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Abstract—Throughput-optimal multihop wireless network op-
eration entails a key physical-layer optimization problem: max-
imizing a weighted sum of link rates, with weights given by the
differential queue backlogs. This emerges in joint back-pressure
routing and power control, which is central in cross-layer wire-
less networking. We begin by showing that the core problem is not
only nonconvex, but also NP-hard. This is a negative result, which
however comes with a positive flip side: drawing from related de-
velopments in the digital subscriber line (DSL) literature, we pro-
pose effective ways to approximate it. Exploiting quasi-periodicity
of the power allocation in stable setups due to the push-pull nature
of the solution, we derive two custom algorithms that offer excel-
lent throughput performance at reasonable, worst-case polynomial
complexity. Judicious simulations illustrate the merits of the pro-
posed algorithms.

Index Terms—Back-pressure routing, convex approximation,
cross-layer design, digital subscriber line (DSL), dynamic spec-
trum management, network optimization, NP-hard problems,
power control, utility maximization.

I. INTRODUCTION

S INCE its inception in the early 90s [24], back-pressure
routing has won much acclaim as a (surprisingly) simple

and effective adaptive routing solution that is optimal in terms
of throughput. It was subsequently generalized in many ways
(see [5] for a recent tutorial overview) and currently forms the
backbone of emerging approaches aiming to optimize other per-
formance objectives [17], [22].
Back-pressure policies owe their popularity to their natural

agility and robustness (e.g., with respect to link failures and
traffic dynamics). Back-pressure implementations for wired
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unicast networks are lightweight in terms of computation and
signaling overhead, but the situation can be very different in
wireless networks, due to fading, shadowing, and mutual inter-
ference. Along with these challenges come new opportunities,
however: for example, it is possible to employ power control
to obtain a more favorable “topology” from the viewpoint of
maximizing throughput.
There is a lot of recent activity on optimization based ap-

proaches for network control and management, in particular for
wireless networks. Advances in wireless technology over the
last several years resulted in systems with much increased com-
putational power at each radio node, while at the same time the
channel sensing and measurement capabilities increased signif-
icantly as well. As a result, fairly sophisticated approaches for
real-time network control become feasible. On the other hand,
several recent theoretical advances in optimization-based net-
work control increased our understanding of the theoretical per-
formance limits that may be pursued in these systems [4], [5],
[9], [11], [16], [17], [22], [23], [26].
Here we consider the joint routing and power control problem

for maximal end-to-end throughput in a wireless multihop net-
work. From the work of Tassiulas et al. [5], [16], [23]–[26], it
is known that the following policy is optimal in the sense of en-
abling maximal stable throughput: choose link powers to max-
imize a differential backlog—weighted sum of link capacities;
then route at each node using back-pressure. We call this policy
back-pressure power control (BPPC). Our purpose here is to in-
vestigate the structure and properties of the BPPC problem, and
come up with a suitable algorithm to solve it.
A conference version of part of this work appears in the Pro-

ceedings of the IEEE ICASSP 2011 [15]. The conference ver-
sion [15] presents the basic ideas, batch algorithms, and illus-
trative simulation results. This journal version adds custom al-
gorithms, proofs and derivations, comprehensive simulations,
and a fleshed-out discussion of results and insights.

II. SYSTEM MODEL

Consider a wireless multihop network comprising nodes.
The topology of the network is represented by the directed graph

, where and denote
the set of nodes and the set of links, respectively. Each link

corresponds to an ordered pair , where
and . Let and denote the transmitter and the
receiver of link , i.e., when , then and

. Data can be transmitted from any node to any other
node, and each node may split its incoming traffic into multiple
outgoing links. Let denote the power transmitted on link ,
and the aggregate path loss between the transmitter of link
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and the receiver of link . Then, the signal to interference plus
noise ratio (SINR) experienced by the receiver of link is

(1)

where is the background noise power, and models
spreading / beamforming gain, if any. The transmission rate on
link is upper bounded by the maximum achievable rate ,
given by1

(2)

where has been absorbed in the coupling factors .
Due to (1), is a function of all the transmitted powers in the
network.

III. MAXIMUM THROUGHPUT

We assume that the system is slotted in unit time slots, in-
dexed by . Let us begin by considering a single flow in the net-
work: traffic stems from node 1 (the source) and traverses the
network to reach node (the destination). Let denote
the queue length of node at the end of slot . The differential
backlog [24] of link , at the end of slot is defined as

(3)

Traffic flows through the links during each slot, based on the
link capacities resulting from the power allocation at the begin-
ning of the slot. The powers for slot are to be determined by
solving the following optimization problem [5], [6], [10], [16],
[23]–[26]

(4)

subject to (5)

The objective function in (4) is a weighted sum of the capaci-
ties of all network links, where the differential backlogs serve
as weighting factors. The optimization problem (4) and (5) aims
to maximize the throughput of the network by favoring the links
whose receiver is less congested than the transmitter. Note that,
from (3), links destined to more congested nodes will have low
differential backlogs, and are thus down-weighted in (4). In-
equalities (5) upper bound the total transmission power of each
node. Per-link power constraints can be used instead of (or to-
gether with) per-node power constraints, without changing the
nature of the problem and the solutions proposed in the sequel.
Extension of the above throughput-optimal policy to the

case of multiple flows turns out being surprisingly simple [24].

1The usual SINR gap parameter can be introduced in the Shannon capacity
formula to account for modulation loss, coding, etc. We skip this for brevity

The only difference in the case of multiple flows is that each
node maintains a separate queue for each flow, and each link
computes the maximum differential backlog across all flows
traversing the link. The BPPC problem is solved using these
maximum differential backlogs as weights on link capacities,
and each link then carries a flow that achieves the link’s max-
imum differential backlog (winner-takes-all). This policy is
throughput-optimal for multiple flows [24]. A more detailed
discussion of the case of multiple flows (commodities) in our
particular context can be found in the Appendix (see also [6]).
It follows that our results are directly applicable to the case of
multiple flows; we continue with a single flow for simplicity of
exposition.
Unfortunately the objective function in (4) is nonconvex

in the optimization variables . This can be appreciated by
rewriting the problem using (2)

(6)

subject to (7)

The logarithm of an affine expression is concave, but the dif-
ference of concave functions is, in general, neither convex nor
concave. This raises the question of whether or not the BPPC
problem can be efficiently solved. We have the following claim,
whose proof can be found in the Appendix.
Claim 1: Back-pressure power control is NP-hard.
Back-pressure power control looks like the multiuser

sum-rate maximization problem for the interference channel,
but there is an important difference between the two: the
parameters are subject to certain restrictions for the former,
versus completely free for the latter. This means that the
NP-hardness proof in [13] cannot be directly invoked. Another
difference is that back-pressure power control may be subject to
per-node (instead of per-link) power constraints, which couple
the transmission power across multiple links. The key to a
simple and clear proof is backlog reduction: realizing that there
is freedom to choose the backlogs in such a way that we peel
off these complicating factors to reveal the multiuser sum-rate
maximization problem as a special case. Details can be found
in the Appendix.
While formal proof of NP-hardness of BPPC was missing,

and our work closes this gap, earlier work had already recog-
nized that BPPC is a nonconvex problem that is likely difficult
to solve. It is in part for this reason that [6] proposed a greedy
on-line optimization approach. In the following, we take a dif-
ferent, disciplined convex approximation approach.

IV. CONVEX APPROXIMATION

We develop a convex approximation algorithm by borrowing
an idea originally developed in the dynamic spectrum manage-
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ment for digital subscriber lines literature [18], [19]. The main
point is to lower-bound the individual link rates using a con-
cave function. In particular, we will use the following bound
[18], [19]:

(8)

which is tight at . Notice that as , the bound becomes
.

Applying (8) to

(9)

subject to (10)

results in the approximation2

(11)

subject to (12)

The maximization problem (11)–(12) is still nonconvex, since
the objective is not concave in the variables . However, notice
that

(13)

Introducing a logarithmic change of variables

(14)

yields

(15)

where and for brevity. The log-
arithm of a sum of exponentials is convex, theminus sign reverts
the curvature, and addition with an affine expression preserves
curvature; hence, (15) is a concave function of .
With respect to the optimization variables , the

problem of interest finally becomes

(16)

2Since we maximize a lower bound, the solution obtained this way will yield
a value for the original objective that is at least as high as the maximal lower
bound.

subject to

(17)

The objective function (16) is concave, since it comprises a
sum of linear and concave functions of , cf. (15). The
weights are nonnegative, cf. (3), and so are the constants

and , cf. (8). Moreover, inequalities (17) are convex,
since, as noted before, the logarithm of a sum of exponentials
is a convex function. Hence, optimization problem (16)–(17)
is convex, since the maximum of a concave function is sought
over a convex feasible set. The logarithmic change of variables
(14) is reminiscent of geometric programming (GP); indeed,
(16)–(17) is an Extended GP problem.
In the high-SINR regime the bound

is tight: . This is an often-made
(and debated) approximation; in our present context, it has been
adopted in [6] to simplify the problem and enable derivation of
best-response type algorithms. The issue with the high-SINR
approximation is that we do not know beforehand whether it
holds well at the optimum—unless worst-case interference is
so low that the problem is easy to begin with.
The high-SINR approximation corresponds to using
and , in (16)–(17), yielding the following

approximation algorithm.

Algorithm 1: Batch High-SINR

For each time slot , calculate the differential backlogs and
solve (16), (17) with , , , to obtain

.

Solving the optimization problem in (16)–(17) maximizes a
lower bound on the achievable differential backlog—weighted
sum rate of all links. After obtaining , the
individual link rate bounds can be tightened by tuning the
parameters and , so that the bounds coincide
with the link rates at . This suggests the
following successive approximation algorithm.

Algorithm 2: Batch Successive Approximation
(Batch S.A.)

1) Initialization: For each time slot , calculate the
differential backlogs, reset iteration counter , and set

and , .
2) repeat:
3) Maximization step: Solve (16), (17) to obtain

4) Tightening step: Pick , according to (8)
for , see (1),

5)
6) until convergence of the objective value (within -
accuracy).
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The sequence of iterates produces a monotonically increasing
objective. This is a corollary of the majorization principle, e.g.,
cf. [2]. The idea of using the bound in (8) to obtain a convex
lower approximation, then tightening the bound to refine the
approximation is the essence of the SCALE algorithm in [18],
[19], originally proposed for spectrum balancing in cross-talk
limited digital subscriber line (DSL) systems. Interestingly, the
same problem structure emerges in our present multihop cross-
layer networking context, where the objective is to choose link
powers and flows for maximal stable end-to-end throughput.
In [19], it is shown that the SCALE algorithm converges to

a KKT point of the original nonconvex power control problem.
This also holds in our context, i.e., for each , indexed
by converges to a KKT point of the original NP-hard BPPC
problem. The argument in [19] carries over verbatim: the main
point is that the lower bound approximation is exact at the con-
verged solution.

V. CUSTOM ALGORITHMS

Unlike [18], [19], where the spectrum balancing problem is
solved once (or “infrequently”), and the weights used to com-
pute the weighted sum rate objective are fixed design parame-
ters, we have to solve the problem on a per-slot basis with a dif-
ferent set of weights—the differential backlogs, which change
dynamically from one scheduling slot to the next, as packets are
routed in the network. The objective function changes, and, as
a result, the power vector computed in the previous slot may
be far from a good solution for the present slot. This calls for
custom algorithms that avoid solving the problem from scratch
at each slot. Towards this end, we first convert (16) and (17) into
an unconstrained optimization problem using a logarithmic bar-
rier interior point method.
Consider (16) under per-link power constraints (per-node

power constraints as in (17) can be similarly treated), and
rewrite as

(18)

subject to (19)

where now the cost function is convex. Converting the ex-
plicit link-power constraints into implicit ones, we seek to

(20)

where

(21)

Interior point methods approximate this using the convex dif-
ferentiable function

for (22)

which converges to as . In practice, it suffices
to pick large enough.3 This yields the unconstrained convex
minimization problem

(23)

i.e.,

(24)

which can be solved via Newton’s method to obtain a solution
that approaches the optimal solution of (18)–(19) as
.

Recall that the motivation for considering custom solutions to
the BPPC problem is that we have to solve it for each scheduling
slot, with a different set of weights (the differential backlogs)
and possibly time-varying ’s. Even when the physical layer
propagation conditions vary slowly with time, the differential
backlogs can change swiftly from slot to slot.
Assuming deterministic fixed-rate (or random but bounded)

arrivals and fixed physical layer propagation conditions, if all
queues remain bounded then the system must exhibit periodic
behavior—perhaps with a very long period. This is because
there is a (large but still) finite number of system states, hence
the system must return to a previously visited state in due time.
The same holds for finite-state time-varying physical layer prop-
agation conditions (e.g., of the on-off type)—we only need to
augment the state vector to account for those. In practice we typ-
ically observe far shorter periods, due to the need to protect links
from excessive interference (including no-listen-while-you-talk
considerations), which often implies that the best strategy is to
schedule “independent” (quasi) noninterfering subsets of links
in subsequent slots. This way the system operates in amultistage
push-pull fashion, giving rise to periodic or quasi-periodic be-
havior for stable setups.
Given the above, it is clear that the solution at slot can be

very different from the one at slot ; thus departing from the
classical setting of adaptive algorithms. Not all is lost however:
the key is to exploit the aforementioned (quasi) periodicity. Even
though the previously computed solution can be far from the one
needed in the present slot, chances are that one of the already en-
countered solutions for past slots is close to theone for thepresent
slot. This idea is exploited in the following two algorithms.

3Or iterate with a gradually increasing .
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Algorithm 3: Adaptive high-SINR

Fix , ,
For each time slot :
1) Calculate the differential backlogs
2) Power initialization:
For draw random satisfying log-power
constraints; else for set:

(25)

where

(26)

else set:

(27)

3) Starting from , solve (24) via Newton’s method:
a) Reset iteration counter and set auxiliary
variable .

b) repeat:
c) Compute Gradient vector and Hessian
matrix , see Appendix.

d) Compute Newton direction:
.

e) Line search: Choose a step size
.

f)
g) Update powers: .
h) until: convergence of the cost (within -
accuracy).

4) Set .

Notice that (25) and (27) simply evaluate the current objec-
tive function at previously computed solutions (for past slots).
The parameter should be large enough to capture emerging
periodic behavior, but using larger than necessary ’s is not
a problem, as function evaluations are cheap relative to the
Newton steps that follow.
Similar to the batch case, it is also possible to begin with a

high-SINR approximation and successively refine it by tuning
the parameters and to tighten the individual link rate
bounds. This yields the following algorithm.

Algorithm 4: Adaptive Successive Approximation
(Adaptive S.A.)

Initialize link rate bound parameters: set , ,

For each time slot :
1) Calculate the differential backlogs
2) Power initialization:

For draw random satisfying log-power
constraints; else for set:

(28)

where

(29)

else set:

(30)

3) Outer initialization: Reset outer iteration counter ,
set , and pick ,
according to (8) for , see (1), .

4) repeat:
5) Starting from , solve (24) via Newton’s method:

a) Inner initialization: Reset inner iteration counter
and set auxiliary variable .

b) repeat:
c) Compute Gradient vector and Hessian
matrix , see Appendix.

d) Compute Newton direction:
.

e) Line search: Choose a step size
.

f)
g) Update powers: .
h) until: convergence of the cost (within -
accuracy).

6)
7) Set
8) Tightening step: pick , according to (8)
for , see (1), .

9) until convergence of the cost (within -
accuracy).

10) Set .

VI. COMPLEXITY OF CONVEX APPROXIMATION

The worst-case complexity order of the batch algorithms is
, where is the number of links (optimization vari-

ables) [1], [12]. In dense networks where every node is within
range of every other node, , where is the number
of nodes; thus worst-case complexity is then . This is
relatively high, but it is important to note that even the solution
of a system of linear equations in the link powers would entail
complexity . The successive approximation
algorithm typically converges in just a few (3–4 in our experi-
ments) tightening steps, so complexity order is the same as the
high-SINR one.
The worst-case complexity of the adaptive approximation al-

gorithms is the same as that of the batch algorithms—mainly
due to the matrix inversion in the Newton step which is cubic in
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, the remainder being the number of Newton steps needed to
converge in the worst case. The constants that are hidden in the
big notation are of course far smaller for the adaptive algo-
rithms, and so is their average complexity—due to their “reuse”
of past solutions for warm restart. This will be illustrated in
the simulations section. It is also possible to use quasi-Newton
methods such as BFGS to further reduce the average complexity
of the adaptive algorithms.

VII. BASELINES

A. Assessing the Quality of Approximation
Given that the proposed convex approximation algorithms

only find approximate solutions to the original NP-hard
problem, we would like to develop means of assessing how
far an approximate solution is from an optimal one. Re-
turning to the original objective, we could use the inequality

(follows from ),
met with equality at , to upper bound the individual terms
of the objective function. This yields an upper bound, but its
maximization is difficult, as it involves products of variables.
The classical way to obtain an upper bound is via duality—

i.e., by considering the Lagrange dual problem. The dual
problem is convex by definition; yet computing the dual func-
tion (objective of the dual problem) is also NP-hard. This can
be established by showing that it contains (see Appendix) the
corresponding computation for single-carrier sum-rate maxi-
mization in DSL systems, which is known to be NP-hard [14].
In [20], an algorithm called MAPEL is proposed, based on

increasingly accurate approximation of the feasible SINR re-
gion to find an optimal solution to the weighted sum-rate max-
imization problem. When optimal solution is sought, NP-hard-
ness implies that MAPEL’s worst-case complexity is exponen-
tial. MAPEL can also be used for approximation, however our
simulations indicated that it is too complex to be used even as
a benchmark in our setting. For this reason, we will resort to an
algorithm of Yu and Lui [27], originally developed for spectrum
balancing in DSL systems, which yields an approximate solu-
tion of the dual problem—hence an approximate upper bound
of our objective. This algorithm is briefly reviewed next.
1) Iterative Spectrum Balancing Algorithm: Considering

per-link power constraints, the dual objective function ,
where denotes the vector of Lagrange dual variables, is the
result of the unconstrained maximization

In [27], an iterative algorithm that alternates between primal
(link powers) and dual variables is proposed to obtain an ap-
proximate solution to the dual problem. Following straightfor-
ward adaptation in our present (single-carrier, weighted sum
rate) context, this algorithm can be summarized as follows:

Algorithm 5: Iterative Spectrum Balancing
(ISB)

For each time slot :
1) Initialize
2) repeat:
3) initialize
4) repeat:
5) for to , set

end
6) until converges (within - accuracy)
7) Update using subgradient or ellipsoid
method

8) until converges (within - accuracy).

In the above, the element-wise power optimization is non-
convex in , but can be accomplished via either line-search, or
polynomial rooting (finding the roots of the first derivative and
examining the second derivative as well). A subgradient itera-
tion is employed for the -update step (7)

where is the iteration number, and the step-size sequence is
usually taken as , for some .

B. Prior Art: Back-Pressure Best Response Algorithm

In addition to a (possibly unattainable, by often tight) upper
bound, we will also compare the proposed algorithms to the
earlier state-of-art for the BPPC problem—namely [6], where
two low-complexity algorithms were derived under the high-
SINR assumption. These are the Best Response algorithm, and
the Gradient Projection algorithm. Best Response outperforms
Gradient Projection; we therefore only consider the former in
the sequel. For every time slot , and for each link

, the Best Response algorithm computes the differential
backlog and the interference price ,

where is the total interference to
link from other links. The price is subsequently communicated
to all links, and link transmits with power

VIII. SIMULATION RESULTS

Simulation experiments have been performed in three dif-
ferent scenarios, in order to assess the performance of the
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Fig. 1. Illustration of network construction in proof of Claim 1. Thick lines
indicate links with nonzero differential backlog.

Fig. 2. Network topology.

various algorithms. In addition to the batch high-SINR / S.A.
and their adaptive counterparts developed herein, we also
included ISB and the Best Response algorithm as baselines for
comparison.
Scenario 1—Small Network With Moderate Interference:

The first scenario considered is a network with nodes,
randomly drawn from a uniform distribution over a 100 100
square. The resulting topology is shown in Fig. 2. The network
remains fixed throughout the simulations for scenario 1. The
leftmost node is the source, the rightmost is the destination, and
the intermediates are relays. Since the destination acts as a sink,
and no node transmits to itself, there are links in the
network (note that intermediate nodes are in principle allowed
to send packets back to the source). Direct and crosstalk link
power losses are taken inversely proportional to , where is
the distance between transmitter and receiver. It is assumed that
nodes cannot listen while they talk: if link terminates at node
and link departs from , then , where eps is
machine precision. A spreading gain is assumed and
absorbed in the crosstalk factors . The background
noise power is set to , . Per-link power constraints
are adopted to be consistent with ISB and Best Response, used
here as baselines; , . We assume deterministic
arrivals at the source. Simulating the network under control
of each algorithm, we consider various arrival rates in order
to narrow down the maximal arrival rate that each algorithm

can support. Unless otherwise noted, the network is simulated
for 100 packet / control slots. For the batch algorithms, each
problem instance is solved using the CVX toolbox [7] for
Matlab, on a per-slot basis. The desired accuracy in step 6 of
the batch S.A. algorithm was set to .
Simulations verified the expected push-pull “wave” propa-

gation over the network, and that periodic behavior emerges
for stable setups. For arrival rates up to 9 packets per slot
(pps), both batch algorithms stabilize the system, and the
average throughput equals the incoming traffic at the source.
Gradually increasing the arrival rate, we found that 9.7 pps was
the maximal value for which the batch high-SINR algorithm
managed to stabilize the system. Beyond that, all backlogs
grow to infinity. Plots of the evolution of source and relay
backlogs, power allocation, and end-to-end throughput for
the batch high-SINR algorithm are shown in Fig. 3 (left) for
arrival rate 9.7 pps, and Fig. 3 (right) for arrival rate 9.9 pps.
Note that for the stable setup of Fig. 3 (left), and after a short
transient, all relevant quantities (backlogs, powers, end-to-end
throughput) converge to a periodic pattern. In this case, the
emerging period is two slots. Simulations also verified that the
batch S.A. algorithm is able to stabilize the system at higher
input loads than the batch high-SINR algorithm. The maximum
arrival rate that batch S.A. can support in this case is 10.4 pps.
The queues become unstable at higher arrival rates. This can be
easily visualized at 10.8 pps. Plots for the batch S.A. are shown
in Fig. 4 (left) for arrival rate 10.4 pps, and Fig. 4 (right) for
arrival rate 10.8 pps. For the stable setup in Fig. 4 (left), note
again that all relevant quantities quickly settle in to a periodic
pattern.
A first check point for the custom adaptive algorithms

is to verify that they indeed reproduce the results of their
batch counterparts, ideally at far lower complexity. We used
a window of slots for power initialization, and in
(24) was set to . For the line search in step 3e of the
adaptive high-SINR (5e of the adaptive S.A., respectively), a
grid search of accuracy was used. The desired accuracy
in step 9 of the adaptive S.A. was set to . Simula-
tion results concerning the adaptive high-SINR algorithm are
shown in Fig. 5, for arrival rates 9.7 and 9.9 pps, passing sanity
check (compare to Fig. 3). The adaptive S.A. algorithm like-
wise keeps up with its batch counterpart, as shown in Fig. 6
(compare to Fig. 4). Notice that the adaptive version of each
algorithm yields qualitatively similar results (and in particular
attains the same stable throughput) as its batch counterpart,
however the respective power allocations do not coincide. This
is because the underlying problem does not have a unique so-
lution in general. To see this, consider an interference-limited
scenario comprising two intermediate nodes transmitting to the
common destination. Assuming symmetric loads and channels,
activating either one of the two will yield the same reward.
As an indication of the complexity of the various algorithms,

we note that the batch high-SINR one required on average about
8 seconds per slot (problem instance); batch S.A. averaged 3–4
outer iterations for a total of 20 seconds per slot. The adap-
tive high-SINR algorithm averaged about four inner iterations
(Newton steps) for a total of 1.5 seconds per slot. Adaptive S.A.
averaged 1–2 outer iterations of up to four inner Newton steps,
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Fig. 3. Scenario 1: Batch high-SINR, arrival rate (left) and 9.9 (right).

Fig. 4. Scenario 1: Batch Successive Approximation, arrival rate (left) and 10.8 (right).

Fig. 5. Scenario 1: Adaptive high-SINR, arrival rate (left) and 9.9 (right).

for a total of about 1.5 seconds per slot, when initialized at the
best (for the present slot) of the past solutions for the pre-
vious slots. The difference is more significant (order of magni-
tude) in the case of the successive approximation algorithms,
and the gap widens quickly with the size of the network. We
also note that for time-invariant (or slowly-varying) channels,
the rate of power updates (i.e., how often one solves the BPPC
problem) only affects delay, not the attainable stable throughput

of the algorithm, as shown in [23], [24]. Thus one can take more
time between power updates at the expense of increased packet
delay, without sacrificing throughput.
Next, we present results for the Best Response algorithm pro-

posed in [6]. We also tried the gradient projection algorithm in
[6], but it proved consistently inferior4 to Best Response, so we
skip the associated plots. Best Response was initialized with the

4Failed to stabilize the network in cases where Best Response did.
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Fig. 6. Scenario 1: Adaptive Successive Approximation, arrival rate (left) and 10.8 (right).

Fig. 7. Scenario 1: Back Pressure Best Response algorithm, arrival rate (left) and 5.8 (right).

solution of the Batch high-SINR algorithm, to give it the best
possible warm start under the high-SINR assumption. However,
it still takes far longer to reach steady-state (when it can stabi-
lize the system) than previously discussed algorithms, hence we
simulate it for 1000 slots in the sequel. Experiments showed that
the highest arrival rate that Best Response can handle is 5.7 pps.
Plots of the evolution of source and relay backlogs, power al-
location, and end-to-end throughput, for the arrival rate 5.7 and
5.8 pps, are shown in Fig. 7. Obviously, this algorithm leaves
much to be desired in terms of maximum stable throughput,
delay (cf. queue backlogs and Little’s theorem), and settling
time relative to batch and adaptive high-SINR and S.A. On the
other hand, Best Response is very cheap in terms of compu-
tation. As an indication, its average run-time here was 0.0085
seconds per slot, which is two orders of magnitude less than the
best-performing algorithms.
Recall that computing the dual function is NP-hard, and ISB

is only able to provide an approximate upper bound to the max-
imum attainable objective of the primal problem. Due to ap-
proximation, the power allocation computed by ISB need not
(and in fact does not, in many cases) yield a higher primal ob-
jective than batch/adaptive S.A. Still, it is reassuring to see that
the approximate upper bound derived from ISB is indeed higher
and not very far from the value of the objective computed from
batch/adaptive S.A. Illustrating this gap is the objective of the
next two plots. We consider two arrival rates, one well-within

Fig. 8. Scenario 1: ISB versus Batch S.A.: Comparison between objective
values attained.

the stable region and another on the margin: 8, and 10.4 pps. The
network evolves under control of the batch S.A. algorithm, and
ISB is used to (approximately) upper bound the attainable dif-
ferential backlog weighted sum of link rates for each slot. The
link power optimization in step 5 of the ISB algorithm is per-
formed using a grid search over of accuracy . For
each slot , all elements of are initially set to 1, and the update
of in step 7 is performed using the subgradient method with
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Fig. 9. Scenario 1: Switching injection pattern: Adaptive S.A., backlogs / throughput(left), link powers (right).

Fig. 10. Scenario 2: Adaptive high-SINR, arrival rate (left) and 2.6 (right).

. The desired accuracy for the convergence of and
was set to . The final objective values attained by ISB
and the batch S.A. algorithm are plotted together as functions
of in Fig. 8, in separate panels for the two arrival rates consid-
ered. Notice that ISB consistently hovers above batch S.A. in
both cases considered, which is satisfying.
We next consider a tracking experiment to illustrate the ability

of the adaptive S.A. algorithm to follow changes in the oper-
ational environment. Packets are now injected not only at the
original source node (node 1), but also at an intermediate relay
(node 3). There is still one destination, and all packets are treated
the same way—there is only one buffer per node. For the first
50 slots, traffic is injected at 3 pps through node 1, and at 6 pps
through node 3. For the next 50 slots the injection pattern re-
verses: 6 pps through node 1, and 3 pps through node 3. Fig. 9
shows simulation results for the adaptive S.A. algorithm, which
evidently responds swiftly to the change in the traffic pattern.
The Best Response algorithm cannot stabilize the network for
this pair of rates; but even at lower, sustainable rates, its re-
sponse to the change of the injection pattern was very slow and
hard to discern. We skip associated plots for brevity.
Scenario 2—Small Network, More Interference: We next

consider a scenario that is more interference-limited (less
power-limited) than before: using instead of 128. ISB

takes disproportional time to converge in this scenario, thus
we drop it from consideration. Due to stronger interference,
the high-SINR algorithms can now stabilize the system for
arrival rates only up to 2.4 pps. Fig. 10 plots results for adaptive
high-SINR for arrival rate 2.4 pps (left) and 2.6 pps (right). The
S.A. algorithms proved much better, supporting three times
higher stable throughput (7.5 pps). It turned out that, in order
to do so, they both converged to the same solution: keeping
only the direct link from source to destination, always on and
transmitting at maximum power. Simulation results are shown
in Fig. 11 for arrival rate 7.5 pps (left), and 7.9 pps (right).
The complexity advantage of the adaptive algorithms relative
to the batch ones remains similar to scenario 1. Best Response
managed to stabilize the system for rates up to 2.1 units per
slot. The respective plots are shown in Fig. 12 for the 2.1 pps
(left) and 2.3 pps (right).
Scenario 3—Larger Network, Moderate Interference: A

larger network comprising nodes ( links)
is considered in our third scenario. The setup is otherwise
identical to scenario 1. Simulation showed that the high-SINR
algorithms managed to stabilize the network for arrival rates
up to 12.6 pps. The adaptive S.A., on the other hand, managed
to stabilize the system for up to 15.7 pps. Unlike adaptive
S.A., the batch S.A. algorithm was too slow to include in this
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Fig. 11. Scenario 2: Adaptive Successive Approximation, arrival rate (left) and 7.9 (right).

Fig. 12. Scenario 2: Back Pressure Best Response algorithm, arrival rate (left) and 2.3 (right).

TABLE I
ATTAINABLE STABLE ARRIVAL RATES IN PACKETS PER SLOT

comparison. The maximum rate that Best Response could
support was 4.4 pps. We skip associated plots for brevity, and
instead gather all results concerning attainable rates in Table I.

IX. CONCLUSION

We have considered the power control problem in wireless
multihop networks. From the viewpoint of maximizing stable
end-to-end throughput, the objective is to maximize a differen-
tial backlog-weighted sum of link rates, subject to power con-
straints. Following physical layer optimization at the beginning
of each transmission round, back-pressure routing is used for
packet forwarding over the network. This two-step approach is
optimal from a throughput perspective, and, for this reason, the
back-pressure power control (BPPC) problem is central in wire-
less multihop networks.
BPPC was known to be nonconvex [6]; we established that it

is in fact NP-hard. This precludes optimal solution at worst-case

polynomial complexity, andmotivates the pursuit of appropriate
approximation algorithms. Drawing from related problems in
the DSL literature (in particular the SCALE algorithm of [18],
[19]), we proposed two ways to approximate the BPPC problem
which far outperform the previous state of art in [6]. Most im-
portantly, recognizing the high computational burden arising
from the need to solve BPPC on a per-slot (transmission round)
basis, and capitalizing on quasi-periodicity of the power allo-
cation in stable setups due to the push-pull nature of the so-
lution, we proposed two custom adaptive approximation algo-
rithms that offer excellent throughput performance at reasonable
computational complexity, which remains worst-case polyno-
mial. In addition to throughput margin, the proposed algorithms
feature shorter backlogs / queueing delays, and faster transient
response.
An interesting research direction is to consider means of im-

plementing the proposed algorithms—adaptive S.A. in partic-
ular—in a distributed fashion. Recent progress in distributing
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the Newton step using Gaussian belief propagation [28], and re-
lated work in distributed network utility maximization [8] may
be useful towards this end.
Another interesting direction is to consider time-varying

channels. If the channel variation is far slower than the rate
of power re-optimization, and the channels can be tracked at
the central scheduler, then our methods remain operational. If
the channels change (perhaps abruptly) only at certain points
in time, but otherwise remain fixed between such changes
and known to the central scheduler, and the BPPC problem
is exactly solved before each such ‘dwell’, then throughput
optimality still holds [23]. This scenario is plausible when sev-
eral different networks are time-division multiplexed (similar
to multiplexing ALOHA protocols, for example). We have
shown that exact solution of BPPC is NP-hard; but we have
also shown that our approximate solutions deliver substantial
throughput improvement relative to the prior art in [6]. Still,
much work is needed to figure out good policies for general
time-varying scenarios, including the interplay with distributed
implementation.

APPENDIX

Extension to Multiple Flows: In the case of multiple flows,
each node is assumed to maintain a separate queue for each
flow (this is easy to implement and it does not require additional
storage). Let there be flows (i.e., destinations) in the net-
work. For every scheduling time slot , the fol-
lowing algorithm is executed.
Let denote the queue length of node for flow at

the end of slot . The differential backlog of link for
flow at the end of slot is defined as

where is the destination node for flow . Let

be the maximum differential backlog for link at the end of slot
, and

be a flow that attains maximum differential backlog for link at
the end of slot . Then link is dedicated to flow for the
next scheduling period (if , then link remains idle),
and transmission powers are set according to

subject to

That is, the same type of BPPC problem is solved as in the
single-flow case, but this time using ’s in place of ’s.
The other difference with the case of a single flow is that now
a decision has to be made as to which flow(s) will be routed on
any given link and how to multiplex them—but it turns out that

simple winner-takes-all routing combined with BPPC is in fact
optimal from a throughput perspective, as shown in [24].

Proof: (Claim 1) We will show that the problem contains
that of determining the size of the maximum independent set
in a graph, which is NP-hard. The proof draws heavily from
the proof of Theorem 1 in [13], which deals with the multiuser
sum-rate maximization problem for the interference channel.
Back-pressure power control looks like the same problem, but
there is a catch: the parameters are completely free in
the multiuser sum-rate maximization problem in [13], but in
back-pressure power control the ’s are subject to certain re-
strictions. Consider the case of two links stemming from
the same node. Clearly, , and . Like-
wise, consider two links , with common receiving node. Then

, and . This seems to suggest that back-
pressure power control is a restriction of the multiuser sum-rate
maximization problem, and restriction of an NP-hard problem
is not necessarily NP-hard. Another important difference is that
back-pressure power control may be subject to per-node (in-
stead of per-link) power constraints, which couple the transmis-
sion power across multiple links.
The key to a simple and clear proof is backlog reduction:

realizing that there is freedom to choose the backlogs in such
a way that we peel off these complicating factors to reveal the
multiuser sum-rate maximization problem as a special case.
The conflict graph is a familiar concept in network sched-

uling. Each directed link in the network corresponds to a node in
the conflict graph. Nodes , in the conflict graph are connected
by an undirected edge if , or , or both—i.e.,
when links and can interfere with each other. An indepen-
dent set of nodes (not connected by an edge) in the conflict graph
corresponds to a set of network links that can be simultaneously
activated without causing interference to one another. Given an
undirected connected graph with nodes,
construct an instance of a wireless multihop network whose con-
flict graph is as follows:
• Choose network nodes, split them in pairs, draw a di-
rected link between each pair, and set the differential back-
logs of these links to 1. Set the differential backlogs of
all remaining links to 0. The drawn links are the only
ones that can be activated in the next slot. This is impor-
tant because it effectively reduces the network to a set of
cochannel links that do not share transmitters or receivers;
see Fig. 1. Since no transmitter is shared, there is no dis-
tinction between per-link or per-node power constraints in
so far as this proof is concerned.

• For the links with nonzero differential backlog, set:
— , , (no spreading), and ,
where is a constant;

— For every edge in connecting nodes and , set
(notice that we enforce sym-

metry, which will be used later in the proof).
Notice that the choice of the coupling factors in the above has

implications for other links in the network: For example, strong
crosstalk between two links implies that there is a strong direct
channel gain between the transmitter of one link and the receiver
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of the other. If the two transmitters could switch receivers they
would set up more favorable links. This possibility is excluded,
however, by our selection of differential backlogs: all except the
chosen links have zero differential backlog.
Let be an optimum solution of the back-pres-

sure power control problem for this network instance, and let
be the corresponding optimal value of the (sum-rate) objective.
Let be a maximum independent set of . By activating only
the network links corresponding to conflict graph nodes in , we
obtain sum-rate , hence .
Conversely, consider and split it in two parts: those ele-
ments that are positive, and the rest that are zero. It has been
shown in [13] that, under our working assumptions (in partic-
ular, ) the sum-rate objective is convex-U with respect
to each component of , albeit not jointly convex in as a
whole. Since the maximum of a convex function over a poly-
tope can always be attained at a vertex, and the constraint is

, it follows that we may assume, without loss of
generality, that . This is important, because it
implies that if two or more interfering links are simultaneously
active, the interference level will be lower bounded by .
Let , and let be a maximum indepen-
dent subset of in . Clearly, . We have

since is an upper bound on rate for each link in ,
in the best-case scenario that no link in interferes with
it; and links outside must have at least one interferer in , for
otherwise is not a maximum independent subset of in .
We can further bound as follows:

The term is decreasing in , and equal

to for ; it follows that
, and since , we have

. Putting everything together

and solving for , we obtain

This determines the exact (integer) value of . It follows that
if we could efficiently solve the back-pressure power control
problem in polynomial time, we would be in position to deter-
mine the size of the maximum independent set in an arbitrary
graph in polynomial time.

Gradient and Hessian Computation: The first and second
order derivatives of

which are needed to compute the gradient and Hessian for the
adaptive algorithms, are given by

where

is the total interference to link from all other links. The second-
order partial derivatives are

and
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