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Abstract—For linear models, compressed sensing theory and
methods enable recovery of sparse signals of interest from few
measurements—in the order of the number of nonzero entries as
opposed to the length of the signal of interest. Results of similar
flavor have more recently emerged for bilinear models, but no
results are available for multilinear models of tensor data. In
this contribution, we consider compressed sensing for sparse
and low-rank tensors. More specifically, we consider low-rank
tensors synthesized as sums of outer products of sparse loading
vectors, and a special class of linear dimensionality-reducing
transformations that reduce each mode individually. We prove in-
teresting “oracle” properties showing that it is possible to identify
the uncompressed sparse loadings directly from the compressed
tensor data. The proofs naturally suggest a two-step recovery
process: fitting a low-rank model in compressed domain, followed
by per-mode decompression. This two-step process is also
appealing from a computational complexity and memory capacity
point of view, especially for big tensor datasets.

Index Terms—, CANDECOMP/PARAFAC, compressed sensing,
multi-way analysis, tensor decomposition.

I. INTRODUCTION

F OR linear models, compressed sensing [1], [2] ideas
have made headways in enabling compression down

to levels proportional to the number of nonzero elements,
well below equations-versus-unknowns considerations. These
developments rely on latent sparsity and -relaxation of the
quasi-norm to recover the sparse unknown. Results of similar
flavor have more recently emerged for bilinear models [3], [4],
but, to the best of the author’s knowledge, compressed sensing
has not been generalized to higher-way multilinear models of
tensors, also known as multi-way arrays [5]–[9].
In this contribution, we consider compressed sensing for

sparse and low-rank tensors. A rank-one matrix is an outer
product of two vectors; a rank-one tensor is an outer product of
three or more (so-called loading) vectors. The rank of a tensor
is the smallest number of rank-one tensors that sum up to the
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given tensor. A rank-one tensor is sparse if and only if one or
more of the underlying loadings are sparse. For small enough
rank, sparse loadings imply a sparse tensor. The converse is not
necessarily true: sparse tensor sparse loadings in general.
On the other hand, the elements of a tensor are multivariate
polynomials in the loadings, thus if the loadings are randomly
drawn from a jointly continuous distribution, the tensor will
not be sparse, almost surely. These considerations suggest that
for low-enough rank it is reasonable to model sparse tensors as
arising from sparse loadings. We therefore consider low-rank
tensors synthesized as sums of outer products of sparse loading
vectors, and a special class of linear dimensionality-reducing
transformations that reduce each mode individually using a
random compression matrix. We prove interesting ‘oracle’
properties showing that it is possible to identify the uncom-
pressed sparse loadings directly from the compressed tensor
data. The proofs naturally suggest a two-step recovery process:
fitting a low-rank model in compressed domain, followed
by per-mode decompression. This two-step process is
also appealing from a computational complexity and memory
capacity point of view, especially for big tensor datasets.
Our results appear to be the first to cross-leverage the

identifiability properties of multilinear decomposition and
compressive sensing. A few references have considered spar-
sity and incoherence properties of tensor decompositions,
notably [10] and [11]. Latent sparsity is considered in [10]
as a way to select subsets of elements in each mode to form
co-clusters. Reference [11] considers identifiability condi-
tions expressed in terms of restricted isometry/incoherence
properties of the mode loading matrices; but it does not deal
with tensor compression or compressive sensing for tensors.
Tomioka et al. [27] considered low mode-rank tensor recovery
from compressed measurements, and derived approximation
error bounds without requiring sparsity.
Notation: A scalar is denoted by an italic letter, e.g. . A

column vector is denoted by a bold lowercase letter, e.g.
whose -th entry is . A matrix is denoted by a bold upper-
case letter, e.g., with -th entry
denotes the -th column (resp. -th row) of . A three-way
array is denoted by an underlined bold uppercase letter, e.g., ,
with -th entry . Vector, matrix and three-way
array size parameters (mode lengths) are denoted by uppercase
letters, e.g. . stands for the vector outer product; i.e., for two
vectors and , is an rank-one
matrix with -th element ; i.e., . For
three vectors, , , , is an

rank-one three-way array with -th element
. The operator stacks the columns of its

matrix argument in one tall column; stands for the Kronecker
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product; stands for the Khatri-Rao (column-wise Kronecker)
product.

II. TENSOR DECOMPOSITION PRELIMINARIES

There are two basic multiway (tensor) models: Tucker3, and
PARAFAC. Tucker3 is generally not identifiable, but it is useful
for data compression and as an exploratory tool. PARAFAC is
identifiable under certain conditions, and is the model of choice
when one is interested in unraveling latent structure. We refer
the reader to [9] for a gentle introduction to tensor decompo-
sitions and applications. Here we briefly review Tucker3 and
PARAFAC to lay the foundation for our main result.
Tucker3: Consider an three-way array com-

prising matrix slabs , arranged into the tall matrix
. The Tucker3 model (see also

[12]) can be written as , where ,
are three mode loading matrices, assumed orthogonal without
loss of generality, and is the so-called Tucker3 core tensor
recast in matrix form. The non-zero elements of the core tensor
determine the interactions between columns of . The
associated model-fitting problem is usually solved using an al-
ternating least squares procedure. The Tucker3 model can be
fully vectorized as .
PARAFAC: When the core tensor is constrained to be di-

agonal (i.e., if or ), one obtains the
parallel factor analysis (PARAFAC) [6], [7] model, sometimes
also referred to as canonical decomposition (CANDECOMP)
[5], or CP for CANDECOMP-PARAFAC. PARAFAC can be
written in compact matrix form as , using
the Khatri-Rao product. PARAFAC is in a way the most basic
tensor model, because of its direct relationship to tensor rank
and the concept of low-rank decomposition or approximation.
In particular, employing a property of the Khatri-Rao product,

where is a vector of all 1’s. Equivalently, with denoting
the -th column of , and analogously for and ,

. Consider an tensor of rank
. In vectorized form, it can be written as the vector

, for some , , and
—a PARAFAC model of size and order

parameterized by . The Kruskal-rank of , denoted
, is the maximum such that any columns of are linearly

independent . Given , if
, then are unique up to

a common column permutation and scaling, i.e.,
, ,

, where is a permutation matrix and
non-singular diagonal matrices such that , see
[5]–[8], [13]–[15].
When dealing with big tensors that do not fit in main

memory, a reasonable idea is to try to compress to a much
smaller tensor that somehow captures most of the systematic
variation in . The commonly used compression method
is to fit a low-dimensional orthogonal Tucker3 model (with
low mode-ranks) [9], then regress the data onto the fitted
mode-bases. This idea [16], [17] has been exploited in existing

Fig. 1. Schematic illustration of tensor compression: going from an
tensor to a much smaller tensor via multiplying (every slab
of) from the -mode with , from the -mode with , and from the
-mode with , where is , is , and is .

PARAFAC model-fitting software, such as COMFAC [18], as a
useful quick-and-dirty way to initialize alternating least squares
computations in the uncompressed domain, thus accelerating
convergence. Tucker3 compression requires iterations with the
full data, which must fit in memory, see also [19], [20].

III. RESULTS

Consider compressing into , where is ,
. In particular, we propose to consider a specially

structured compression matrix , which
corresponds to multiplying (every slab of) from the -mode
with , from the -mode with , and from the -mode
with , where is , is , and is ,
with , , and ; see Fig. 1.
Such an corresponds to compressing each mode individually,
which is often natural, and the associated multiplications can
be efficiently implemented when the tensor is sparse. Due to a
property of the Kronecker product [21],

from which it follows that

i.e., the compressed data follow a PARAFAC model of size
and order parameterized by with

, , . We have the following result.
Theorem 1: Let , where is
, is , is , and consider compressing it to

, where the mode-compression matrices
, , and

are randomly drawn from an absolutely continuous distribu-
tion with respect to the Lebesgue measure in , , and

, respectively. Assume that the columns of are
sparse, and let be an upper bound on the number
of nonzero elements per column of (respectively ). If

, and
, , , then the original factor load-

ings are almost surely identifiable from the compressed
data , i.e., if , then, with
probability 1, , , , where



SIDIROPOULOS AND KYRILLIDIS: MULTI-WAY COMPRESSED SENSING FOR SPARSE LOW-RANK TENSORS 759

is a permutation matrix and non-singular diag-
onal matrices such that .
For the proof, we will need two Lemmas.
Lemma 1: Consider , where is , and

let the matrix be randomly drawn from an absolutely
continuous distribution with respect to the Lebesgue measure
in (e.g., multivariate Gaussian with a non-singular covari-
ance matrix). Then almost surely (with prob-
ability 1).

Proof: From Sylvester’s inequality it follows that
cannot exceed . Let . It suffices
to show that any columns of are linearly independent,
for all except for a set of measure zero. Any selection of
columns of can be written as , where

holds the respective columns of . Consider the square
top sub-matrix , where holds the top
rows of . Note that is an analytic function of
the elements of (a multivariate polynomial, in fact). An
analytic function that is not zero everywhere is nonzero almost
everywhere; see e.g., [22] and references therein. To prove that

for almost every , it suffices to find one
for which . Towards this end, note that since

, is full column rank, . It therefore has a subset of
linearly independent rows. Let the corresponding columns

of form a identity matrix, and set the rest of the
entries of to zero. Then for this particular
. This shows that the selected columns of (in ) are

linearly independent for all except for a set of measure
zero. There are ways to select columns out of , and each
excludes a set of measure zero. The union of a finite number of
measure zero sets has measure zero, thus all possible subsets of
columns of are linearly independent almost surely.
The next Lemma is well-known in the compressed sensing

literature [1], albeit usually not stated in Kruskal-rank terms:
Lemma 2: Consider , where and are given

and is sought. Suppose that every column of has at most
nonzero elements, and that . (The latter holds with
probability 1 if the matrix is randomly drawn from an
absolutely continuous distribution with respect to the Lebesgue
measure in , and ). Then is the unique
solution with at most nonzero elements per column.
We can now prove Theorem 1.
Proof: Using Lemma 1 and Kruskal’s condition applied

to the compressed tensor establishes
uniqueness of , , , up to
common permutation and scaling/counter-scaling of columns,
i.e., , , will be identified, where is a per-
mutation matrix, and are diagonal matrices such that

. Then Lemma 2 finishes the job, as it ensures that,
e.g., will be recovered from up to column permuta-
tion and scaling, and likewise for and .
Remark 1: Theorem 1 does not require , , or to be
. If , , , Theorem 1 asserts that

it is possible to identify from the compressed data
under the same k-rank condition as if the uncompressed data
were available. If one ignores the underlying low-rank (multi-
linear/Khatri-Rao) structure in and attempts to recover it as
a sparse vector comprising up to non-zero elements,

then is required. For ,
, and , the latter requires samples

vs. for Theorem 1.
Remark 2: Optimal PARAFAC fitting is NP-hard [23], but

in practice alternating least squares (ALS) offers satisfactory
approximation accuracy at complexity in raw
space/ in compressed space (assuming a hard limit
on the total number of iterations). Computing the minimum
norm solution of a system of equations in unknowns entails
worst-case complexity [24], [25]. Fitting a PARAFAC
model to the compressed data, then solving an minimization
problem for each column of has overall complexity

. This does not require
computations in the uncompressed data domain, which is
important for big data that do not fit in memory. Using sparsity
first and then fitting PARAFAC in raw space has complexity

.
If one mode is not compressed under , say , then it

is possible to guarantee identifiability with higher compression
factors (smaller ) in the other twomodes, as shown next. In
what follows, we consider i.i.d. Gaussian compression matrices
for simplicity.
Theorem 2: Let , where is
, is , is , and consider compressing it to

, where the mode-compression matrices
, , and

have i.i.d. Gaussian zero mean, unit variance entries. Assume
that the columns of are sparse, and let be
an upper bound on the number of nonzero elements per column
of (respectively ). If ,

, , and , ,
, then the original factor loadings are almost

surely identifiable from the compressed data up to a common
column permutation and scaling.
Notice that this second theorem allows compression down to

order of in two out of three modes. For the proof, we will
need the following Lemma:
Lemma 3: Consider , where is deter-

ministic, tall/square and full column rank ,
and the elements of are i.i.d. Gaussian zero mean,
unit variance random variables. Then the distribution of is
absolutely continuous (nonsingular multivariate Gaussian) with
respect to the Lebesgue measure in .

Proof: Define , and . Then
, and therefore

, where we have used the vectorization and
mixed product rules for the Kronecker product [21]. The rank of
the Kronecker product is the product of the ranks, hence
.
We can now prove Theorem 2.
Proof: From [26] (see also [14] for a deterministic coun-

terpart), we know that PARAFAC is almost surely identifiable
if the loading matrices are randomly drawn from an abso-
lutely continuous distribution with respect to the Lebesgue mea-
sure in , is full column rank, and

. Full rank of is ensured almost surely by
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Lemma 1. Lemma 3 and independence of and imply that
the joint distribution of and is absolutely continuous with
respect to the Lebesgue measure in .
Theorems 1 and 2 readily generalize to four-and higher-way

tensors (having any number of modes). As an example, using
the generalization of Kruskal’s condition in [13]:

Theorem 3: Let , where
is , and consider compressing it to

, where the mode-compression matrices
are randomly drawn from an absolutely

continuous distribution with respect to the Lebesgue measure in
. Assume that the columns of are sparse, and let be

an upper bound on the number of nonzero elements per column
of . If , and ,
, then the original factor loadings are almost surely

identifiable from the compressed data up to a common column
permutation and scaling.

IV. DISCUSSION

Practitioners are interested in actually computing the under-
lying loading matrices . Our results naturally suggest
a two-step recovery process: fitting a PARAFAC model to the
compressed data using any of the available algorithms, such
as [18] or those in [9]; then recovering each from the re-
covered using any estimation algorithm from
the compressed sensing literature. We have written code to cor-
roborate our identifiability claims, using [18] for the first step
and enumeration-based decompression for the second step.
This code is made available as proof-of-concept, and will be
posted at http://www.ece.umn.edu/~nikos. Recall that optimal
PARAFAC fitting is NP-hard, hence any computational proce-
dure cannot be fail-safe, but in our tests the results were con-
sistent. Also note that, while identifiability considerations and
recovery only demand that , -based recovery al-

gorithms typically need to produce acceptable
results. In the same vain, while PARAFAC identifiability only
requires , good estimation
performance often calls for higher ’s, which however can still
afford very significant compression ratios.
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