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Frugal Sensing: Wideband Power Spectrum
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Abstract—Wideband spectrum sensing is a key requirement
for cognitive radio access. It now appears increasingly likely that
spectrum sensing will be performed using networks of sensors,
or crowd-sourced to handheld mobile devices. Here, a network
sensing scenario is considered, where scattered low-end sensors
filter and measure the average signal power across a band of
interest, and each sensor communicates a single bit (or coarsely
quantized level) to a fusion center, depending on whether its
measurement is above a certain threshold. The focus is on the
underdetermined case, where relatively few bits are available
at the fusion center. Exploiting non-negativity and the linear
relationship between the power spectrum and the autocorrelation,
it is shown that adequate power spectrum sensing is possible from
few bits, even for dense spectra. The formulation can be viewed as
generalizing classical nonparametric power spectrum estimation
to the case where the data is in the form of inequalities, rather
than equalities.

Index Terms—Cognitive radio, distributed spectrum compres-
sion, spectral analysis, spectrum sensing.

I. INTRODUCTION

E FFICIENT utilization of the wireless spectrum has been
a growing concern, due to the remarkable growth in the

mobile Internet and the variety of emerging wireless devices
and services competing for bandwidth. Actively seeking and ex-
ploiting transmission opportunities while respecting the ‘right
of way’ of licensed users, cognitive radio is a promising cohab-
itation paradigm that is currently at the center stage of wireless
communication and networking research.
Spectrum sensing is a core functionality for cognitive radio,

as it forms the basis for adaptive spectrum sharing. The goal of
spectrum sensing is to detect spectral occupancy, and perhaps
coarsely estimate power levels, under sensing constraints that
typically preclude explicitly scanning the full band. A variety
of spectrum sensing methods have been developed in recent
years, ranging from narrowband energy detection to wideband
sensing, mostly based on isolated hypothesis testing per nar-
rowband channel ‘bin’, without taking into account dependence
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across frequency bins or exploiting any underlying parametriza-
tion. Reference [1] provides a good up-to-date review of spec-
trum sensing for cognitive radio.
The premise of cognitive radio is that most of the band is

idle, most of the time, i.e., measured spectra are typically sparse.
Building upon this premise, compressive spectrum sensing has
been introduced to exploit frequency-domain sparsity to ob-
tain accurate spectrum estimates at sub-Nyquist sampling rates,
without frequency sweeping [2], [3]. A cooperative protocol
for distributed compressive spectrum sensing has been devel-
oped in [4], enabling cognitive radio users to reach consensus
on globally fused sensing outcomes.
Most work on spectrum sensing focuses on detecting activity

in the spectrum versus the power spectrum, i.e., the Fourier
transform of the signal, as opposed to the Fourier transform of
its autocorrelation function. The power spectrum is an expecta-
tion that reflects long-term spectral activity patterns; short-term
effects such as fading are integrated out. Power spectrum
sensing has been explored very recently in [5]–[10], where it
was shown that neither Nyquist-rate sampling nor full-band
scanning is necessary when the goal is to estimate only a finite
set of correlation lags, which is then Fourier transformed to
yield an estimate of the power spectrum. This approach can
decrease the sampling rate requirements by exploiting the ‘cor-
relation parametrization’ (i.e., a low-order correlation model),
without requiring spectrum sparsity. The key to this line of
work is that power measurements are linear in the autocorre-
lation function, hence a finite number of autocorrelation lags
can be estimated by collecting enough power measurements
to build an over-determined system of linear equations. In
[5], the power spectrum is estimated using sub-Nyquist rate
sampling by exploiting the relationship between the autocor-
relation function of the Nyquist-rate samples and that of the
compressive measurements. The assumption that compressed
measurements remain wide-sense stationary is relaxed in [6],
where the under- and over-determined cases are considered.
When over-determined, the power spectrum is estimated using
linear least-squares, without recourse to additional signal prop-
erties. When under-determined, the problem is regularized by
minimizing the norm of the estimated power spectrum, thus
relying on sparsity in this case.
A bank of periodic modulators is considered in [7], [8],

where each branch is sampled at a fraction of the Nyquist
rate, and cross-correlations of the branch outputs are used
to build a system of linear equations in the unknown input
correlation for a fixed number of lags. This approach has been
generalized to the case of cyclostationary signals in [9]. In [10],
multi-coset sampling is employed producing multi-resolution
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power spectral estimates at arbitrarily low average sampling
rates. A different approach exploiting spectrum sparsity has
been proposed in [11], where wideband filters are used
to detect occupancy in channels with , assuming
that the number of occupied channels is up to (less
than ). Note that [11] does not exploit the autocorrelation
parametrization.
References [5]–[11] assume analog amplitude samples (i.e.,

ignore quantization issues), which is reasonable for lumped
measurements taken with relatively accurate A/D converters
at a high number of bits per sample. The situation is very
different in a network sensing setting using scattered low-end
sensors with limited communication capabilities, which is the
scenario considered here. Suppose that each sensor can only
down-convert, filter, and measure average power at the output
of its filter. Depending on the computed power level, the sensor
may send a binary signal to the fusion center, or broadcast it
to its peers. Is it possible to form a satisfactory estimate of the
ambient power spectrum using just few such bits? This is the
central question we set to address in this paper.
Power spectrum sensing from few bits has never been

considered in the past, to the best of our knowledge—yet
is a natural extension of classical spectral estimation to the
case where the data is in the form of inequalities, rather than
equalities. Exploiting linearity with respect to autocorrelation
and important non-negativity properties in a novel optimiza-
tion-based formulation, it is shown that the power spectrum
sensing problem can be reduced to linear programming, and
that adequate power spectrum sensing is possible from few
bits, even for dense spectra. The tradeoffs that emerge in the
selection of key parameters, such as filter length and power
threshold, and how these affect spectrum sensing performance
and complexity are studied. Also, relevant extensions, such
as adaptive sensor polling and how to deal with inconsistent
sensor readings, are discussed.
Our problem formulation may be reminiscent of one-bit com-

pressed sensing [12]–[14]. In [12], [13], it has been shown that
signals can be recovered with good accuracy from compres-
sive sensing measurements quantized to just one bit per mea-
surement. The reconstruction is performed by treating the 1-bit
measurements as sign constraints, and further constraining the
sparse signal on the unit sphere, such that it is recovered within a
scaling factor (unavoidable, since 1-bit quantization eliminates
all scaling information). The unit-sphere constraint is replaced
by an -norm equality constraint in [14] to obtain a linear pro-
gramming formulation. The main differences between our work
and the one-bit compressed sensing framework can be summa-
rized as follows:
• We operate on the autocorrelation vector, instead of the
signal per se, and for this reason we exploit positivity
constraints that are not present in the one-bit compressed
sensing framework.

• Our choice of (positive) thresholds mitigates the scaling
problem, so we do not use a unit sphere constraint as in
[12], [13], or the -norm constraint as in [14].

• We do not need to assume sparsity of the unknown vector,
and our method works even with few measurements due to
the strong positivity constraints that we exploit.

It is also worth mentioning that 1-bit measurements were used
to perform localization in a sensor network in [15].
The rest of the paper is organized as follows. Some prelimi-

naries are presented in Section II. The proposed frugal sensing
scheme is developed in Section III, followed by simulations
and a discussion of the various design trade-offs in Section IV.
Relevant extensions and variations are presented in Section V.
Technical derivations and proofs are deferred to the Appendices.
Conclusions are drawn in Section VI.

II. PRELIMINARIES

Consider a discrete-time wide-sense stationary (WSS)
signal , and let denote
its autocorrelation sequence, where ,
and is nonnegative, by definition. The power spec-
trum of is the discrete-time Fourier transform (DTFT)
of , , where is
real and nonnegative. If only a finite -lag autocorre-
lation sequence is available, represented by the vector

,
then a windowed estimate of the power spectrum can be ob-
tained as . Due to truncation to
a finite number of lags, however, such an estimate is not guar-
anteed to be nonnegative at all frequencies. If we discretize the
frequency axis, then an -point estimate of the power spec-

trum can be obtained as , with , for

, using the (phase-shifted)
discrete Fourier transform (DFT) matrix:

...
...

...

Define the Toeplitz-Hermitian autocorrelation matrix

. . .
...

...
. . .

. . .

(1)
The construction of from can be explicitly parameterized
as follows. Let denote the matrix with ones on the
-th lower diagonal and zeros elsewhere, .
Define the vectors
and , such that

, for , where denotes
the range of indices from to , and ,
denote real and imaginary parts, respectively. Then

(2)

where and .
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III. POWER SPECTRUM SENSING FROM FEW BITS

Consider scattered sensors measuring the ambient signal
power and reporting to a fusion center—the measurement and
reporting mechanisms will be specified shortly. We begin by as-
suming that all sensors sense a common signal, up to a sensor-
specific constant modeling path loss and frequency-flat shad-
owing and fading, and that each sensor samples the signal at
Nyquist rate. Both these assumptions will be lifted in the sequel,
but they simplify exposition at this point. In Appendix A, it is
shown that frequency-selective fading can be mitigated by aver-
aging the measurements over a long period of time, and that the
basic approach carries over without further modification. The
Nyquist sampling requirement can be lifted by using an equiv-
alent analog processing and integration chain—the details can
be found in Appendix B, see also [7]. Note that we do not as-
sume that the sensors are synchronized; sensing time offsets and
phase shifts are allowed.

A. Sensor Measurement Chain

First, each sensor uses automatic gain
control (AGC) to adjust the scaling of its received signal

to a common reference, where models the
associated sensor-specific loss. Note that the power spectrum
is invariant with respect to timing offset and phase shift, hence
we may assume without loss of generality that every sensor
processes the same signal, , after the AGC stage. Then,

is sampled using an analog-to-digital converter operating
at Nyquist rate, yielding the WSS sequence . Sensor

then passes through a wideband FIR
filter with impulse response of length (i.e.,
for and ). In order to monitor a wide swath
of spectrum with relatively few sensors, it is necessary to use
broadband filters , which should somehow pro-
vide, loosely speaking, independent yet complementary views
of the underlying power spectrum. We propose to use random
complex pseudo-noise (PN) impulse responses, i.e., is
generated using a PN linear shift register, whose initial seed is
unique for each sensor (e.g., its serial number) and known to the
fusion center. This approach is simple, works well (as shown
in the next section), and requires no coordination between
sensors: A sensor may fail when its battery runs out, or new
sensors may be added without re-programming the other ones.
Using random PN filters can also be motivated from a random
projections viewpoint, as for the compression matrix applied to
sparse signals [2].
The filter’s output sequence is the convolution of

the signal with the impulse response , expressed
as . Let
denote the average power of the WSS signal . Each
sensor estimates using a sample average:

with under appropriate mixing conditions
[16, p. 171]. Finally, each sensor compares the estimated
to a threshold (or set of thresholds). The simplest setup is to use
a single threshold and binary {0, 1} signaling. If ,

Fig. 1. Sensor measurement chain.

then sensor sends ‘1’ to the fusion center, otherwise it sends1

‘0’. This sensor measurement chain is shown in Fig. 1.

B. Fusion Center

Define the sets and
, with and

such that . The superscript in
is dropped for brevity. Also, define the vector

(conju-
gate reversal of ), and the vector

. It can then be verified
that the Toeplitz-Hermitian matrix defined in (1) is the
autocorrelation matrix of , i.e.,
(positive semi-definite), and that .
Hence . It follows that,
upon receipt of a ‘1’ (or ‘0’) from sensor , the fusion center
learns that (resp. ), assuming
sufficient averaging such that sample averages converge to
ensemble averages. Note that since we only need to ensure that
the inequality is not reversed, sample averaging requirements
are considerably relaxed relative to high-rate quantization.
The job of the fusion center is to estimate the ambient power

spectrum based on the information it received from the sensors,
represented by the partition . This can be accom-
plished by reconstructing the -lag autocorrelation function ,
and then applying the DFT: . Due to the truncation of
the autocorrelation to lags (as well as inaccurate estimation of
), the corresponding is no longer guaranteed to be nonnega-

tive. In classical spectral analysis, non-negativity of the spectral
estimate can be ensured by positive extension of the truncated
correlation sequence [17]. There are infinitely many extensions
that give rise to positive spectra, a popular one being Burg’s
Maximum Entropy extension—this is a well-studied subject in
spectral analysis.
Unlike classical spectral analysis, the data here is in the form

of linear inequalities involving the autocorrelation matrix. The
setup is more heavily under-determined, and we need to employ
all available structural properties and prior information to obtain
a meaningful estimate of the power spectrum. Towards this end,
we propose including both and
as explicit constraints in an optimization-based formulation.
The remaining issue is to find an appropriate cost function.

A reasonable choice is to minimize the total signal power, i.e.,
, consistent with the premise of cognitive

1Nothing at all, when censoring is adopted. Censoring blends well with
random access ‘uplink’ communication from the sensors to the fusion center,
because it reduces contention. When fixed multiplexing (such as time/fre-
quency- or code-division multiple-access) is used for sensor to fusion center
communication, it is appealing to use ternary signaling, corresponding
to two power thresholds and , where . If , then sensor
sends ‘ 1’ to the fusion center, else if it sends ‘1’, else it

sends ‘0’. We focus on binary signaling for simplicity and clarity of exposition.
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Fig. 2. Illustrative example for the proposed frugal sensing approach with
sparse spectrum.

radio that most of the spectrum is unused in most places, most
of the time. Interestingly, since we enforce , and
since , it follows that , i.e.,
minimizing the total signal power implicitly encourages spar-
sity in the reconstructed power spectrum. Putting everything to-
gether leads to the following problem formulation:

(3)
Note that the constraint is a linear relation
between and as expressed in (2). This implies that all
the constraints in (3) are ordinary linear inequalities in the vari-
ables and , except for the
constraint , which is a linear matrix inequality (LMI).
Hence, problem (3) is a semidefinite program (SDP) that can be
optimally solved using efficient interior point methods. The fol-
lowing proposition, however, asserts that the constraint
is redundant; it is in fact implied by the constraint .
Proposition 1: For ,

. The converse is generally not true.
The proof can be found in Appendix C. Proposition 1 im-

plies that problem (3) is not affected by removing the constraint
. Thus, (3) can be expressed as the following linear pro-

gram (LP):

(4)

The significance of this reduction from an SDP to an LP is that
the latter is easier to solve using specialized algorithms. The LP
problem (4) can be expressed in the standard form as follows.
Define the two vectors:

where can be obtained from using a
transformation matrix . For example, for ,
the transformation matrix is:

Hence, it is easy to verify that
, where . Finally, defining and

, problem (4) can be formulated in the stan-
dard LP form:

(5)

IV. SIMULATIONS AND PARAMETER TUNING

In this section, we provide simulation results and discuss the
effect of some design parameters on the quality of the power
spectrum estimate. We begin with a simulation that illustrates
what one can expect from the proposed approach. In Fig. 2 and
Fig. 3, a scenario with sensors was considered, and
the estimated power spectrum (dashed line) has been obtained
by solving the LP (5). For Fig. 2 the true power spectrum is
sparse (solid line), filter length was used, and the
threshold was set such that ; whereas for Fig. 3 the
true power spectrum is dense, filter length was used,
and was set such that . The plotted spectra have been
normalized by the peak value of the true power spectrum. The
quality of the estimates in Figs. 2, 3 is very satisfactory consid-
ering that only 100 bits have been used as input data—corre-
sponding roughly to three single precision IEEE floats, or about
what it would take to transmit three accurate power measure-
ments, or and (note that is complex, requiring
two floats).
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Fig. 3. Illustrative example for the proposed frugal sensing approach with
dense spectrum.

In the rest of the paper, we use the normalized mean square
error (NMSE) to measure the quality of the power spectrum
estimate. The NMSE is defined as

(6)

where the expectation is taken with respect to the random
signal and the random impulse responses of the FIR fil-
ters, obtained via Monte-Carlo simulations. Note that using

instead of (6) to define NMSE made
very little difference in our experiments—the results were
almost identical.

A. Threshold Selection

In this subsection, we show that, from an estimation per-
formance point of view, the threshold should be selected ac-
cording to the sparsity level of the power spectrum (assuming
prior sparsity knowledge is available). Let denote the spar-
sity ratio, defined as the ratio of the nonzero2 entries to the
total length of the power spectrum, and define as the ratio of
the number of sensors with measurements above to the total
number of reporting sensors (i.e., ).
In Fig. 4, we plot the NMSE versus the ratio , for signals

with different sparsity ratios . The sparse signal was fixed for
each , and 1000 Monte-Carlo simulations for each were used
to obtain the corresponding NMSE (here the expectation was
taken with respect to the random FIR filters only). The setup in-
cluded sensors and the filter length was set to .
Two main points can be deduced from Fig. 4. First, we see that
as the sparsity ratio increases, the NMSE is minimized at a
higher ratio . This means that the threshold should be tuned
such that number of sensors reporting measurements above
decreases as the power spectrum becomes more sparse. His-
torical data can be used to get an expectation for , and to
identify the distribution of . Exploiting such prior statistical
information, the threshold can be selected such that min-
imizes the NMSE for the corresponding . The second point
that can be drawn from Fig. 4 is that the minimum NMSE in-
creases as the power spectrum becomes less sparse. This implies
that the quality of the estimated power spectrum using the pro-
posed approach is relatively better for sparser signals. It is worth

2Or above a small quantity .

Fig. 4. The optimum that yields the minimum NMSE depending on of the
signal being estimated.

mentioning that an adaptive threshold selection algorithm for
the one-bit compressed sensing framework has been introduced
in [18], assuming a signal with a separable distribution that is
known a priori.

B. Filter Type and Length

Next, we look at how the filter length affects the quality
of the power spectrum estimate, and also discuss two candidate
classes of random filters. Note that the number of filter taps
is also the number of estimated autocorrelation lags. Truncation
of the autocorrelation sequence smears the estimated power
spectrum [17], and the smaller is, the more pronounced this
smearing will be. This is the reason why has been
used in Fig. 2, where the spectrum is a sparse superposition
of narrowband spectra, whereas has been used in
Fig. 3 which features two main lobes occupying more than
half the bandwidth. On the other hand, is also the number
of unknowns, and the larger is, relative to the number of
inequality constraints in (5), the more under-determined the
problem becomes, which counteracts the reduced smearing. The
choice of thus determines the trade-off between smearing
and inequalities-versus-unknowns considerations. In addition,
the complexity of solving (5) is roughly , which is
another reason why should be kept moderate.
Fig. 5 illustrates this tradeoff, showing the NMSE as a func-

tion of for various . In Fig. 5, two types of random impulse
responses were used for the filters: (a) complex binary antipodal

-valued random PN, and (b) normalized white com-
plex Gaussian random variables. Random sparse signals with

were generated and the reported NMSE for each is
the result of averaging across more than 1000Monte-Carlo sim-
ulations (with respect to the random signals and filters). Three
scenarios were considered with 50, 100 and 200 sensors,
where was selected such that 12, 25 and 50, respec-
tively3. Fig. 5 confirms our intuition about the trade-off in the
choice of . Fig. 5 also shows that the optimal is an in-
creasing function of , which can be understood by noting
that as increases, the number of inequalities increases, hence

3The results in the figure were obtained by varying the threshold with each
simulation run to sustain the required in each run. Very similar results were
obtained when the threshold was fixed across all simulation runs, which was
selected as the average of the different thresholds that sustain the required
in each run.
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Fig. 5. Tradeoff between the NMSE and the filter length .

one can afford more unknowns. Another point worth noting is
that the performance of Gaussian filters (dotted lines) is almost
identical to that of binary PN filters. However, binary PN filters
are much simpler to implement via cheap linear shift registers,
hence preferable to Gaussian filters.

V. RELEVANT EXTENSIONS

In this section we discuss some extensions and variations to
the proposed frugal sensing scheme.

A. Another Reconstruction Method

So far, we have considered minimizing the total signal power
as our objective function in (5), which implicitly encourages
sparsity in the reconstructed power spectrum. In this subsec-
tion, we consider a different formulation of the reconstruction
problem. First, note that the feasible region:

is a convex polyhedron, whose volume is a measure of the un-
certainty in associated with the constraint set ; however,
finding the volume of a convex polyhedron is NP-hard [19]. The
optimal solution of the LP (5) will always be on the boundary
of —in fact, without loss of optimality, can be taken to be a
vertex of . Thus the boundary of is associated with sparse
feasible spectra. If the sought spectrum is known to be non-
sparse, then it makes sense to steer away from the boundary of
, and a good way to enforce this is to use the “center” of to

estimate . There are different ways to define the center of ,
and we use the center of the maximum volume inscribed ellip-
soid.
Define:

if
if

and let the vector correspond to the negative of the -th row
of , where (i.e.,

). Finding the ellipsoid of
maximum volume that lies inside the convex polyhedron can
be used to lower bound the actual volume of . This can be

expressed as a convex optimization problem in the variables
and [20, Sec. 8.4.2]:

(7)

The volume of the ellipsoid is proportional to , and is
the center of [20, Sec. 8.5.2]. Now, instead of minimizing the
total signal power as in (5), we propose setting
the estimate of to , i.e., the estimated autocorrelation is
the center of the maximal inscribable ellipsoid.
Clearly, this approach does not promote sparsity, however it

can yield better estimates, as compared to (5), when the spec-
trum is non-sparse. This was numerically verified for the fol-
lowing setup. The setup included sensors, the filter
length was set to , and the threshold was selected such
that . A non-sparse spectrum was randomly generated,
and the NMSE was obtained using 500 Monte-Carlo simula-
tions. Using the LP reconstruction method (5), the NMSE was
found to be 0.2544, whereas using (7) gave an NMSE of 0.2228,
showing a slight advantage for (7) over (5). The real reason for
introducing the ellipsoid approximation though is discussed in
the next subsection.

B. Sensor Polling—Adaptive Sensing

So far, we have assumed that sensors are active and the fu-
sion center is passive; each sensor sends a bit based on its own
measurement, while the fusion center collects the sensor reports
and estimates . A more intelligent strategy is to allow the fu-
sion center to selectively poll sensors on the basis of previously
received sensor reports. The idea here is that, given partial in-
formation about the sought spectrum, certain sensors are more
valuable than others. Polling also makes sense from an energy
conservation point of view for battery-operated sensors, which
can be put to sleep until polled by the fusion center. Thus, the
question we are addressing here is:

Assuming that the fusion center has already obtained
measurements from sensors, which are the best sen-
sors to poll next among the remaining ones, and in what
order?

We propose the following greedy approach. Since finding
the exact volume of the feasible region is NP-hard [19], we
use the volume of the maximal inscribable ellipsoid, which
is obtained by solving (7), as an uncertainty measure for the
estimated power spectrum. The volume of this ellipsoid is
proportional to , i.e., , where is a constant.
Polling sensor will result in either adding or

to the set of constraints. Let denote the new
volume of the maximal inscribable ellipsoid corresponding
to the addition of the first inequality, and the volume
corresponding to the addition of the second inequality. The pro-
posed approach is to poll the sensor that yields the minimum
worst-case volume after its corresponding inequality is included
in the constraint set, i.e., ,
where is the selected sensor. This approach requires that
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Fig. 6. The decrease of the estimation error as more sensors are polled, for a
typical scenario.

the fusion center searches through all remaining non-polled
sensors and solves problems of type (7) before deciding on
which sensor to poll at each step. This can be a heavy compu-
tational burden, but note that for modest sensor populations all
required computations can be performed once off-line, and the
results stored for on-line use.
In Fig. 6, we illustrate the performance of the proposed sensor

polling scheme as compared to randomly selecting any sensor,
for a typical scenario. A dense power spectrum is considered,
and a short filter length is used. It is assumed that
the fusion center has already received the 1-bit measurements
from sensors, and sensors remain to be
polled. The normalized error in the power spectrum estimate

, as each of the remaining sensors is
polled by the fusion center, is plotted in the figure. The figure
shows that using the proposed sensor polling scheme, the error
significantly decreases after polling each of the first 3 sensors
due to the good choice of sensors to be polled; whereas ran-
domly selecting the sensor to poll does not give the same per-
formance. Note that both curvesmeet at the endwhen all
sensors are polled, as expected. Also note that polling some sen-
sors may have no effect on the feasible region, and consequently
no effect on the estimated power spectrum. That is why the error
does not change for the proposed scheme when polling each of
the last 5 sensors, as shown in the figure.
In Fig. 7, we report the average performance considering a

similar setup as in Fig. 6, but with . A total of 5 sensors
are polled in each run, and we plot the NMSE, obtained using 20
Monte-Carlo simulations, when each one of them is polled using
the proposed sensor polling scheme and with random sensor se-
lection. The figure shows the better performance of the proposed
scheme due to the good choice of sensors to be polled.

C. Higher-Resolution Quantization

It is clear that finer-grained quantization of will improve
the quality of the power spectrum estimate, but at the cost of
higher signaling rate and sensor hardware complexity. Using
multi-bit quantization should be considered vis-a-vis the alter-
native of employing more single-bit sensors while holding hard-
ware, energy, and signaling costs fixed. Another factor that must
be taken into account in deciding the right number of quantiza-
tion levels is that coarse quantization is naturally more robust

Fig. 7. The decrease of the NMSE as more sensors are polled.

to sample averaging errors in estimating output power. In the
limit, if the analog are communicated to the fusion
center (e.g., using analog modulation), the power spectrum can
be estimated by solving the following weighted least squares
minimization

(8)

where the weights reflect the relative accuracy of and
trades off the data term versus prior informa-

tion on the total power (and sparsity) of the measured power
spectrum.
Here, we consider a fixed bit-budget setup, where
is the number of quantization bits used to describe the es-

timated at each sensor (i.e., quantization levels), and
compare the performance of the different quantization schemes.
We assume that the measurements are mapped to discrete
levels via a uniform quantizer. In Fig. 8, we plot the NMSE as
a function of for different bit-budgets. Random sparse sig-
nals with were generated and the reported NMSE
for each point was averaged over more than 1000 Monte-Carlo
simulations (with respect to the random signal and filters). The
filter length was set to . Selecting the threshold for the
one-bit quantization problem (5) as the average threshold that
yields results in the NMSE point that is
connected to the point via a dashed line, whereas the
NMSE points that correspond to the uniform quantizer are con-
nected via a solid line.
Fig. 8 shows that the NMSE can be significantly decreased by

properly selecting the threshold in the one-bit quantization sce-
nario (compared to uniform one-bit quantization). It can also be
seen that if the bit-budget is small relative to , then it is
better to have a larger number of sensors with coarsely-quan-
tized power measurements (i.e., small ), whereas for a larger
relative to , increasing gives better performance. More

specifically, we can see that the one-bit quantization with the
adapted threshold yields the minimum NMSE for and

, while it is very close to the minimum NMSE for
and . Therefore, considering the implementa-

tion and complexity advantages of 1-bit quantizers, these results
motivate the usage of 1-bit sensors.
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Fig. 8. NMSE for different quantization schemes at different bit-budgets.

It is worth mentioning that a similar trade off in performance
between the number of measurements and the number of bits
per measurement has been studied in [21] for the compressed
sensing setting. In addition to the autocorrelation-specific posi-
tivity constraints that are imposed in our formulation as opposed
to [21], reference [21] considers the tradeoff in presence of er-
rors due to both signal noise and quantization, whereas we do
not consider any errors. Interestingly, [21] also concludes that
it is better to acquire as few as 1 bit per measurement in many
practical applications.

D. Robust Estimation: Inconsistent Sensor Measurements

Due to insufficient sample averaging in the estimation of ,
and/or decoding errors in the sensor to fusion center communi-
cation links, it is possible that the set of correlation matrices
satisfying the constraints in (4) can be empty. In such cases,
it makes sense to find that is consistent with as many in-
equalities as possible. This can be formulated as follows. Add
a slack variable , that represents the possible error
in the measurement or reporting of , to the constraints of
type , such that they become

(resp. ). Then, add
a sparsity-inducing penalty to the cost
function, where , to promote sparsity
among the slack variables, in order to (approximately) minimize
the number of inconsistent inequalities. In this way, problem (5)
is modified to the following robust LP:

(9)

where is the vector of all ones, and is a tuning parameter
that controls the level of sparsity. It is worth mentioning that
using the -norm for robust estimation was introduced in [22],
see also [23].
In Fig. 9, we consider a similar setup to that used for Fig. 2,

assuming a sparse power spectrum (solid line), , and
. The plotted spectra have been normalized by the peak

value of the true power spectrum. To model for inconsisten-
cies and errors in the reported measurement bits, an indepen-
dent uniform random variable is added to each . As a re-
sult, the fusion center received 20 wrong bits from the sensors

Fig. 9. Example showing the performance of the proposed robust frugal
sensing scheme.

(i.e., 20 reversed inequalities); 14 ‘0’ bits are received as ‘1,
and 6 ‘1’ bits are received as ‘0’. This resulted in an infeasible
problem (5). The estimated power spectrum that has been ob-
tained by solving the robust LP (9) is plotted as the dotted line,
where the tuning parameter was set to 1. It is worth noting
that the resulting sparse after solving (9) included only 16
nonzero entries (representing the inconsistencies). If the true
measurement bits are received by the fusion center such that
the inequality constraints are consistent, the estimated power
spectrum obtained by solving (9) is given as the dashed line.
Note that in this case problem (9) is equivalent to problem (5),
since the added sparsity-inducing penalty in the objective
of (9) gives , for sufficiently large. The quality of the
power spectrum estimate using the robust LP (9) is very satis-
factory, considering that 20% of the received measurement bits
were flipped.

VI. CONCLUSIONS

A network sensing scenario was considered, where scattered
low-end sensors pass the received signal through a random filter,
measure average power at the output of the filter, and send out a
bit or coarsely quantized power level to a fusion center. The fu-
sion center obtains an estimate of the power spectrum by solving
an under-determined linear program comprising inequality con-
straints derived from the sensor data, plus prior information in
the form of the cost function and non-negativity constraints. It
was shown that adequate power spectrum sensing is possible
from relatively few bits, even for dense spectra. The selection
of some key design parameters was considered, and important
trade-offs were revealed and illustrated in pertinent simulations.
It was demonstrated that judicious choice of the filter length is
needed to balance smearing effects against inequalities-versus-
unknowns considerations, and the detection threshold at the sen-
sors should be tuned such that number of sensors reporting mea-
surements above it decreases as the power spectrum becomes
more sparse. Some extensions and variations were also consid-
ered, notably an active sensor polling/adaptive sensing scheme
that minimizes an estimate of the worst case uncertainty after
sensor selection. This polling strategy performs considerably
better than passive listening or random selection.
The formulation here can be viewed as generalizing classical

nonparametric power spectrum estimation to the case where the
data is in the form of inequalities, rather than equalities. A key
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challenge is that estimation relies on solving appropriate op-
timization problems, and cannot be put in closed form. This
makes performance analysis challenging as of this writing, how-
ever we hope to pursue new directions and tackle some of these
issues in future work.

APPENDIX

A. Fading Considerations

First note that if the discrete signal is received
in presence of frequency-flat fading, then the difference in
the received power spectrum across sensors can be com-
pensated for using AGC. Consider now a more general
frequency-selective fading scenario. The received signal

is the convolution of the transmitted discrete-time WSS
signal with the linear (possibly time-varying) finite-im-
pulse response fading channel , expressed as

. Assuming that is
independent of , the received autocorrelation is thus
given as

(10)

Next, we consider two scenarios for the fading channel.
Scenario 1:: is random, time-invariant, and the

correlation between two filter taps is only a function of the or-
dinal distance between them. This implies that

Then, from (10):

and thus is WSS, and the received power spectrum is
expressed as

where . Note that
since the channel frequency response is given as

, then

Assuming that is the same across all sensors, and
that sensors acquire sufficient samples with different channel re-
alizations such that the sample average converges to the expec-
tation, then all sensors will be reporting consistent power spec-
trum measurements. This effectively assumes that the channel
remains constant over a relatively long period of time, then
jumps to a new realization, dwells there for another measure-
ment epoch, and so on. This is a reasonable model if each sensor
only spends a small part of its time to sense the spectrum, while
it does other things most of the time. Every time it returns to
the spectrum sensing task, it will encounter a new channel re-
alization, not only because of drift but also due to acquiring
a new carrier/phase lock. If the reported measurements reflect
averaging over many such epochs, then the proposed model is
well-motivated.
Scenario 2:: The Wide Sense Stationary Uncorrelated Scat-

tering (WSSUS) channel model [24, Sec. 3.3], first introduced
by Bello [25], where is WSS with respect to the time
variable and uncorrelated across the lag variable . This im-
plies that .
Hence, substituting in (10) yields:

where . For slowly
varying channels, for the (small)
range of autocorrelation lags considered here, which implies
that is approximately constant
(not a function of ). Hence, all sensors will be reporting consis-
tent power spectrum measurements, assuming that sensors ac-
quire sufficient samples such that the sample average converges
to the expectation.

B. Analog Sensor Measurement Chain

Assume that the complex-valued analog signal is band
limited with two-sided bandwidth (i.e,

). Let be the impulse response of the analog filter of
duration that corresponds to the FIR filter , satisfying

for , where
, and for and . Let the discrete-time
signal be the output samples from passing through an
integrate and dump device operating at Nyquist rate:
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Fig. 10. Sensor measurement chain: Analog processing.

Passing the signal through the filter yields

Now, consider the Nyquist-rate samples of at ,

which is the discrete-time convolution of and . This
shows that

The modified analog measurement chain is depicted in Fig. 10.

C. Proof of Proposition 1

We show that enforcing nonnegativity of the discretized
-point power spectrum estimate, i.e., , where

, , and is the

(phase-shifted) DFT matrix, implies a positive

semidefinite autocorrelation matrix . We consider
and assume that is odd (extending the

proof to even follows along the same lines). Define the
vector as the zero-padded extension of ,

Also, define and let be the square
phase-shifted DFT matrix:

...
...

...

It is easy to verify that . Let matrix be
the original (non-phase-shifted) -point DFT matrix, vector
be the first column of , and define the diagonal matrix

with elements of on the main diagonal, such that
(and ).

Let be the -th circular shift of obtained by re-
moving the last entries of and putting them as the first
entries (with ). A negative signifies a shift in

the reverse direction. Define the circulant matrix
. For example, for

and ,

Circulant matrices are diagonalized by a DFT:
, where holds the eigen-

values of [26, p. 107]. Note that . Since
we enforce , this directly implies that is
positive semidefinite. Next, it is easy to see that the
autocorrelation matrix can be obtained by
deleting the last rows and the last columns
of , i.e., is the -th order leading principal submatrix
of . Sylvester’s criterion states that a matrix is positive
semidefinite if and only if the determinant of every principal
submatrix is nonnegative [26, p. 160]. This implies that if

, then the principal submatrix . Hence, we
showed that enforcing implies that . The
converse is not true since does not necessarily imply
that .
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