𝛿𝑘 parameter we
only need an upper bound on ∣∣𝐸𝑇

𝑘 𝒑𝑎∣∣2, we may relax the
box constraint on the 𝑝𝑙’s to a sphere constraint. Let 𝜆𝑀𝐴𝑋

𝑘

denote the principal eigenvalue of matrix 𝐸−𝑘𝐸
𝑇
−𝑘, where

𝐸−𝑘 is 𝐸𝑘 without the 𝑘-th row. From the Rayleigh quotient

it then follows that ∣∣𝐸𝑇
𝑘 𝒑𝑎∣∣2 ≤

√
𝜆𝑀𝐴𝑋
𝑘

∑
𝑙 ∕=𝑘

(
𝑃𝑀𝐴𝑋
𝑙

)2
.

Substituting this in place of ∣∣𝐸𝑇
𝑘 𝑷

𝑀𝐴𝑋
−𝑘 ∣∣2 in (39) yields a

suitable bound on 𝛿𝑘 for general 𝐸𝑘 .
In the same manner, the robust counterpart of the primary

user’s SINR constraint (34) is

𝒈𝑇
0 𝒑𝑎 ≤ −𝜎2

0 , ∀𝒈0 ∈ ℰ0 (40)
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which can be reduced to

𝒈𝑇
0 𝒑𝑎 + ∣∣𝐸𝑇

0 𝒑𝑎∣∣2 ≤ −𝜎2
0 (41)

Replacing inequalities (31), (34) with their robust versions
(38), (41) yields a SOCP problem. The overall approximation
algorithm remains similar to LPD for the case of perfect CSI,
except that the SOCP formulation is now employed in lieu of
LP as the basic deflation step, and the robust constraints (38),
(41) are used to check whether links attain their target SINR
in the worst case.

In scenarios with severe uncertainty, we found that introduc-
ing an additional step (see below) helps prevent overestimating
interference during the course of deflation, thus yielding
significantly better results. The complete robust algorithm is
as follows.

Algorithm 2: Second Order Cone Deflation (SOCD):

1) 𝒰 ← {1, ...,𝐾}
2) Solve (26),(27),(38),(41),(30) for the users in 𝒰 only.
3) If all links in 𝒰 attain target SINR terminate.
4) Solve again only for the links that attained their SINR

target and update their powers in the previous solution.
5) Use the heuristic (see section III-D) on the full solution

(resulting power vector) to choose a link, remove it from
𝒰 and go to Step 2.

V. DISTRIBUTED IMPLEMENTATION

The first obstacle in designing a distributed algorithm for
(26)-(30) is that the constraints in (28)-(29) are coupled
across users. Ideally, we would like each user to optimize
its own variables (𝑝𝑘 and 𝑡𝑘), relying on low-rate feedback
from other users to ensure that the solution converges to the
global optimum. Towards this end, we will employ a dual
decomposition approach [23], [36]. Let 𝒑 = [𝑝1, 𝑝2, . . . 𝑝𝐾 ]

𝑇 ,
𝒕 = [𝑡1, 𝑡2, . . . 𝑡𝐾 ]

𝑇 denote the primal variables, and 𝝁 =
[𝜇0, 𝜇1, . . . 𝜇𝐾 ]

𝑇 the vector of dual variables (bear in mind
that the 𝜆𝑘’s are link weights defined in the original problem
formulation; for this reason, the dual variables are denoted by
𝜇𝑘.). Let us form the partial Lagrangian

𝐿(𝒑, 𝒕,𝝁) = 𝜖

𝐾∑
𝑘=1

𝑝𝑘 + (1 − 𝜖)

𝐾∑
𝑘=1

𝜆𝑘𝑡𝑘

+
𝐾∑

𝑘=1

𝜇𝑘

⎛
⎝𝑐𝑘

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝐺𝑙𝑘𝑝𝑙 + 𝑐𝑘𝜎
2
𝑘 −𝐺𝑘𝑘𝑝𝑘 − 𝛿−1

𝑘 𝑡𝑘

⎞
⎠

+𝜇0

(
𝑐0

𝐾∑
𝑙=1

𝐺𝑙0𝑝𝑙 + 𝑐0𝜎
2
0 −𝐺00𝑝0

)

= 𝜖

𝐾∑
𝑘=1

𝑝𝑘 + (1− 𝜖)

𝐾∑
𝑘=1

𝜆𝑘𝑡𝑘 +

𝐾∑
𝑘=0

𝜇𝑘𝑐𝑘

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝐺𝑙𝑘𝑝𝑙

+

𝐾∑
𝑘=0

𝜇𝑘𝑐𝑘𝜎
2
𝑘 −

𝐾∑
𝑘=0

𝜇𝑘𝐺𝑘𝑘𝑝𝑘 −
𝐾∑

𝑘=1

𝜇𝑘𝛿
−1
𝑘 𝑡𝑘

All terms in this expression are separated (sums of individual
user contributions), except for the third one. Notice, however,
that this term may be rewritten as

𝐾∑
𝑘=0

𝜇𝑘𝑐𝑘

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝐺𝑙𝑘𝑝𝑙 =

𝐾∑
𝑘=0

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝜇𝑘𝑐𝑘𝐺𝑙𝑘𝑝𝑙

=

𝐾∑
𝑙=0

𝐾∑
𝑘=0,𝑘 ∕=𝑙

𝜇𝑘𝑐𝑘𝐺𝑙𝑘𝑝𝑙 =

𝐾∑
𝑙=0

𝑝𝑙

𝐾∑
𝑘=0,𝑘 ∕=𝑙

𝜇𝑘𝑐𝑘𝐺𝑙𝑘

This is a key step towards distributing the computation. Swap-
ping variables 𝑘 and 𝑙 and substituting back in the Lagrangian,
we obtain

𝐿(𝒑, 𝒕,𝝁) = 𝜖

𝐾∑
𝑘=1

𝑝𝑘+(1−𝜖)
𝐾∑
𝑘=1

𝜆𝑘𝑡𝑘+

𝐾∑
𝑘=0

𝑝𝑘

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝜇𝑙𝑐𝑙𝐺𝑘𝑙

+
𝐾∑

𝑘=0

𝜇𝑘𝑐𝑘𝜎
2
𝑘 −

𝐾∑
𝑘=0

𝜇𝑘𝐺𝑘𝑘𝑝𝑘 −
𝐾∑

𝑘=1

𝜇𝑘𝛿
−1
𝑘 𝑡𝑘

=

𝐾∑
𝑘=0

𝑝𝑘

⎛
⎝𝜖+

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝜇𝑙𝑐𝑙𝐺𝑘𝑙 − 𝜇𝑘𝐺𝑘𝑘

⎞
⎠

+

𝐾∑
𝑘=1

𝑡𝑘
(
(1− 𝜖)𝜆𝑘 − 𝜇𝑘𝛿

−1
𝑘

)
+

𝐾∑
𝑘=1

𝜇𝑘𝑐𝑘𝜎
2
𝑘

=
𝐾∑

𝑘=0

𝐿𝑘(𝑝𝑘, 𝑡𝑘,𝝁)

where for 𝑘 ∈ {1, . . . ,𝐾}

𝐿𝑘(𝑝𝑘, 𝑡𝑘,𝝁) = 𝑝𝑘

⎛
⎝𝜖 +

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝜇𝑙𝑐𝑙𝐺𝑘𝑙 − 𝜇𝑘𝐺𝑘𝑘

⎞
⎠

+ 𝑡𝑘
(
(1− 𝜖)𝜆𝑘 − 𝜇𝑘𝛿

−1
𝑘

)
+ 𝜇𝑘𝑐𝑘𝜎

2
𝑘 (42)

and

𝐿0(𝝁) = 𝑝0

(
𝜖 +

𝐾∑
𝑙=1

𝜇𝑙𝑐𝑙𝐺0𝑙 − 𝜇0𝐺00

)
+ 𝜇0𝑐0𝜎

2
0 (43)

Notice that 𝐿0 is a function of just 𝝁 since 𝑝0 is constant
and not included in 𝒑 and there is no 𝑡0 - the primary user
is always admitted. Dual variable 𝜇𝑘 is the cost users have to
pay to interfere with user 𝑘. We have rewritten the Lagrangian
as the sum of 𝐾 + 1 individual Lagrangians involving only
local variables and the dual variables. The dual function can
be split as well,

𝑑(𝝁) = inf
𝒑,𝒕

𝐾∑
𝑘=0

𝐿𝑘(𝑝𝑘, 𝑡𝑘,𝝁) =

𝐾∑
𝑘=0

𝑑𝑘(𝝁)

where we have suppressed the box constraints on 𝒑, 𝒕 for
brevity, and for 𝑘 ∈ {1, . . . ,𝐾}

𝑑𝑘(𝝁) = inf
𝑝𝑘,𝑡𝑘

𝑝𝑘

⎛
⎝𝜖+

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝜇𝑙𝑐𝑙𝐺𝑘𝑙 − 𝜇𝑘𝐺𝑘𝑘

⎞
⎠

+ 𝑡𝑘
(
(1− 𝜖)𝜆𝑘 − 𝜇𝑘𝛿

−1
𝑘

)
+ 𝜇𝑘𝑐𝑘𝜎

2
𝑘 (44)
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whereas

𝑑0(𝝁) = 𝑝0

(
𝜖+

𝐾∑
𝑙=1

𝜇𝑙𝑐𝑙𝐺0𝑙 − 𝜇0𝐺00

)
+ 𝜇0𝑐0𝜎

2
0 (45)

As expected 𝑑0 is constant over 𝒑 and 𝒕. This is a consequence
of the fact that the primary user has no local (i.e. primary)
variables to optimize. The resulting dual problem is

max
𝝁∈ℝ

𝐾+1
+

𝑑(𝝁) (46)

which can be solved in a distributed fashion using the pro-
jected subgradient method (e.g., see [4]). The overall approach
iterates between computing minimizers of (44) in closed form,
using them to calculate subgradients of 𝑑, and updating costs
𝝁.

In order to recover the solution of (26)-(30) (i.e., the optimal
primal variables) from the dual problem, the objective of the
primal problem should be strictly convex. The linear objective
in (26) is convex, but not strictly convex. We may bypass this
difficulty by approximating the objective in (26) with

𝜖

𝐾∑
𝑘=1

𝑝1+𝜃
𝑘 + (1− 𝜖)

𝐾∑
𝑘=1

𝜆𝑘𝑡
1+𝜃
𝑘 (47)

where 𝜃 is a small positive constant which can be chosen
to ensure that the solution of the modified problem is within
specified tolerance from that of the original problem. With this
modification, (42) becomes

𝐿𝑘(𝑝𝑘, 𝑡𝑘,𝝁) = 𝑝𝑘

⎛
⎝𝜖𝑝𝜃𝑘 +

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝜇𝑙𝑐𝑙𝐺𝑘𝑙 − 𝜇𝑘𝐺𝑘𝑘

⎞
⎠

+ 𝑡𝑘
(
(1− 𝜖)𝜆𝑘𝑡

𝜃
𝑘 − 𝜇𝑘𝛿

−1
𝑘

)
+ 𝜇𝑘𝑐𝑘𝜎

2
𝑘 (48)

whereas (44) becomes

𝑑𝑘(𝝁) = inf
𝑝𝑘,𝑡𝑘

𝑝𝑘

⎛
⎝𝜖𝑝𝜃𝑘 +

𝐾∑
𝑙=0,𝑙 ∕=𝑘

𝜇𝑙𝑐𝑙𝐺𝑘𝑙 − 𝜇𝑘𝐺𝑘𝑘

⎞
⎠

+ 𝑡𝑘
(
(1 − 𝜖)𝜆𝑘𝑡

𝜃
𝑘 − 𝜇𝑘𝛿

−1
𝑘

)
+ 𝜇𝑘𝑐𝑘𝜎

2
𝑘 (49)

and both are strictly convex. Note that 𝐿𝑘(𝑝𝑘, 𝑡𝑘,𝝁) contains
a term depending only on 𝑝𝑘, another depending only on
𝑡𝑘, and separate interval constraints on 𝑝𝑘, 𝑡𝑘. It follows
that minimization of 𝐿𝑘(𝑝𝑘, 𝑡𝑘,𝝁) with respect to 𝑝𝑘, 𝑡𝑘
amounts to two separate 1-D strictly convex subproblems.
Taking partial derivatives with respect to 𝑝𝑘, 𝑡𝑘, and equating
to zero, we obtain

𝑝∗𝑘 =

(
𝜇𝑘𝐺𝑘𝑘 −

∑𝐾
𝑙=0,𝑙 ∕=𝑘 𝜇𝑙𝑐𝑙𝐺𝑘𝑙

𝜖 (1 + 𝜃)

)1/𝜃

(50)

and

𝑡∗𝑘 =

(
𝜇𝑘𝛿

−1
𝑘

(1− 𝜖)𝜆𝑘 (1 + 𝜃)

)1/𝜃

(51)

followed by projection of 𝑝∗𝑘 onto [0 𝑃𝑀𝐴𝑋
𝑘 ], and 𝑡∗𝑘 onto

[0 4]. In each iteration, user 𝑘 updates 𝑝𝑘 and 𝑡𝑘 as above,
then updates 𝜇𝑘 using a projected subgradient step

𝜇𝑘 ← [𝜇𝑘 − 𝛼𝜌𝑘]+ (52)
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Fig. 1. Distributed implementation: Convergence of primal 𝑡𝑘 (infeasible
scenario of three users).

where [⋅]+ denotes projection onto the positive half-space, 𝛼
is a suitable step size, 𝜌𝑘 is the positive slack from the SINR
constraints, which for 𝑘 ∈ {1, . . . ,𝐾} is given by

𝜌𝑘(𝑝𝑘, 𝑡𝑘) = 𝐺𝑘𝑘𝑝𝑘 + 𝛿−1
𝑘 𝑡𝑘 − 𝑐𝑘

∑
𝑙 ∕=𝑘

𝐺𝑙𝑘𝑝𝑙 − 𝑐𝑘𝜎
2
𝑘 (53)

and

𝜌0 = 𝐺00𝑝0 − 𝑐0
∑
𝑙 ∕=0

𝐺𝑙0𝑝𝑙 − 𝑐0𝜎
2
0 (54)

It has been shown (e.g., section 6.3 in [4], and [36]) that, if
for every 𝑘 and given 𝝁, 𝑝∗𝑘 and 𝑡∗𝑘 are minimizers of 𝐿𝑘,
the vector of slacks 𝜌𝑘(𝑝

∗
𝑘, 𝑡

∗
𝑘) makes up a subgradient of the

negative dual function −𝑑 at 𝝁. Using the update rule in (52)
results in minimizing −𝑑 or, equivalently, solving our dual
problem.

The convergence properties of the algorithm are dependent
on the choice of step size 𝛼. There are various strategies for the
step size choice in the literature. We chose 𝛼𝑖 = 𝛼0/𝑖 where
𝑖 is the iteration number and 𝛼0 is the initial step size (this
sequence is square summable but not summable). This ensures
convergence to the optimal solution (e.g., Proposition 6.3.4 in
[4]), however the speed of convergence depends heavily on the
choice of 𝛼0. Figure 1 illustrates convergence of the primal
𝑡𝑘 variables in an infeasible scenario with 𝐾 = 3 nodes.

Distributed Deflation and Feedback Requirements: The
algorithm used in the distributed setting is essentially the
LPD algorithm described in Section III-D, where the primal-
dual method described in this section is used instead of a
centralized LP solver for step 2. In each iteration of this
primal-dual method, user 𝑘 ∈ {1, . . . ,𝐾} updates its local
variables using (50), (51), (53), (52) [or (54), (52) for 𝑘 = 0].
The update in (50) requires that node 𝑘 is aware of 𝑐𝑙, 𝐺𝑘𝑙

and the current price 𝜇𝑙 for each neighboring node 𝑙 affected
by interference from node 𝑘 (i.e., for which 𝐺𝑘𝑙 ∕= 0). A
separate low-rate control channel can be used to pass around
this information to neighboring nodes. The update in (53),
(52), [or (54), (52) for 𝑘 = 0] is lighter in terms of feedback,
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as it only requires measuring the received interference plus
noise (i.e., the quantity

∑
𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝𝑙 + 𝜎2

𝑘).
After convergence of the primal-dual method (end of step

2 in the algorithm), each link checks if its SINR constraint
is satisfied. If not, a distributed consensus process to select a
link to drop is initiated by any link, via the control channel. In
order for the link dropping heuristic described in III-D to be
used, again certain quantities need to be communicated over
the control channel.

Let 𝑝𝑒𝑘 be the excess power needed for link 𝑘 to attain its
target SINR, assuming all other link powers are those ob-
tained upon convergence. Link 𝑘 computes the sum of excess
interference caused to and received from neighboring links,
i.e., 𝑚𝑘 := 𝑝𝑒𝑘

∑
𝑙 ∕=𝑘 𝐺𝑘𝑙 +

∑
𝑙 ∕=𝑘 𝐺𝑙𝑘𝑝

𝑒
𝑙 . This requires that

link 𝑘 also knows 𝐺𝑙𝑘, 𝑝𝑒𝑙 for the links which interfere with
it. This information can be locally shared using the control
channel. A distributed consensus-on-the-max algorithm can
then be employed over the control channel to reach agreement
on the index of the link with maximum 𝑚𝑘 and drop that link.

Distributed consensus algorithms have attracted consider-
able interest in signal processing lately, sparked by the work
of Xiao and Boyd [29], among others. Distributed consensus
has a longer history though, including the case of consensus-
on-the-max and general functions; see [6] and references
therein. A distributed flow that achieves consensus-on-the-
max in finite time for strongly connected graphs is given in
[6]. A conceptually simpler discrete-time approach is to let
each node compute a local maximum at each time-step. If the
graph is strongly connected, this will yield consensus on the
global maximum in at most 𝑟 steps, where 𝑟 is the radius of
the graph. This assumes that interim estimates are exchanged
between neighbors at each time step, however it is easy to
relax this requirement and still guarantee convergence, under
mild assumptions.

VI. SIMULATIONS

We carried out three sets of experiments: centralized with
perfect CSI, distributed with perfect CSI and robust centralized
with CSI uncertainty. In each case we examined scenarios
with and without a primary user, to cover cognitive radio and
ad-hoc settings, respectively. In all our simulations we tested
the ability of each algorithm to admit a close to optimal (as
given by enumeration) number of users for varying 𝐾 (user
population), target SINR, or channel gain uncertainty in the
robust case.

In the following, each figure reports Monte-Carlo (MC)
average results for at least 300 MC runs. For each MC run,
transmitter locations are uniformly drawn on a 2 Km × 2
Km square. For each transmitter location, a receiver location
is drawn uniformly in a disc of radius 400 meters, excluding
a radius of 10 meters. The power budget for any link 𝑘 is
given by 𝑃𝑀𝐴𝑋

𝑘 = 𝑏𝑃𝑀𝐼𝑁
𝑘 , where 𝑃𝑀𝐼𝑁

𝑘 is the minimum
power required for the link to satisfy its SINR constraint in the
absence of any interference. The primary user’s power is fixed
to 𝑃𝑀𝐴𝑋

𝑘 . Link gains are calculated by 𝐺𝑖𝑗 = 1/𝑑4𝑖𝑗 where 𝑑𝑖𝑗
is the Euclidean distance between transmitter 𝑖 and receiver 𝑗,
and receiver noise is set to −60 dBm. For our relaxation-based
algorithms, the 𝛿𝑘 are kept close to the respective bounds

4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

Total users

M
ea

n 
# 

of
 a

dm
itt

ed
 u

se
rs

 

 
Enumeration
LPD
GRN−DCPC SMART
GRN−DCPC SMART Modified

c
k
=8

c
k
=0

Fig. 2. Mean number of admitted users vs. total number of candidate users,
for 𝑐𝑘 = 0 and 𝑐𝑘 = 8 dB.
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Fig. 3. Mean number of admitted vs. total number of users, for a large
candidate population and 𝑐𝑘 = 2.

(specifically at 0.999 times the value given by (20)) and 𝜖
is set to one order of magnitude smaller than the upper bound
given by (19).

A. Centralized Algorithm under Perfect CSI

Results for this set of experiments are summarized in
Figures 2 to 6. As a baseline for our LPD algorithm, we
implemented the gradual removals GRN-DCPC algorithm of
[1]. This algorithm was not developed for a cognitive radio
scenario (it does not account for interference to the primary
user). Despite its age, [1] still represents the state-of-art in
the case when no primary users are considered. The heuristic
used was ’SMART’ as described in [1]. In the course of
implementing this algorithm, we came up with an improved
variant, which we also included in our simulations under the
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Fig. 4. Mean number of admitted users vs. power budget coefficient 𝑏, for
𝑐𝑘 = 2 and 50 users.
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Fig. 5. Mean number of admitted secondary users vs. total number of
secondary users, for a single primary link with 𝑐0 = 2 dB and secondary
SINR 𝑐𝑘 = 2 or 𝑐𝑘 = 5.

name ’GRN-DCPC SMART Modified’2.
In order to include the ultimate upper bound in our com-

parisons, we also developed a carefully optimized stack-based
enumeration algorithm that always finds the optimum solution
for modest problem sizes (up to 20 secondary users). This
works by either growing or pruning the candidate set of users.
In growing mode, once an infeasible set has been detected,
its supersets are not tested; in pruning mode, once a feasible
set has been found, its subsets are not tested. The code was
verified against brute-force enumeration in extensive Monte-
Carlo experiments for up to 12 users.

In all experiments in this section, except for Figure 4 we
set the power budget coefficient to 𝑏 = 5. A comparison of
LPD, the two flavors of GRN-DCPC, and the optimal solution

2The modification consists of normalizing cross gains by the transmitter’s
self link gain, instead of the receiver’s self link gain. Using the notation in
[1] (beware of the reversed role of indices) this translates to 𝛼𝑖𝑗 = 𝑔𝑖𝑗/𝑔𝑗𝑗
instead of the original 𝛼𝑖𝑗 = 𝑔𝑖𝑗/𝑔𝑖𝑖 (for 𝑗 ∕= 𝑖).
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Fig. 6. Mean number of admitted users vs. secondary user SINR constraint
for 12 secondary users, with (𝑃 = 1) / without (𝑃 = 0) a primary user with
𝑐0 = 2.

(via enumeration) in terms of the average number of admitted
users versus the user population, 𝐾 , is provided in Figure 2
for 𝑐𝑘 = 0 dB and 𝑐𝑘 = 8 dB. Our modification of ’GRN-
DCPC SMART’ performs better than the original and LPD
performs very close to optimal for the range considered. Figure
3 shows the average number of admitted users versus a larger
number of candidate users, illustrating the increasing gap of
LPD relative to both flavors of GRN-DCPC.

The transition from the power limited to the interference
limited regime is illustrated in Figure 4, as the average number
of admitted users over the power budget coefficient 𝑏. There
we can see a ’law of diminishing returns’-type behavior, where
gains from power are only reaped in the early stages of
increasing the power budget.

Figures 5 and 6 depict results in a cognitive radio setting.
The primary transmitter and receiver, when present, are located
on an edge of the 2 Km × 2 Km square, 1 Km apart and
symmetrically with respect to the edge midpoint. For Figure
5, a single primary user is present with 𝑐0 = 2𝑑𝐵, and for the
secondary users 𝑐𝑘 = 2𝑑𝐵, or 𝑐𝑘 = 5𝑑𝐵. Figure 6 shows the
average number of admitted users versus the secondary user’s
SINR target, with or without a primary user (curves marked
𝑃 = 1 or 𝑃 = 0, respectively) with 𝑐0 = 2𝑑𝐵. In this case,
the number of admitted users decreases roughly linearly with
respect to the SINR target in dB. In both figures we notice that
our LPD algorithm performs close to optimal in the scenarios
considered.

B. Centralized Algorithm with Imperfect CSI

In order to assess the performance of our robust SOCD
algorithm, we use the same simulation setup as in our pre-
vious experiments. The new element lies in our modeling
of channel gain uncertainty. As already described in Section
IV, for any given receiver, the receiving gains are assumed
to be lying in an ellipsoid centered on the nominal gain
values. Furthermore, for the purpose of these simulations we
assume diagonal ellipsoid matrices and perfect self link gain
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Fig. 7. Robust case: Mean number of admitted users for 𝑐𝑘 = 2, and
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Fig. 8. Robust case: Mean number of admitted users vs. uncertainty 𝜂𝑘 , for
10 secondary users with 𝑐𝑘 = 0, with (𝑃 = 1) / without (𝑃 = 0) a primary
user. For the primary user 𝑐0 = 2, gain uncertainty set to 𝜂0 = 2𝜂𝑘 .

knowledge. Specifically, the entries of the ellipsoid matrix 𝐸𝑘

are given by:

𝐸𝑘(𝑖, 𝑗) =

{
𝜂𝑘𝐺𝑖𝑘, 𝑖 = 𝑗 and 𝑖 ∕= 𝑘
0, otherwise

,

where 𝜂𝑘 ∈ [0, 1) represents the level of uncertainty for the
receiving gains estimated by receiver 𝑘. The amount of this
uncertainty is a fraction of the actual gains, modeling an
additive uncertainty for an estimate in dB.

The deflation algorithm employed here is the robust SOCD
described in section IV. Only enumeration is available for
comparison in the robust case. This is similar to the enu-
meration algorithm used in our earlier simulations, only this
time using the SOCP formulation of Section IV to test
user subsets for admissibility. Figure 7 shows the average
number of admitted users versus the total number of users
for 𝑐𝑘 = 2𝑑𝐵, no primary user present, and uncertainty
coefficients 𝜂𝑘 = 0.1 or 𝜂𝑘 = 0.9. Figure 8 shows the average
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Fig. 9. Distributed implementation: Mean number of admitted users vs. total
number of secondary users with 𝑐𝑘 = 2, with (𝑃 = 1) / without (𝑃 = 0) a
primary user with 𝑐0 = 2.

number of admitted users for 10 candidate users, versus the
uncertainty coefficient 𝜂𝑘. For this Figure 𝑐𝑘 = 0𝑑𝐵, one set
of curves is without a primary user and the other set includes a
primary user with 𝑐0 = 2𝑑𝐵 and higher estimation uncertainty
than the more versatile secondary users (𝜂0 = 2𝜂𝑘). Again
our SOCD algorithm performs very close to optimal in terms
of the average number of admitted users. The price paid
for robustness is an increase in transmission power, which
is somewhat higher for SOCD than for robust enumeration.
This penalty is however limited by the individual link power
constraints which are in effect.

C. Distributed Algorithm

To assess the performance of our distributed LPD algorithm
we will again compare to the two flavors of GRN-DCPC and
enumeration, described in Section VI-A. We present indicative
simulation results for both an ad-hoc scenario without a
primary user (to enable comparison with [1]), and a cognitive
radio scenario with a primary user present. In all experiments
in this section we set the power budget coefficient to 𝑏 = 2.

For the distributed-algorithm-specific parameters discussed
in Section V we set 𝜃 = 0.2, and the initial step-size was
empirically set to 𝛼0 = 1. The dual variables were initialized
as 𝜇𝑘 ∼ 1/𝐺𝑘𝑘, and the slacks 𝜌𝑘 were normalized by 𝐺𝑘𝑘𝛿

−1
𝑘

to bring the different links to scale and ensure approximately
equal rates of convergence. A maximum of 5K iterations were
allowed for the primal-dual distributed solver of the relaxed
problem, followed by a final phase that linearly brings 𝛼𝑖 to
0 in 500 iterations, thus damping any residual oscillation.

Figure 9 reports the average number of users admitted
versus the total number of users for 𝑐𝑘 = 2, for enumeration,
the two flavors of GRN-DCPC, the centralized LPD algorithm,
and its distributed counterpart, with or without a primary
user with 𝑐0 = 2. Since the GRN-DCPC algorithms are not
applicable in scenarios with primary users, they are omitted in
the second set of curves. Finally, Figure 10 shows the average
number of users admitted versus the secondary users’ SINR
target for 12 users and 𝑐0 = 2.
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Fig. 10. Distributed case: Mean number of admitted users vs. SINR target
for secondary users, with (𝑃 = 1) / without (𝑃 = 0) a primary user with
𝑐0 = 2.

We notice that our distributed LPD performs the same as
the centralized LPD, which is a significant improvement over
’GRN-DCPC SMART’. Our modification of ’GRN-DCPC
SMART’ performs close to LPD in this simulation, however
we would like to point again to the results in Figure 3, which
demonstrate the clear superiority of LPD for a large number
of users.

For the purpose of discussing the communication require-
ments and solution speed of our distributed algorithm, let us
give an example. Assume a 10 Mbps control channel. At every
iteration, every user has to broadcast its dual variable 𝜇𝑘. A
conservative estimate of the message size including coding and
user ID gives us a packet of 50 bits. Assuming a total of 10
users this translates to 20K iterations or approximately 4 link
removals per second. Compared to this, simpler algorithms
like GRN-DCPC [1] (or its improved variant proposed herein)
take only a small fraction of the time, making the use
of distributed deflation worthwhile when we do admission
control infrequently (for relatively longer transmission rounds)
and/or in difficult scenarios where we need to squeeze-in the
maximum possible number of users.

VII. DISCUSSION AND CONCLUSIONS

Our results suggest that the proposed LPD algorithm is very
promising. It indeed comes close to attaining the performance
of the optimal solution at the cost of solving 𝑂(𝐾) LP
problems in the worst case. This requires a fraction of a second
on a current personal computer, as opposed to several minutes
needed for enumeration for 𝐾 = 20, which is modest. LPD
clearly outperforms the state-of-art when no primary users
are considered. This is already important, because the joint
admission and power control problem has been under scrutiny
for many years. Interestingly, our robust solution (the SOCD
algorithm) appears to have an even smaller gap relative to the
optimal robust solution.

We have also developed a distributed implementation of
the joint admission and power control algorithm. The new

implementation alternates between a distributed approximation
phase and a distributed deflation phase. The latter employs
consensus-on-the-max to select a link to drop, if needed. Both
phases require local communication and computation. Still,
communication and computation requirements are consider-
ably higher than those of simpler heuristic solutions, making
distributed deflation worth its cost in relatively challenging
scenarios, or when we schedule for (and costs are amortized
over) longer horizons.

Directions for future research include considering dis-
tributed Newton-type algorithms [14] in place of dual decom-
position, as a means of speeding up convergence; multiple
types of secondary user traffic (e.g., guaranteed rate and
best-effort); multicasting; and engineering approximations to
further reduce complexity.
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