
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013 493

From -Means to Higher-Way Co-Clustering:
Multilinear Decomposition With Sparse

Latent Factors
Evangelos E. Papalexakis, Student Member, IEEE, Nicholas D. Sidiropoulos, Fellow, IEEE, and Rasmus Bro

Abstract—Co-clustering is a generalization of unsupervised
clustering that has recently drawn renewed attention, driven by
emerging data mining applications in diverse areas. Whereas
clustering groups entire columns of a data matrix, co-clustering
groups columns over select rows only, i.e., it simultaneously groups
rows and columns. The concept generalizes to data “boxes” and
higher-way tensors, for simultaneous grouping along multiple
modes. Various co-clustering formulations have been proposed,
but no workhorse analogous to -means has emerged. This paper
starts from -means and shows how co-clustering can be formu-
lated as a constrainedmultilinear decomposition with sparse latent
factors. For three- and higher-way data, uniqueness of the mul-
tilinear decomposition implies that, unlike matrix co-clustering,
it is possible to unravel a large number of possibly overlapping
co-clusters. A basic multi-way co-clustering algorithm is proposed
that exploits multilinearity using Lasso-type coordinate updates.
Various line search schemes are then introduced to speed up
convergence, and suitable modifications are proposed to deal with
missing values. The imposition of latent sparsity pays a collateral
dividend: it turns out that sequentially extracting one co-cluster
at a time is almost optimal, hence the approach scales well for
large datasets. The resulting algorithms are benchmarked against
the state-of-art in pertinent simulations, and applied to measured
data, including the ENRON e-mail corpus.

Index Terms—Co-clustering, compressed sensing, factor anal-
ysis, k-means, multi-way analysis, sparsity, tensor decomposition,
triclustering, unsupervised clustering.

Manuscript received November 18, 2011; revised July 16, 2012 and
September 18, 2012; accepted September 19, 2012. Date of publication
October 16, 2012; date of current version December 31, 2012. The associate
editor coordinating the review of this manuscript and approving it for publi-
cation was Prof. Raviv Raich. This work was supported in part by ARL/ERO
W911NF-10-1-0464, W911NF-11-1-0500, TU Crete, the European Union
(European Social Fund—ESF) and Greek national funds through the Opera-
tional Program “Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF)—Research Funding Program: Thales. This
work was presented in part at the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Prague, Czech Republic, May22–27,
2011.
E. E. Papalexakis was with the Electrical and Computer Engineering De-

partment at the Technical University of Crete, Chania, Greece. He is now with
the Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA
15213 USA (e-mail: epapalex@cs.cmu.edu; website: http://www.cs.cmu.edu/
~epapalex/).
N. D. Sidiropoulos waswith the Electrical and Computer EngineeringDepart-

ment, Technical University of Crete, Chania, Greece. He is nowwith the Depart-
ment of Electrical and Computer Engineering, University of Minnesota, Min-
neapolis, MN 55455 USA (e-mail: nikos@ece.umn.edu; website: http://www.
ece.umn.edu/~nikos).
R. Bro is with the Department of Food Science, University of Copen-

hagen, 1958 Frederiksberg, Denmark (e-mail: rb@life.ku.dk; website:
http://www.models.life.ku.dk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2012.2225052

I. INTRODUCTION

U NSUPERVISED clustering seeks to group the columns
of a data matrix so that columns belonging to the same

group are close to each other in some sense. The prominent
example is -means, which seeks to partition the columns
in a way that columns falling in the same subset are close in
terms of Euclidean distance. Unsupervised clustering is a core
toolbox in pattern recognition and machine intelligence, where
numerous extensions and variations of -means have been
developed over the years to account for overlapping groups,
non-Euclidean distances and non-metric clustering, to name a
few.
A limitation of clustering is that it groups whole vectors, i.e.,

if two vectors differ significantly even in one element, they
cannot be clustered together. There are nowadays more and
more applications wherein one is interested in detecting, e.g.,
groups of customers buying certain products, even though their
overall buying patterns are very different, or gene co-expression
under certain experimental conditions that are a priori unknown.
These tasks cannot be accomplished with classical clustering
methods.
Co-clustering is a generalization of unsupervised clustering

that seeks to group columns over selected rows only (and
vice-versa); that is, it simultaneously groups the rows and
columns of a matrix to produce ‘coherent’ groups called
co-clusters. The notion of coherence can range from constant
to ‘similar’ co-cluster values, or proportional expression pro-
files in the case of gene expression data. This type of matrix
co-clustering is also referred to as bi-clustering. Co-clustering
goes back to the early ’70’s [14], but it has recently found
applications in diverse areas, ranging from the analysis of gene
co-expression to network traffic and social network analysis
[1], [5], [7], [18], [23]. The concept readily generalizes to
higher-way data sets (e.g., adding a temporal dimension).
There are few papers dealing with three-way co-clustering
(tri-clustering) [28], [36], [37] and no systematic study of
three- and higher-way co-clustering, to the best of our knowl-
edge. This is important because the algebraic properties of
three- and higher-way data are very different from those of
two-way (matrix) data; see, for example [19], [31].

-means is NP-hard, but the (generalized) Lloyd-Max
iteration usually yields acceptable solutions at affordable
complexity. Hard co-clustering that partitions both rows and
columns is a generalization of -means, hence also NP-hard.
Unlike -means, there is unfortunately no algorithmic
workhorse analogous to the Lloyd-Max iteration for hard
co-clustering. Various hard and soft bi-clustering formulations

1053-587X/$31.00 © 2012 IEEE

494 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

have been proposed in the literature [1], [5], [7], [18], [23], but
numerical optimization remains challenging in most cases.
Starting from basic -means and its extensions, we show

how co-clustering can be formulated as a constrained multi-
linear decomposition with sparse latent factors. In the case of
three- and higher-way data, this corresponds to a parallel factor
(PARAFAC) decomposition with sparse latent factors. This has
important implications for co-clustering, because PARAFAC is
unique under relatively mild conditions. This allows to uniquely
unravel a large number of possibly overlapping co-clusters
that are hidden in the data – something impossible with matrix
methods. We discuss modeling alternatives, paying partic-
ular attention to cases where one expects different co-cluster
support along the different modes of the data (e.g., a typical
co-cluster involves more rows than columns). We then propose
a basic multi-way co-clustering algorithm that exploits multi-
linearity using Lasso-type coordinate updates. Each update is
very simple, but the flip-side is that the number of iterations
until convergence can be large. To speed up convergence, we
propose line search schemes based on iterative majorization
and polynomial fitting. We also show how one can modify
our algorithms to deal with missing data – a situation that is
common in many applications. The resulting algorithms are
compared to the state-of-art in carefully designed simulations,
and also applied to measured data – the ENRON e-mail corpus,
Amazon co-purchase data, and chromatographic wine data – to
illustrate the benefit of line search.
Interestingly, the imposition of latent sparsity pays a collat-

eral dividend: as one increases the number of fitted co-clusters,
new co-clusters are addedwithout affecting those previously ex-
tracted. This is not normally true for PARAFAC without latent
sparsity. An important corollary of this ‘additivity’ is that the
co-clusters can be equivalently recovered one by one, in defla-
tion mode. This is important because fitting a rank-one compo-
nent is far easier computationally, implying that the approach
remains operational even for large datasets.

A. Relevant Prior Art

References [20], [35] have considered bilinear matrix decom-
positions with sparse latent factors, [20] specifically for bi-clus-
tering – this is the closest piece of work to ours. We will explain
the differences with [20] in Section III-B1. We have previously
considered a related doubly-sparse model in different contexts
[25], [30]. None of the above has considered tri-clustering and
higher-way co-clustering of tensors. The first attempt at tri-clus-
tering was [36], followed by [28], [37]. These did not consider
latent sparsity, which is at the heart of our approach for joint
co-cluster support selection across all modes. An early version
of part of our work appeared in [26], see also the introductory
article [6] for an interesting application in food technology. The
model is now different [(5) vs. (2) in what follows], and the al-
gorithms have evolved significantly, to include enhancements
such as line search and missing values.

NOTATION AND PRELIMINARIES

A scalar is denoted by an italic letter, e.g., . A column vector
is denoted by a bold lowercase letter, e.g., whose -th entry is

. A matrix is denoted by a bold uppercase letter, e.g.,
with -th entry ; denotes the -th
column (resp. -th row) of . A three-way array is denoted by an

underlined bold uppercase letter, e.g., , with -th entry
. Vector, matrix and three-way array size parameters

(mode lengths) are denoted by uppercase letters, e.g., .
denotes the range from to inclusive.

stands for the vector outer product; i.e., for two vectors
() and (), is an rank-one matrix with
()-th element ; i.e., . For three vectors,
(), (), (), is an rank -one
three-way array with -th element . Notice
that outer products are simple (rank-one) structures, in the sense
that all columns are proportional to a single ‘pattern’, and the
same holds for rows and ‘fibers’. The rank of a matrix can be
defined as the smallest number of outer products needed to syn-
thesize . The rank of a three-way array is likewise defined
as the smallest number of outer products needed to synthesize
. It turns out that this is the proper way to generalize the con-

cept of matrix rank to three- and higher-way arrays (e.g., column
and row ranks generally do not coincide in the three-way case).

stands for the Kronecker product; given () and
(), is the matrix

...
. . .

...

stands for the Khatri-Rao (column-wise Kronecker) product;
given () and () (notice same number of
columns), is the matrix

stands for the Hadamard (element-wise) product.
Consider a three-way array . A low-rank approximation of
can be written as

(1)

When the approximation is exact, the above is known as the
PARAFAC decomposition [13]. The rank of is then .
Any three-way array can be decomposed/synthesized as
above, for sufficiently high . Let ,

, and .
Then the three-way array above can be unfolded
into matrix form in three useful ways: of size ,

of size , and of size . These unfold-
ings can be specified as follows. Let be the -th
‘slab’ of perpendicular to the -mode, the -th

slab of perpendicular to the -mode, and
the -th slab of perpendicular to the -mode. Then

...
...

...

and it can be shown that

The operator projects its argument onto the interval
; denotes an indicator function – equal to 1 if

the condition is true, 0 otherwise.

PAPALEXAKIS et al.: FROM -MEANS TO HIGHER-WAY CO-CLUSTERING 495

II. MOTIVATION AND PROBLEM FORMULATION

A. Clustering as Constrained Outer Product Decomposition

Consider the familiar problem of clustering a set of vectors
in clusters. The goal is to find

cluster means and an assignment of each
to a best-matching cluster such that
(or other suitable mismatch cost) is minimized. In matrix
algebra terms, the problem can be posed as follows. Define

, ,
and an assignment matrix having
binary elements and rows satis-
fying , (i.e., each row sums to 1). The
most widely used version of the clustering problem, known as
-means clustering, can then be written as

where denotes the set of matrices with the property that
each row sums to -means clustering is NP-hard; for this
reason, iterative algorithms based on the Lloyd-Max iteration
are typically used to compute suboptimal solutions, often with
good results.
Note that -means clustering is equivalent to finding a best-

fitting approximation (in the least squares sense) of the matrix
as a sum of outer products

but the loadings in one mode are constrained:
. The binary constraint

, corresponds to the usual case of ‘hard’ clustering:
every data vector either belongs to a certain cluster or not. The

constraint , ensures that every data
vector belongs to one and only one cluster – no data vector is
left ‘orphan’ and the clusters are non-overlapping. Relaxing
the binary 0–1 constraints to non-negativity while maintaining
the constraint corresponds to ‘soft’ clustering (overlapping
clusters); the magnitude of now indicates how well
fits in cluster . Replacing the constraint by its ‘lossy’

counterpart (or even dropping it altogether)
emphasizes the extraction of significant clusters at the expense
of not modeling ‘outlying’ data points. This is often well-jus-
tified in the context of exploratory data analysis. From this
point on, we mostly focus on soft lossy (co-) clustering. We
also assume non-negative data and impose non-negativity on
the latent factors. Non-negativity is valid in many but not all
applications of co-clustering, so we also comment on how our
approach can be modified for the real-valued case.

B. Co-Clustering as Constrained Outer
Product Decomposition

-means and related approaches cluster whole vectors –
meaning that all elements of a given vector are considered when
making clustering decisions, and vectors that are clustered to-
gether are ideally ‘close’ in each and every coordinate. A single
cluster is modeled as a rank-one outer product plus noise:

where is unconstrained and is binary; i.e., ,
with 1’s in those elements corresponding to columns of the data
matrix that belong to the given cluster. The vector will typ-
ically be sparse, because most data columns will not belong to
any given cluster – at least when and the cluster popu-
lations are roughly balanced.
There are many applications where certain vectors are close

only for a certain subset of their elements, and we need to spot
this pattern. A good example is gene expression data, where the
rows of the data matrix correspond to specific genes being
expressed, the columns to experimental conditions, and the ob-
jective is to detect patterns of joint gene expression and the con-
ditions under which this happens. Note that we do not know
a priori exactly which genes are expressed together, or under
which conditions. Another example is marketing, where rows
correspond to products, columns to customers, and the objec-
tive is not to cluster the products or the customers, but rather to
detect (possibly overlapping) groups of customers that tend to
buy certain subsets of products. This is the co-clustering (in this
case bi-clustering) problem which has recently generated sig-
nificant interest in numerous disciplines [1], [5], [7], [18], [23].
In social network analysis, co-clustering can be used to detect
social groups (often called ‘cliques’) engaging in certain types
of social behavior.
Whereas one-sided clustering involves selection (which

columns belong to the given cluster) in one mode, co-clustering
involves selection in both modes (rows and columns). This can
be modeled as

where and are both sparse. When only relative expression
matters, we can relax the binary constraint on the elements of
and , possibly retaining non-negativity when appropriate.

Assuming non-negative data , , and focusing
on overlapping (soft) lossy co-clustering, the problem can then
be formulated as

where the inequalities should be interpreted element-wise, and
the columns of and should typically
contain many zeros.
One may envision using singular value decomposition (SVD)

or non-negative matrix factorization (NMF) [21] for co-clus-
tering; however, the columns of and will then be dense, de-
stroying all support information which is crucial in co-clustering
applications. SVD imposes orthogonality, which is artificial and
limits analysis to non-overlapping co-clusters if non-negativity
is also imposed.
Enforcing sparsity is ideally accomplished by penalizing the

number of non-zero elements (the norm), however this yields
an intractable optimization problem. Recent research has shown
that a practical alternative is to use an penalty in lieu of the
norm [32]. This leads to the following formulation of bi-clus-

tering:

(2)
where different ‘prices’ , have been introduced to account
for the fact that co-clusters may involve more (or less) rows

496 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

than columns; e.g., 3 genes and 12 experimental conditions for
gene co-expression data. This means that the level of latent spar-
sity (number or percentage of nonzero elements) differs across
modes, which in turn implies that imbalanced sparsity penalties
should be employed to reveal the underlying structure.
With , , (2) can be

written as

(3)

The formulation in (2)/(3) has the following (weighted) norm-
balancing property:

Claim 1: Let be a solution of (3) for ,

. Then

(4)

Proof: It is easy to see that, for , , either
both , are zero, in which case the equality holds triv-
ially, or both are nonzero. In the latter case, note that the
part of the cost in (3) is invariant to simultaneous scaling of
by and counter-scaling of by , whereas the part

is sensitive with respect to such scaling.
Consider , for some , . Taking derivative

with respect to and setting it to zero yields . Substi-

tuting back yields1 , i.e., the
two terms are equalized. From the arithmetic mean – geometric
mean inequality, we know that , with equality
if and only if . Thus, if , scaling
by and counter-scaling by can be used to strictly reduce
the cost, thereby contradicting optimality.
The norm-balancing property yields an important and per-

haps unexpected corollary:
Claim 2: For , , Problem (3) is equivalent to

implying that it is impossible to individually control the row-
and column-sparsity in (3) through appropriate choice of and
, respectively; only the product matters, and the effec-

tive penalty is always symmetric.
Proof:

1Use of the positive square root preserves the sign of , . When
any is equally good and the result is 0.

where for the last equivalence we used that we may restrict the
search for minima over only those that are either both
zero or both nonzero – having only one zero vector cannot be
optimal, as explained earlier.
This ‘forced symmetry’ is the most important, but not

the only drawback of the formulation in (2)/(3), which also
exhibits scaling bias. Noting that ,
the latter being the ‘size’ of co-cluster as measured by the
sum of absolute values of its elements, it follows that (2)/(3)
penalizes co-cluster support times expression level according
to . Finally, from a computational stand-
point, we have observed that alternating optimization – type
algorithms aiming to solve (2)/(3) tend to get stuck in ‘scaling
swamps’, during which there is very slow progress towards
balancing the norms and virtually no progress in terms of the
overall cost function in (2)/(3).
The above shortcomings are undesirable artifacts of using the
norm as a surrogate of the norm. Whilst this substitution

has proven merits in the context of variable selection in linear
regression, we have argued that it is not as well-motivated in
the case of bilinear (and higher-order) regression with latent
sparsity. In addition to proven oracle properties, a fundamental
reason that is used in lieu of for linear problems is that
it yields a convex optimization problem after the substitution,
which can be efficiently solved – scalar updates can be carried
out in close-form, and coordinate descent can be used to find
the global optimum. This advantage disappears for bilinear and
higher-order models, because even after substitution
the problem remains highly non-convex. As a result, alternative
approximations of the norm should be considered.
To circumvent these difficulties, we propose modifying the

model and cost function as follows. Any can be written
as , with , and ; and like-
wise for . If we are interested in inducing sparsity on
while simultaneously retaining scaling freedom, it makes sense
to penalize instead of . As illustrated in Fig. 1, this
is a better approximation of the norm. Dropping the tilde for
brevity, we therefore obtain

(5)

where . Notice that can be enforced
without loss of generality; an upper bound is needed to avoid
arbitrarily scaling down while absorbing the overall
scale in . Also note that, when the elements of are con-
strained in as in (5), , with
(and likewise for) in the important special case of a constant
co-cluster of level .
Note that one might be tempted to tighten the interval for the

elements of , to for some small positive , and com-
pensate by changing the upper bound on from to , in order
to employ an even better approximation of the zero norm, see

PAPALEXAKIS et al.: FROM -MEANS TO HIGHER-WAY CO-CLUSTERING 497

Fig. 1. Two approximations of the zero norm: note that the proposed one is
much tighter for large , due to saturation.

also Fig. 1. Although conditional updates of one variable given
the rest will remain simple, the overall cost function will be
harder to minimize (non-convexity will be more severe) in this
case. Also, simultaneously working with very small and very
large variables can give rise to numerical conditioning problems
for small . Hence we advocate using as a good trade-off.
In some applications of bi-clustering, and the latent fac-

tors have real-valued elements; adjusting for this, the problem
becomes

(6)

where now .
1) Related Work: We have previously considered a special

case (with) of the doubly sparse bilinear regression
problem in (2) in different contexts [25], [30]. Lee et al. [20]
proposed a bi-clustering formulation that is closely related to
ours. In particular, they proposed using the following formula-
tion to extract one co-cluster at a time:

(7)

where the ’s and ’s are data-dependent weights de-
pending on the magnitude of the conditional least squares esti-
mate of the respective vector element. In [20], parameters ,
are chosen according to the Bayesian Information Criterion,

conditioned on interim estimates of , , respectively; param-
eter tuning is embedded in the overall iteration, i.e., is mod-
ified after each update of , and after each update of .
Adapting the sparsity penalties using intermediate estimates of
and may work well in many cases, but it also implies that

subsequent updates do not reduce a well-defined cost function,
opening the door to potential instability. In fact, it is not dif-
ficult to find cases where [20] oscillates between two states;
an example is provided in the Appendix. For this and other
reasons, we fix the sparsity penalties throughout the iterations.
Our method of selecting parameters , will be discussed in
Section IV.

Considering the plain version of (7) with all weights equal
(,), i.e.,

(8)
the motivation for penalizing instead of is not clear
in [20] – note that is the overall scaling of the outer product

, not the individual scaling of ; hence cannot be
interpreted as the one-norm of the ‘effective’ , and likewise
for . It seems that part of the reasoning behind [20] was to
enable use of a simple block-coordinate descent strategy: no-
tice that optimizing conditioned on is a Lasso problem
[32], which can be efficiently solved; and likewise for the con-
ditional update of given . It is easy to see that in order
to synthesize a constant co-cluster ‘patch’, the penalty in (7) is
proportional to co-cluster level. As a side comment, note that in
(5) we impose non-negativity constraints on the elements of
and , when appropriate.
Starting from a different perspective, Witten et al. [35] pro-

posed bilinear decomposition with sparsity-inducing hard
constraints on both the left and right latent vectors, as a vari-
ation of sparse SVD and sparse canonical correlation analysis.
Their model was not developed with co-clustering in mind, but
it is similar to our formulation of bi-clustering – which uses
soft penalties instead of hard constraints, and optionally
non-negativity when appropriate. Hoyer [16] considered adding
hard sparsity constraints to NMF with the aim of improving the
interpretability of the decomposition in applications of NMF
(co-clustering was not considered in [16]). Hoyer used a spar-
sity measure that combines the and norms.
References [16], [20], [35] did not consider extensions to the

higher-way case, which is the topic of the next subsection.

C. Extension to Three- and Higher-Way Co-Clustering:
PARAFAC With Sparse Latent Factors

In many cases, one works with data sets indexed by three or
more variables, instead of two (as in matrices). A good example
is several batches of gene expression data measured over sev-
eral experimental conditions in two or more occasions or by dif-
ferent labs. Another is social network data, such as the ENRON
e-mail corpus, where we have e-mail counts from sender to re-
ceiver as a function of time, stored in a three-way array whose

-th element is the number of packets send by
transmitting node to receiving node during time interval .
The natural generalization of the bi-clustering approach in (3)
to tri-clustering is to consider a trilinear outer product decom-
position

with sparsity on all latent factors. Without sparsity, the above is
the PARAFAC model, and is the exact or ‘essential’ rank
of , depending on whether one seeks an exact decomposi-
tion or a low-rank approximation. Note that latent sparsity is
key here, because the whole point of co-clustering is to select
subsets along each mode. Even without sparsity, however, the
PARAFAC decomposition is unique under relatively mild con-
ditions – even in certain cases where (e.g.,

498 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

see [19], [31]). This means that our formulation of (overlap-
ping and lossy) three-way co-clustering can reveal the true la-
tent patterns in the data when used as an exploratory tool, even
for a large number of co-clusters – possibly even exceeding
some or all dimensions of the three-way array . This is not
the case for bi-clustering, which is either NP-hard (in the case
of hard bi-clustering) or lacks uniqueness (in the case of soft
bi-clustering).
1) Related Work: There are very few papers on tri-clustering

in the literature [28], [36], [37] (note that tri-clustering is very
different from -means clustering of three-way data, as consid-
ered, e.g., in [17]). Off-the-shelf non-negative PARAFAC has
been used for tri-clustering of web data in [37], albeit without
motivation as to why it is an appropriate tool for co-clustering.
A hybrid PARAFAC-Tucker model is proposed in [28], again
without clear motivation regarding its application to co-clus-
tering. Still, these are the closest pieces of work, and so we will
use non-negative PARAFAC as a baseline for comparison in our
simulations. We underscore, however, that latent sparsity is key
in our present context, because the whole point of co-clustering
is to select subsets along each mode. Latent factor sparsity has
not been considered in the aforementioned references, which did
not start from a ‘first principles’ formulation, as we did.
One may wonder if there is a need to impose sparsity in our

present context, in light of uniqueness of unconstrained (or non-
negative) PARAFAC. The answer is two-fold. First, in practice
we compute truncated PARAFAC approximations, instead of a
full decomposition; noise and unmodeled dynamics will thereby
render the extracted factors non-zero everywhere, with proba-
bility one. This destroys the support information that is crucial
for co-clustering. Enforcing latent sparsity suppresses noise and
automatically selects the desired support in all modes, simulta-
neously. Second, the imposition of sparsity (and non-negativity)
may allow stable extraction of more co-clusters than would oth-
erwise be possible with plain PARAFAC. For these two reasons,
sparsity constraints are very important here.
Motivated by the aforementioned considerations, we may

consider the following formulation of tri-clustering

(9)

However, it is easy to prove by contradiction (similar to Claim
1) that norm balancing now extends across all three modes (and
in fact slows down convergence of alternating optimization
schemes even further):

Claim 3: Let be a solution of (9), for

all . Then

(10)

This leads us to propose the following formulation of tri-clus-
tering:

(11)

where .

If and the latent factors have real-valued elements, then the
problem becomes

(12)

where .

III. ALGORITHMS

The problem in (5) is highly non-convex, so global optimal
solution cannot be guaranteed. On the other hand, the formu-
lation in (5) admits element-wise or block coordinate descent
updates that reduce the cost and yield a monotonically im-
proving sequence of admissible solutions, at low per-iteration
complexity. Consider, for example, the update of a generic
element of , denoted as , conditioned on the remaining
model parameters. It can be shown that the problem then boils
down to

for given , and . Define

and let and denote the minimizers of and , re-
spectively. Note that and are convex functions,

, and for . The first derivative of is

and equating to zero yields

There are three possibilities, as illustrated in Fig. 2:
1) , in which case .
2) , in which case .
3) , in which case .
Therefore, the optimal -Lasso scalar update is given by

The same type of problem arises when updating a single element
of – the model in (5) is symmetric in terms of the roles of
and . The conditional update of given and is a simple
scalar least squares problem: it can be put in the form

for given , ; the solution is

PAPALEXAKIS et al.: FROM -MEANS TO HIGHER-WAY CO-CLUSTERING 499

Fig. 2. Three cases for the constrained Lasso. (a) Case 1. (b) Case 2. (c)
Case 3.

In the real-valued case, the scaling factor is still restricted to
be non-negative, but the latent factor elements take values in

. The scalar update problem becomes

whose solution is

if

if

otherwise

The same type of element-wise updates can be used for
both bi-clustering and tri- (or higher-way) co-clustering: the
key point is that multilinearity renders the conditional updates
in linear regression form. The overall algorithm cycles over
the elements of , (), interleaved with updates of
, until convergence of the cost function. Initialization does
matter: for bi-clustering, we initialize the iterations using a
truncated SVD, or Non-negative Matrix Factorization (NMF).
For tri-clustering, we use non-negative PARAFAC – in partic-
ular, Non-Negative Alternating Least Squares (NN-ALS), as
implemented in the N-way Toolbox for Matlab [2]. Algorithm
1 is pseudo-code for the proposed tri-clustering algorithm for a
single co-cluster ().
Remark 1: As we will soon see, a fortuitous side-benefit of

our formulation enables far simpler computation of the domi-
nant co-clusters in an incremental fashion; hence an algorithm
for is all that is needed in practice. After extracting a
co-cluster using Algorithm 1, we can remove it from
the data (i.e., replace by), and continue to
extract another co-cluster, using Algorithm 1. Such a deflation
procedure is generally inferior to jointly fitting all co-clusters at

Algorithm 1: Extracting a Single Tri-Cluster: Rank-One
PARAFAC With Non-Negative Sparse Latent Factors

Input: of size , , ,

Output: of size , of size , of size ,

Unfold into , , (see notation and preliminaries
section)

Initialize , , using NN ALS

Initialize and normalize , ,
to .

Set upper bound w/out loss of
generality

while change in cost in (11) do

end while

the same time; however here sparsity helps make it almost as
good, as we will see.

A. Convergence Speed-Up Using Line Search

Despite its conceptual and computational simplicity and ver-
satility, coordinate descent – type optimization can suffer from
slow convergence. This is a well-known issue in the context of
PARAFAC,where Alternating Least Squares (ALS – a block co-
ordinate descent procedure) is commonly used for model fitting.
In related contexts, it has been shown that line search is an effec-
tive way to speed-up convergence and avoid so-called swamps
[29], [33]. In a nutshell, line search seeks to accelerate conver-
gence by improving the present model estimate via extrapola-
tion along a line drawn from the previous to the present estimate.
Existing line search methods for PARAFAC are specifically de-
signed for the least squares cost function, and modifications to
account for the parts of the cost are not obvious.
Consider a rank-one PARAFAC model with non-negative

(NN) sparse latent factors (SLF). The model has four parame-
ters: , , and . Define the direction vector

with denoting an iteration index, henceforth dropped for
brevity. We similarly define direction vectors , , and the
scalar for and , respectively. Then the optimal line
search step may be obtained by minimizing the function

. See the equation at the bottom of the next page. Were
it not for the absolute value terms, would have been a
polynomial of degree 8 in , in which case the optimal step-size
could have been found by rooting the derivative of . Due
to the presence of the absolute value terms, however, is

500 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

no longer polynomial. This is the main difficulty in converting
existing methods for optimal step-size selection to work with
our mixed – formulation. We have explored the following
possibilities:
• Discrete line search (computing the minimum of over
a uniform sampling grid) is an obvious (albeit potentially
computationally expensive) possibility, which could be re-
fined using ‘zoom’ search or sub-gradient descent. Back-
tracking line search could also be used, as a computation-
ally cheaper alternative. The important thing to keep in
mind here is that line search need not be optimal to sig-
nificantly cut down the required number of iterations.

• We know that is not polynomial, but, keeping in mind
that the line search step need only be good but not neces-
sarily optimal, we may approximate using a polyno-
mial, then determine a good step-size by rooting the deriva-
tive of the approximating polynomial. A polynomial of
order can be determined by samples (values at par-
ticular locations)2. We have tried approximating by
a polynomial of degree , with very encouraging re-
sults, as we will see.

• We can aim for an iterative majorization-type algorithm.
The main idea of iterative majorization is to upper bound
the function you wish to minimize by another one that is
always above it for all , and equal to it at the current . The
upper bound should ideally be tight and easy to minimize,
e.g., a quadratic, or a polynomial which we can easily root.
It is easy to show that by minimizing such an upper bound
we are guaranteed to reduce the desired function.

Towards obtaining a suitable majorizing function, note that
the part of is separable, and the remainder is already
a polynomial of degree 8 in . It follows that it suffices to
find a majorizing polynomial for a generic scalar term of the
form . The majorizing function
should have two properties: i) for all , and
ii) . A suitable choice for our purposes can
be drawn from [15]: . Property

i) holds due to the fact that ;
property ii) can be verified by direct substitution of . As the
initial support point , we propose using the solution obtained
by approximating the cost function as an 8-th degree polyno-
mial. Using as a majorizing function for each absolute
value term, and adding the squared norm part of , yields a
majorizing polynomial of degree 8, whose derivative we root to
obtain a new support point (testing all roots to find the one that
yields the smallest value of the majorizing polynomial). This
majorization – minimization (rooting) process is repeated until

2Let be a Vandermonde vector with generator , and denote the
polynomial’s coefficient vector. Then the value of the polynomial at point is

.

convergence of the cost to within a pre-specified tolerance.
Monotone convergence to at least a local minimum is assured,
see, e.g., [15].

B. Handling Missing Values

In exploratory data analysis, there are cases where a (pos-
sibly large) proportion of the sought data is not available.
Still, co-clustering on the basis of whatever data is available
can be relevant and is often desirable. A good way to handle
missing values (in the absence of prior/side information) is to
ignore them in the model fitting process; e.g., see [34] for plain
PARAFAC with missing values. Define a weight array such
that:

if is available
otherwise

We build upon the imbalanced sparsity, rank one algorithm. The
problem of interest can then be written as

The key observation is this: in updating an element of , say
, conditioned on interim values for the remaining parame-

ters, we may absorb the weights in the data and the remaining
parameters. In particular, let denote the ‘slice’
of obtained by fixing the third index to value , and likewise

denote the slice of . Then the conditional
update of given all other parameters can be written as the
minimization over of

Letting and
, the update of can be written

as

This way, our previous algorithms can be reused to account for
missing data, without further modification.

IV. GUIDELINES ON CHOOSING , , AND

The original Lasso objective function is

PAPALEXAKIS et al.: FROM -MEANS TO HIGHER-WAY CO-CLUSTERING 501

In [24], it is shown that for any , with

(13)

where denotes the infinity norm (the maximum absolute
value of the elements of).
We focus on the rank-one imbalanced sparsity model and the

derivation of a suitable bound on . Formulas for , can be
analogously derived. Consider the conditional update of given
the remaining parameters. The pertinent part of the cost can be
written as

where is the matrix unfolding of the three-way
array . Let us further zoom down to the scalar case – the condi-
tional update of given all remaining parameters (including
other elements of the vector). The function to minimize can
then be written as

where is the -th column of matrix . The bound
for Lasso in (13) implies that the optimal will be zero when
exceeds

where the equality holds because the expression within the in-
finity norm is scalar, the first inequality is the Cauchy-Schwartz,
and the second inequality simply uses that any element of
and is upper bounded by 1. This immediately yields an upper
bound on

which depends solely on the input data array . Had we known
a-priori an estimate of and , i.e., the number of non
zero elements of the ‘true’ and , we could substitute those es-
timates in lieu of and , thus obtaining a tighter bound for .
Several authors have considered the problem of tuning

the regularization parameter for the usual linear regression
version of Lasso [27], [32], [38], assuming availability of
training data for cross-validation, or that the data come from
a known distribution. Here, however, we deal with what can
be viewed as a multi-linear extension of Lasso, applied in an
exploratory data analysis mode, where labeled data or detailed
statistical information is hard to come by. Instead, it is more
plausible to assume that the practitioner has (perhaps coarse)
knowledge of the expected number of non-zero elements in
, , , which reflect the expected co-cluster membership
along the different modes. If this is the case, we may use such
estimates of mode support to obtain ‘clairvoyant’ bounds ,
, . For example, if we know that the expected number of

nonzero elements in mode 1 is and in mode 2 it is , then
we can set . We have
experimented with this idea, and found that choosing the ’s
to be a small percentage (typically, 0.1%) of the respective
clairvoyant bound works very well on both simulated and real
data. For simulated data, this choice approximately recovers

the desired number of nonzero elements per latent factor; for
real data, it produces interpretable results.

V. EXPERIMENTAL EVALUATION

In this section, we first compare our approach with estab-
lished bi-clustering and recent tri-clustering methods, using
synthetic data. In the process, we also illustrate the power of
tri-clustering vis-a-vis bi-clustering of three-way data averaged
out across one mode. We next turn to a well-known three-way
dataset: the ENRON e-mail corpus, containing e-mail counts
from sender to receiver as a function of time. We then assess the
impact of the choice of ’s and the use of line search on con-
vergence speed, using synthetic data as well as three measured
datasets: the ENRON e-mail corpus, Amazon co-purchase
data, and wine data. Finally, we illustrate performance with
various proportions of missing entries for the ENRON data.
All experiments were conducted on a 1.7 GHz Intel Core i5,
with 4 GB of memory, using Matlab implementations of all
algorithms considered.

A. Synthetic Data

Starting from an all-zero array of size 80 80 8, we im-
plant three co-clusters, two of which overlap in ‘space’ (first two
modes) and ‘time’ (the third mode), whereas the third is isolated
in space but overlaps with one of the other two in time:

where denotes an array of unit elements. We
then add i.i.d. sparse (Bernoulli-modulated) Gaussian noise: the
probability that a sample is contaminated is set to 0.1, and if
contaminated the noise is Gaussian, of zero mean and unit vari-
ance. In order to illustrate the performance of various bi-clus-
tering algorithms (also vis-a-vis tri-clustering), we use the sum
of frontal slices of , which yields an 80 80matrix .We fur-
ther take the absolute value of as the input to all bi-clustering
algorithms, because, e.g., [10] assumes non-negative input data.
The number of co-clusters to be extracted is set to ,
matching the actual number of co-clusters in the data. We il-
lustrate the performance of the proposed methods against well-
known bi-clustering [1], [5], [8]–[10], as well as tri-clustering
[36], [37] methods.
1) Bi-Clustering: Fig. 3(a) – (e) demonstrate the per-

formance of bi-clustering methods. We make a distinction
between soft co-clustering (Fig. 3(a)) and hard co-clustering
(Fig. 3(b) – (e)). For the latter, the number of extracted co-clus-
ters should be at least , since the underlying
noise in must be assigned somewhere. We use to
capture the noise plus any systematic residual. Even though
there is no guarantee that most of the noise will end up in
the ‘residual’ co-cluster, this is what happens in this example.
With soft co-clustering one does not need to provision extra
co-cluster(s), since rows and columns can be left out altogether.
Fig. 3(a) shows the co-clusters extracted using the two-way

analogue of the proposed algorithm, i.e., solving (5) with
, using the three most significant left and right singular

vectors to initialize and . Observe that (5) manages to ex-
tract all three co-clusters, with minimal leakage. Fig. 3(b) shows

502 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

Fig. 3. Two-way co-clustering methods on synthetic data. (a) Sparse Matrix
Regression on the sum matrix (). (b) -means co-clustering
on the sum matrix [1]. (c) Bi-clustering using spectral graph partitioning [10].
(d) Information-theoretic bi-clustering [9]. (e) Bregman bi-clustering using the
Euclidean distance [5], [8].

Fig. 4. Overlapping co-clusters: PARAFAC w/ NN SLF ().

the output co-clusters of a simple -means based approxima-
tion algorithm, as introduced in [1]. Observe that the co-clus-
ters have been extracted with major losses, due to the overlap.
Another approach that utilizes -means for spectral graph par-
titioning is introduced in [10]; Fig. 3(c) shows the output of this
algorithm, which has similar behavior to [1] but with slightly
better definition – although the overlapping co-clusters have not
been successfully resolved.

Fig. 5. Overlapping co-clusters: PARAFAC w/ NN () [28], [37].

TABLE I
COMPARISON OF CORRECT CLASSIFICATION RATES AND EXECUTION
TIMES (SYNTHETIC DATA) PLUS COMPLEXITY ORDERS FOR ALL

METHODS CONSIDERED. MULTIPLE PERCENTAGES ARE REPORTED FOR
SMR AND [9], [10], DUE TO LOCAL MINIMA. PARAMETERS AND

FOR THE LAST TWO ALGORITHMS INDICATE THE NUMBER OF
ROW AND COLUMN CLUSTERS, RESPECTIVELY

The co-clustering framework introduced in [5] subsumes [9]
(using the I-Divergence as loss function) and [8] (using the Eu-
clidean distance as loss function). Fig. 3(d) shows the results
of [9]. Finally, Fig. 3(e) shows the results of [5] (using the Eu-
clidean distance as loss function), which manages to uncover
all three co-clusters, albeit with noticeable loss in the overlap-
ping region. We should note that [5], [8], [9] seek to find a
checkerboard structure of co-clusters, i.e., disjoint sets of row
and column indices of the data matrix, so it is no surprise that
overlapping co-clusters cannot be fully recovered. Yet overlap-
ping co-clusters often occur in applications, and resolving them
is a major challenge in co-clustering.
2) Tri-Clustering: Fig. 4 shows the results of the proposed

tri-clustering approach [cf. (11) with] ap-
plied to the three-way synthetic dataset . As a line of compar-
ison, Fig. 5 shows the results of tri-clustering using PARAFAC
with non-negativity but without latent sparsity, as suggested in
[37]. In Fig. 5, observe how the two overlapping clusters have
been merged into one; a ‘phantom’ co-cluster has emerged; and
there is loss of localization (leakage) due to noise. It is important
to note here that thresholding the results of Fig. 5 in a post-pro-
cessing step may reduce leakage, but it will not recover the
correct support information, and the phantom co-cluster will of
course remain.
The following points may be distilled from our experiments

with synthetic data:
• Tensor tomatrix data reduction (going from to) leaves
out useful temporal information, which can also be crucial
for proper spatial resolution of the co-clusters, especially
overlapping ones.

PAPALEXAKIS et al.: FROM -MEANS TO HIGHER-WAY CO-CLUSTERING 503

TABLE II
EXTRACTED CO-CLUSTERS FOR ENRON ()

Fig. 6. Temporal co-cluster profiles for ENRON, and .

• Latent sparsity is essential for recovering the correct sup-
port information in case of overlapping co-clusters; non-
negativity alone does not work.

Table I compares all methods considered in terms of correct
classification rate (the probability that a tensor/matrix element
is correctly assigned to the co-cluster(s) that it belongs to) and
execution time for the synthetic data. The complexity order of
each method is also included. The proposed methods have the
best co-clustering performance on the synthetic data, at the cost
of moderately higher execution time.

B. Enron E-Mail Corpus

We used a summary version of the ENRON dataset stored
in a three-way array of size , containing the
number of e-mails exchanged between 168 employees over 44
months (spanning from 1998 to 2002), indexed by sender, re-
ceiver, and month. Similar to [3], we first compress the dynamic
range of the raw data using a logarithmic transformation: each
non-zero entry of is mapped to . We then fit
a non-negative PARAFAC model with sparse latent factors to
extract the dominant co-clusters (). In our
present context, each co-cluster captures a ‘clique’ and its tem-
poral evolution. Total running timewas 129.36 seconds. Table II
summarizes the extracted cliques, which turn out to match the
structure of the organization remarkably well – e.g., the label
‘legal’ in Table II means that the corresponding co-cluster con-
tains the employees in the legal department (plus/minus one em-
ployee in all cases reported in Table II). Table II suggests that
increasing yields a nested sequence of co-clusters. This is
indeed the case. The temporal profiles for are plotted
in Fig. 6. Two distinct peaks can be identified in the temporal
communication patterns among the various cliques. Namely, the
first peak can be found between the end of 2000 and the middle
of 2001 (points 26–33 in Fig. 6), when a change of CEO oc-
curred. The second peak corresponds to bankruptcy, between
September and November 2001 (points 36–38 in Fig. 6). In [3],
four class labels are identified: Legal, Executive/Govt. Affairs,
Executive, Pipeline. The same class labels are also identified
in [28], where non-negative PARAFAC is used, among other
methods. Our results (cf. Table II) are qualitatively consistent

Fig. 7. Score plot based on tri-clustering analysis of wine data. Wine is repre-
sented by a point whose coordinates are and , indicating degree
of membership in co-cluster 4 and 5, respectively.

with [3], [11], [28], but our cliques are cleaner, containing fewer
outliers due to the imposition of sparsity.

C. Impact of Choice of and Line Search on Convergence
Speed

Next, we illustrate the impact of the choice of (
here) and the incorporation of line search on the re-

quired number of iterations. For this purpose we use the pre-
viously discussed data, plus Amazon co-purchase data down-
loaded from http://snap.stanford.edu/data/#amazon (cf. [22]),
and wine data from [4]. The wine data is challenging in terms
of speed of convergence, thus offering a rigorous test for line
search. It is also challenging to interpret the results of co-clus-
tering analysis of the wine data, since the differences between
the various wines are subtle, so there are no clean and ‘obvious’
co-clusters. Fig. 7 shows a score plot based on tri-clustering
analysis of the wine data for . Wine is rep-
resented by a point whose coordinates are and ,
indicating degree of membership in co-cluster 4 and 5, respec-
tively. These reflect subtle differences in relative concentrations
of various aromatic compounds in the wine, which are hard to
reveal without imposing latent sparsity, see [4].
Fig. 8 shows the number of iterations versus for all the

datasets. With the exception of a few occasional problems with
local minima, the general message is clear: the number of it-
erations until convergence (to within pre-specified tolerance of

) is a decreasing function of . The sparser the solution
sought, the faster the convergence. This is reasonable, consid-
ering that higher ’s zero-out more elements (cf. the thresh-
olding interpretation of element-wise updates).
Fig. 9 shows the convergence speedup obtained by line

search. We plot the total number of iterations required for
convergence (with tolerance equal to) versus the number
of components. We present the number of iterations for 4
different versions of the PARAFAC w/ NN SLF algorithm:
the plain one, and three variations obtained by incorporating

504 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

Fig. 8. Number of iterations vs , for fixed . (

Fig. 9. Convergence speedup using line search, for fixed .

the three proposed line search schemes: grid, polynomial ap-
proximation, and polynomial majorization using polynomial
approximation for initialization. From Fig. 9, it is clear that line
search speeds up the convergence rate of the basic algorithm
quite significantly. In most cases, polynomial approximation
and polynomial majorization line search are slightly better than
grid search in terms of number of iterations (a fine-resolution
grid search was used in these experiments). Polynomial-based
line search schemes are preferable in difficult scenarios, but
our experience is that any reasonable line search scheme will
usually reap most of the potential improvement.

D. Missing Values

Data analysis practitioners often have to deal with incomplete
data – ranging from few randomly or systematically missing
values all the way to very sparse data sets, where one has ac-
cess to only a small percentage of the full data to be modeled

Fig. 10. (a signal-to-noise – like measure, see text) vs. % missing
values.

or analyzed. We have already explained how data and regressor
weighting can be tailored to ignore the missing values in the
fitting process, relying on the postulated low-rank latent struc-
ture to implicitly interpolate what is missing. Here, we illustrate
the effectiveness of this approach for randomly missing values,
using the ENRON data as an example.
When fitting a model without full access to the pertinent data,

the best one can hope for is to come close to the model fitted
from the full data. Accordingly, a good figure of merit is the
Relative Squared Error (RSE) between the models fitted from
full and partial data. In our present context, one could com-
pare at the level of individual co-clusters; but in order to plot
a single meaningful metric, we compare the interpolated arrays

vs. , where subscripts and
denote factor matrices fitted from partial and full data, respec-
tively. Then RSE is defined as

Fig. 10 shows (a signal-to-noise – like measure) versus
the percentage of missing values for in all three modes,
ranging from 1 to 4 co-clusters. up to , and . A

simple i.i.d. Bernoulli model with miss probability was used
for selecting the missing values, and for each the results are
averaged over 10 realizations of the Bernoulli process. There
are two points worth noticing. First, in this example
stays roughly above 10 dB for up to 50% missing values, sug-
gesting that we can tolerate a significant portion of missing
values. Second, lower yield higher for the same per-
centage of missing values. This is intuitive, because for lower
we have fewer unknowns to estimate from the same data.

VI. DISCUSSION AND CONCLUSIONS

Starting from first principles, we have formulated a new ap-
proach to multi-way co-clustering, as a constrained multilinear
decomposition with sparse latent factors. In the case of three-
and higher-way data, this corresponds to a PARAFAC decom-
position with sparse latent factors. The inherent uniqueness of
PARAFAC is further enhanced by sparsity, thereby allowing
stable identification of a large number of possibly overlapping
co-clusters. We have proposed an associated co-clustering algo-
rithm that is based on simple coordinate updates coupled with

PAPALEXAKIS et al.: FROM -MEANS TO HIGHER-WAY CO-CLUSTERING 505

efficient line search, and useful guidelines on the choice of spar-
sity penalties. We have also explained how to handle missing
values.
Intrigued by our experimental results, we further investigated

the apparent nesting property that we first reported in [26].
Namely, we observed that as increases, our formulation pro-
duces a nested sequence of co-clusters; the sequence of fitted
models is nested in terms of the model order. This behavior is
very different from that exhibited by the classical PARAFAC
decomposition (with or without non-negativity), which often
yields very different sets of rank-one components for succes-
sive values of . Through extensive follow-up experiments
(not detailed here due to space limitations), we have observed
that the nesting property holds for strictly positive ; it is only
approximate for relatively low , and becomes more accurate
with increasing . The property holds best for three-way data
with latent non-negativity, but also holds well for three-way
data without non-negativity. In the matrix case, it holds well
when the data is non-negative (whether we enforce latent
non-negativity or not), but it does not hold with much accuracy
when the data matrix elements are of mixed signs.
We believe that nesting property is a fortuitous side-benefit

of latent sparsity, aided by non-negativity to a certain extent.
Despite trying, we have not been able to provide analytical in-
sights as to why the nesting property holds. Analysis is compli-
cated because nesting is not exact but only approximate. When
latent sparsity is imposed, the vectors often
turn out being quasi-orthogonal, which goes some way towards
explaining the nesting property in a qualitative way. Nesting
has important practical implications, as far simpler and scalable
‘deflation’ algorithms can be used to extract one co-cluster at a
time, without significant loss of optimality.

APPENDIX

Example of SSVD Limit Cycle: It is not difficult to find
cases where SSVD [20] oscillates between two states; one such
example is

(14)

and . We used the implementation provided by
the authors of [20], downloaded from http://www.unc.
edu/~haipeng/publication/ssvd-code.rar. In this example,
SSVD oscillates between , and . The first
dyad of vectors is
and ; the second is

, and
. The same type

of limit cycle behavior has been observed for non-negative
data; for instance, when the absolute value of in (14) is taken
as input to SSVD.

REFERENCES
[1] A. Anagnostopoulos, A. Dasgupta, and R. Kumar, “Approximation al-

gorithms for co-clustering,” presented at the PODS, Vancouver, BC,
Canada, Jun. 9–12, 2008.

[2] C. A. Andersson and R. Bro, “The -way toolbox for MATLAB,”
Chemometrics Intell. Lab. Syst., 2000 [Online]. Available: http://www.
models.kvl.dk/nwaytoolbox

[3] B. W. Bader, R. A. Harshman, and T. G. Kolda, “Temporal analysis of
social networks using three-way DEDICOM,” Sandia National Labs.,
TR SAND2006-2161, 2006.

[4] D. Ballabio, T. Skov, R. Leardi, and R. Bro, “Classification of GC-MS
measurements of wines by combining data dimension reduction and
variable selection techniques,” J. Chemometrics, vol. 22, no. 8, pp.
457–463, 2008.

[5] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, “A
generalized maximum entropy approach to Bregman co-clustering and
matrix approximation,” J. Mach. Learn. Res., vol. 8, pp. 1919–1986,
Aug. 2007.

[6] R. Bro, E. E. Papalexakis, E. Acar, and N. D. Sidiropoulos, “Co-clus-
tering – A useful tool for Chemometrics,” J. Chemometrics, vol. 26,
no. 6, pp. 256–263, Jun. 2012.

[7] Y. Cheng andG.M. Church, “Biclustering of expression data,” inProc.
8th Int. Conf. Intell. Syst. Molecular Biol., 2000, pp. 93–103.

[8] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra, “Minimum sum-squared
residue co-clustering of gene expression data,” in Proc. 4th SIAM Int.
Conf. Data Min., 2004, pp. 114–125.

[9] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic
co-clustering,” in Proc. 9th ACM SIGKDD, 2003, pp. 89–98.

[10] I. S. Dhillon, “Co-clustering documents and words using bipartite spec-
tral graph partitioning,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Min., 2001, pp. 269–274.

[11] J. Diesner, T. L. Frantz, and K. M. Carley, “Communication networks
from the Enron email corpus: It’s always about the people. Enron is
no different,” Comput. Math. Organizat. Theory, vol. 3, no. 3, pp.
201–228, 2005.

[12] W. J. Fu, “Penalized regressions: The bridge versus the Lasso,” J. Com-
putat. Graph. Statist., vol. 7, no. 3, pp. 397–416, 1998.

[13] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory” multimodal factor analysis,”
UCLA Working Papers in Phonet., vol. 16, pp. 1–84, 1970.

[14] J. A. Hartigan, “Direct clustering of a data matrix,” J. Amer. Statist.
Assoc., vol. 67, pp. 123–129, 1972.

[15] W. J. Heiser, “Convergent computation by iterative majoriza-
tion: Theory and applications in multidimensional data analysis,”
in Recent Advances in Descriptive Multivariate Analysis. New
York: Oxford Univ. Press, 1994, pp. 157–189 [Online]. Available:
http://www.oup.com/us/catalog/general/subject/Mathematics/Compu-
tationalMathematics/?view=usa&ci=9780198522850

[16] P. O. Hoyer, “Non-negative Matrix factorization with sparseness con-
straints,” J. Mach. Learn. Res., vol. 5, pp. 1457–1469, 2004.

[17] H. Huang, C. Ding, D. Luo, and T. Li, “Simultaneous tensor subspace
selection and clustering: The equivalence of high order SVD and
k-means clustering,” in Proc. 14th ACM SIGKDD, 2008, pp. 327–335.

[18] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, “Spectral biclus-
tering of microarray data: Coclustering genes and conditions,”Genome
Res., vol. 13, pp. 703–716, 2003.

[19] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics,”
Linear Algebra Appl., vol. 18, no. 2, pp. 95–138, 1977.

[20] M. Lee, H. Shen, J. Z. Huang, and J. S. Marron, “Biclustering via
sparse singular value decomposition,” Biometrics, vol. 66, no. 4, pp.
1087–1095, Dec. 2010.

[21] D. Lee and H. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[22] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Trans. Web (TWEB), vol. 1, no. 1, 2007, Article
5.

[23] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for bio-
logical data analysis: A survey,” IEEE/ACM Trans. Computat. Biol.
Bioinf., vol. 1, no. 1, pp. 24–45, Jan.-Mar. 2004.

[24] M. R. Osborne, B. Presnell, and B. A. Turlach, “On the Lasso and its
dual,” J. Computat. Graphic. Statist., vol. 9, no. 2, pp. 319–337, 2000.

[25] E. E. Papalexakis, N. D. Sidiropoulos, and M. N. Garofalakis, “Re-
viewer profiling using sparse matrix regression,” in Proc. IEEE Int.
Conf. Data Min. Workshops, 2010, pp. 1214–1219.

[26] E. E. Papalexakis and N. D. Sidiropoulos, “Co-clustering as multilinear
decomposition with sparse latent factors,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Prague, Czech Republic,
May 22–27, 2011, pp. 2064–2067.

[27] T. Park and G. Casella, “The Bayesian Lasso,” J. Amer. Statist. Assoc.,
vol. 103, no. 482, pp. 681–686, 2008.

506 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

[28] W. Peng and T. Li, “Temporal relation co-clustering on directional so-
cial network and author-topic evolution,” Knowl. Inf. Syst., pp. 1–20,
Mar. 2010.

[29] M. Rajih, P. Comon, and R. A. Harshman, “Enhanced line search: A
novel method to accelerate PARAFAC,” SIAM J. Matrix Anal. Appl.,
vol. 30, no. 3, pp. 1148–1171, 2008.

[30] I. Schizas, G. B. Giannakis, and N. D. Sidiropoulos, “Exploiting co-
variance-domain sparsity for dimensionality reduction,” in Proc. IEEE
CAMSAP, Aruba, Dutch Antilles, Dec. 13–16, 2009.

[31] T. Jiang and N. D. Sidiropoulos, “Kruskal’s permutation lemma and the
identification of CANDECOMP/PARAFAC and bilinear models with
constant modulus constraints,” IEEE Trans. Signal Process., vol. 52,
no. 9, pp. 2625–2636, Sep. 2004.

[32] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J.
Roy. Statist. Soc.. Ser. B (Methodol.), vol. 58, no. 1, pp. 267–288, 1996.

[33] G. Tomasi and R. Bro, “A comparison of algorithms for fitting the
PARAFAC model,” Comput. Statist. Data Anal., vol. 50, no. 7, pp.
1700–1734, 2006.

[34] G. Tomasi and R. Bro, “PARAFAC andmissing values,”Chemometrics
Intell. Lab. Syst., vol. 75, no. 2, pp. 163–180, 2005.

[35] D.M.Witten, R. Tibshirani, and T. Hastie, “A penalized matrix decom-
position, with applications to sparse principal components and canon-
ical correlation analysis,” Biostatist., vol. 10, no. 3, pp. 515–534, 2009.

[36] L. Zhao and M. J. Zaki, “Tricluster: An effective algorithm for mining
coherent clusters in 3D microarray data,” in Proc. ACM SIGMOD
2005, p. 705.

[37] Q. Zhou, G. Xu, and Y. Zong, “Web co-clustering of usage network
using tensor decomposition,” in Proc. IEEE/WIC/ACM Int. Joint Conf.
Web Intell. Intell. Agent Technol., 2009, vol. 3, pp. 311–314.

[38] H. Zou, T. Hastie, and R. Tibshirani, “On the degrees of freedom of the
Lasso,” Ann. Statist., vol. 35, no. 5, pp. 2173–2192, 2007.

Evangelos E. Papalexakis (S’11) received the
Diploma and M.Sc. degrees in electronic and com-
puter engineering from the Technical University of
Crete, Chania, Greece, in 2010 and 2011, respec-
tively.
He is currently working toward the Ph.D. degree

in the Computer Science Department of Carnegie
Mellon University, Pittsburgh, PA. His research
interests include data mining, tensor analysis, time
evolving graph mining, and anomaly detection.

Nicholas D. Sidiropoulos (F’09) received the
Diploma degree in electrical engineering from the
Aristotelian University of Thessaloniki, Thessa-
loniki, Greece, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland—College Park, in 1988, 1990 and 1992,
respectively.
He served as Assistant Professor at the University

of Virginia from 1997 to 1999; Associate Professor
at the University of Minnesota, Minneapolis, from
2000 to 2002; Professor at the Technical University

of Crete, Greece, from 2002 to 2011; and Professor at the University of Min-
nesota from 2011 to present. His current research focuses primarily on signal
and tensor analytics, with applications in cognitive radio, big data, and prefer-
ence measurement.
Dr. Sidiropoulos received the NSF/CAREER award in 1998, the IEEE Signal

Processing Society (SPS) Best Paper Award in 2001, 2007, and 2011, and the
IEEE SPS Meritorious Service Award in 2010. He has served as IEEE SPS Dis-
tinguished Lecturer from 2008 to 2009, and Chair of the IEEE Signal Processing
for Communications and Networking Technical Committee from 2007 to 2008.

Rasmus Bro studied mathematics and analytical
chemistry and received the M.Sc. degree from the
Technical University of Denmark in 1994 and the
Ph.D. (cum laude) degree in multiway analysis from
the University of Amsterdam, The Netherlands, in
1998.
Since 1994, he has been employed at the De-

partment of Food Science at the University of
Copenhagen (formerly Royal Veterinary & Agri-
cultural University), and in 2002, he was appointed
Full Professor of chemometrics. He has had several

stays abroad at research institutions in The Netherlands, Norway, France,
and the United States. His current research interests include chemometrics,
multivariate calibration, multiway analysis, exploratory analysis, experimental
design, numerical analysis, blind source separation, curve resolution, and
constrained regression. He has authored more than 140 peer-reviewed scientific
papers and three books on chemometrics.

