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Abstract—Conjoint analysis (CA) is a classical tool used in
preference assessment, where the objective is to estimate the
utility function of an individual, or a group of individuals, based
on expressed preference data. An example is choice-based CA
for consumer profiling, i.e., unveiling consumer utility functions
based solely on choices between products. A statistical model for
choice-based CA is investigated in this paper. Unlike recent clas-
sification-based approaches, a sparsity-aware Gaussian maximum
likelihood (ML) formulation is proposed to estimate the model
parameters. Drawing from related robust parsimonious modeling
approaches, the model uses sparsity constraints to account for
outliers and to detect the salient features that influence decisions.
Contributions include conditions for statistical identifiability,
derivation of the pertinent Cramér-Rao Lower Bound (CRLB),
and ML consistency conditions for the proposed sparse nonlinear
model. The proposed ML approach lends itself naturally to
-type convex relaxations which are well-suited for distributed

implementation, based on the alternating direction method of
multipliers (ADMM). A particular decomposition is advocated
which bypasses the apparent need for outlier communication, thus
maintaining scalability. The performance of the proposed ML
approach is demonstrated by comparing against the associated
CRLB and prior state-of-the-art using both synthetic and real
data sets.

Index Terms—Conjoint analysis, maximum likelihood, estima-
tion, sparse, CRLB, ADMM.

I. INTRODUCTION

T HE remarkable growth of the world-wide web has en-
abled large-scale (semi-)automated collection of prefer-

ence data—that is, data containing information about people’s
preferences regarding products, services, other people, events,
etc. Large-scale preference data collection is mainly driven by
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services such as online retailing, social networking, and person-
alized recommendation systems. The rapidly growing volume
and diversity of preference data (purchases, choices, rankings,
surveys, questionnaires) along with the need for accurate clas-
sification, personalization, and prediction, have spurred an in-
creasing interest in preference modeling and analysis (PMA),
a cross-disciplinary applied research area with a long history
(e.g., early work in PMA includes [1], [2]). The goal of PMA,
as suggested by the name, is to predict responses of individuals
to products or services, based on already expressed preference
data.
Conjoint analysis is a statistical technique commonly used

in PMA, to determine how individuals value different features
that make up a product or a service. CA is used in many so-
cial and applied sciences, including marketing, industrial design
and economics. The modeling assumption behind CA is that re-
sponses are formed as noisy linear combinations of a product’s
features with weights given by the decision-maker’s partworths
[4]. By analyzing available preference data, CA techniques aim
to estimate the underlying partworth values. These estimates can
be used to predict future preferences and assess the profitability
of new designs, but are also useful per se to the retailer/mar-
keter, e.g., for consumer sensitivity analysis.
Traditional methods for partworth estimation for choice-

based CA models (where preferences are only expressed in the
form of binary choices), range from logistic regression [5] and
hierarchical Bayes (HB) methods [6], [7], to methods based on
support vector machine (SVM) classifiers [8]. Following either
deterministic or Bayesian formulations, these state-of-the-art
techniques rely on suitably regularized loss functions to “op-
timally” trade-off model fit for better generalization capability
of the solution beyond the training data. See [9] for a compact
description of these approaches; more detailed comparisons
can also be found in [8].
Although the benefits of CA have been widely appreciated

(see, e.g., [10]), the tacit assumption underlying most of the
existing techniques is that the data is gathered under controlled
conditions, i.e., there are no outliers, and responses regress
upon a modest number of features. However, in modern pref-
erence modeling systems, especially in web-based collection,
such controlled conditions are often not feasible. Therefore,
solutions that are computationally efficient and offer robustness
to gross errors are, if not necessary, at least highly desirable.
In this direction, it has been noted in [8] that classification
approaches to choice-based CA using SVMs are typically more
robust against outliers, than HB methods, for example. A clas-
sification approach is sensible for a number of reasons, mainly
because it avoids strong probabilistic assumptions. However,
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although SVMs perform very well in practice, the quality of the
solution is difficult to quantify; for example, it is often difficult
to benchmark classification performance. An outlier-aware
SVM classifier for choice-based conjoint data is proposed in
[8]. The SVM proposed in [8] solves an unconstrained opti-
mization problem consisting of a convex, non-differentiable
loss function combined with a suitable regularizing function
whose addition aims to improve the generalization error of the
classifier. Similar to [8], the authors in [11] follow an SVM
approach to choice-based CA, the main difference being that
sparse outliers are modeled explicitly using auxiliary variables.
Contributions: Unlike an SVM approach, we consider a sta-

tistical choice-based CAmodel which includes both standard er-
rors and auxiliary variables that explicitly model sparse outliers.
Our particular model was first proposed in [3]; here, we revisit
the formulation in [3] and further investigate its properties, in
an attempt to provide a more solid and well-rounded framework
for partworth estimation. Links between sparsity and robustness
against outliers exploiting connections with the -norm were
drawn in the linear regression context in [12], [13], and more
recently in [14] it was proposed to introduce a sparse auxiliary
vector variable to account for outliers, as a universal model ro-
bustification strategy. The latter ideas are explored in our paper
in the particular context of choice-based CA, where—unlike the
focus of [11], [14]—the signal of interest (partworths) is also
sparse, and anML formulation is proposed for partworth estima-
tion. A key contribution of our work is that we provide identifi-
ability conditions and explore the best achievable mean-square-
error (MSE) performance by deriving the CRLB under sparsity
constraints, building on earlier work on the CRLB computa-
tion in constrained parameter estimation [16]–[19]. Our identi-
fiability and CRLB results allow one to assess the performance
of relevant relaxation strategies for our model. As a second step,
we revisit the ML formulation we proposed in [3] and show
that consistency holds for the partworths, under suitable con-
ditions on the outliers. We show that the proposed ML formu-
lation lends itself naturally to an -type relaxation (see, e.g.,
[15]) which is not only convex, but also naturally amenable to
distributed implementation. Distributed solution strategies are
interesting for two reasons: First, applications of interest usually
involve large-scale datasets which may go beyond the reach of
standard off-the-shelf solvers. Second, the proposed solutions
are not only distributed, but also decentralized, meaning that
the nodes in the distributed implementation need not share their
private datasets to reach consensus to optimality. We derive a
simple decentralized algorithm based on the alternating direc-
tionmethod ofmultipliers (ADMM), amethodwhich has shown
great potential in the area of distributed optimization [21]. An
ADMM solution was pursued in [11] in the context of a linear
CA model, whose convergence proof was deferred to another
manuscript. Unlike [11], in this paper we focus on distributing
choice-based CA and show how to directly embed our ML for-
mulation into the consensus optimization framework of [21].
Finally, the efficacy of the proposed sparsity—aware ML esti-
mator is assessed by comparing its MSE performance vis-a-vis
the CRLB and the prior state-of-the-art using both simulated and
real data from a conjoint choice experiment for coffee makers.

The rest of the paper is organized as follows. Section II
describes the main problem setup, and the associated ML
estimator that accounts for outliers and partworth sparsity.
In Section III-A we give model identification conditions and
derive the best achievable MSE performance for the estimation
of partworths in the simple case where no outliers are present.
The model identification and CRLB results are extended to
the general outlier—contaminated case in Section III-B. The
asymptotic properties of the proposed ML approach are dis-
cussed in Section IV. Section V describes a tractable convex
relaxation of the ML estimator that is convenient for use in
practice. Section VI gives a distributed implementation of the
proposed relaxed ML estimator based on ADMM. Results of
experiments are presented in Section VII, and conclusions are
drawn in Section VIII, along with some discussion on future
work.

II. SPARSE CA MODELING & ML ESTIMATION

We begin by describing the three basic CA models used in
PMA. These are included in [3], but are also discussed here
for completeness. The starting point is to represent the quan-
tities over which preferences are expressed (and let us assume
that these quantities are products, for simplicity) using associ-
ated profiles, i.e., -dimensional vectors whose elements corre-
spond to the different features. A profile captures all relevant
information about the corresponding product’s characteristics.
Suppose there are such profiles , to be evaluated by
a single individual.1 In CA it is customary to assume that re-
sponses obey a linear regression model (see, e.g., [4])

(1)

where denotes transposition, is the vector of partworths
associated with the individual and is a random variable mod-
eling (usually small) random errors.
There are three different but related categories of models

that link responses to preference measurements. In a full-pro-
file rating model, the measurement is assumed to be directly
the response . Another category consists of the so-called
metric-paired rating models, where the in (1) is replaced
by a difference of a pair of profiles. Finally,
we have also choice-based models, where in addition to using
pairwise-differences of profiles in (1), the measurement is only
the sign of . In other words, in a choice-based CA model the
individual is each time asked to indicate a preference between
two profiles, but not the actual magnitude of this preference.
Mathematically speaking, if we assume given profile differ-
ences the classical choice-based CA model is

(2)

Given profiles, there are at most unique profile
differences, equating and , but is typically selected
smaller than this, reflecting that a subset of all possible questions
are actually used in a survey.

1The term individual here can also be interpreted as a homogeneous popula-
tion of individuals. Similar to [11] we focus on this homogeneous case for sim-
plicity: Once this case is addressed, approaches to account for heterogeneous
populations are possible along the lines of [22], [23].
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There are several advantages of choice-based CA models as
compared to models based on rating scales. One intuitive ad-
vantage is that choices are more realistic, resembling the real
purchasing situation. Another advantage is that the problem of
individual differences in interpreting rating scales is circum-
vented [24]. In this paper we deal exclusively with (2), and
aim to robustify this model by utilizing structural information.
Towards this end, we make two observations: The first is that
responses can be grossly inconsistent due to a number of rea-
sons, implying that it is more realistic to acknowledge that there
can be gross errors in the measurement model in (2), in addi-
tion to the typically small errors . We model the errors

as i.i.d. normal variables with known vari-
ance . On the other hand, the only assumption regarding the
gross errors is sparsity, i.e., that there is a known upper bound
on their number. Assuming that gross errors are sparse makes
sense in this context, since intuitively, an individual will not
be regularly inconsistent. The second observation which aims
to robustify (2), is that the number of features can be very
large—modern products may have a very large number of rele-
vant attributes and technical specifications—yet relatively few
features will matter to any given individual, and even the ‘typ-
ical’ individual. Therefore, it makes sense to assume that the
unknown partworth vector will also be sparse, and this struc-
tural information can be exploited to facilitate the estimation.
In light of the above, the model in (2) can be re-stated by

(a) explicitly modeling the gross errors using a sparse vector
of deterministic outliers and (b) utilizing the

(deterministic) prior information that itself is a sparse vector.
Therefore, a conceptually appealing version of (2) is

(3)

coupled with the a-priori knowledge that and
. Here, the integers are assumed fixed and

given, and the function stands for cardinality, i.e., it
returns the number of non-zero elements of a vector. Unless
explicitly stated otherwise, throughout the paper we focus on
the case where one has at least as many measurements as path-
worths . We are interested in that case because it pro-
vides intuition useful when describing the asymptotic properties
of the model; however, the case where is explicitly dis-
cussed in some places as well. Finally, it is also assumed that all
unknown parameters are bounded, i.e., that there exist positive
constants and such that

and . This requirement
is mostly technical, and its use will become evident later on, in
our analysis.
Given measurements from (3), we are interested in es-

timating the vector of partworths as well as detecting the
responses that have been contaminated with outliers. This
joint estimation problem is challenging because the model
in (3) is underdetermined; there are always more unknowns
than measurements, so one expects that sparsity is the key to
make the problem meaningful. Efficient outlier detection is
critical for accurate partworth estimation in this context (and
therefore accurate preference prediction), but can also have
useful implications in the experimental design of the profile
differences .

The ML estimator for the vector is derived as follows.
Let be the set of indices , and similarly define

. Since noise samples are independent,
the probability of a random partition of the observations to
and can be calculated explicitly to be

where is the cumulative distribu-
tion function of the standardized Gaussian density. The log-like-
lihood function can be written compactly as

(4)

Therefore, finding theML estimate of the vector amounts
to the optimization problem

(5a)

(5b)

Observe that each summand in (4) is increasing in
and tends to zero as , therefore the bounding boxes
and in (5) ensure that the maximizer will always
exist. It is also well known that the objective in (5a)
is concave (see e.g., [20, Ch. 3]), but the cardinality constraints
on and are generally intractable [25]. Later in Section V,
we propose a convex relaxation approach for dealing with the
cardinality constraints in (5b).
It is worth noting that the above formulation is reminiscent of

the form of the ML estimator for the probit model [26]. There-
fore, our work in this paper can be seen as a natural robustifi-
cation of such models against outliers (grossly corrupted data
points) and/or datasets with a very large number of features per
product (necessitating feature selection to obtain meaningful es-
timates). Further, our approach is based on explicit structural
assumptions on the unknown parameters: We aim to quantify
how sparsity affects the best achievable performance, as well as
the performance of the proposed ML estimator.
The ML estimator is a plausible choice for many reasons,

primarily because of its appealing asymptotic properties. Be-
fore analyzing these properties however, we discuss two issues
related to the estimation problem posed in (3). First, we dis-
cuss conditions under which the model is identifiable, i.e., nec-
essary and sufficient conditions for the estimation problem to
be well-defined. Second, we explore the best achievable MSE
performance for the estimation of the model parameters, by de-
riving the CRLB.

III. IDENTIFIABILITY AND CRLB

A. Outlier-Free Model

To illustrate the main ideas, it is convenient to start with the
simplest case where one assumes that outliers are not present.
Such a simplification arises from the model in (3) by assuming



TSAKONAS et al.: SPARSE CONJOINT ANALYSIS 5707

that all auxiliary variables are equal to zero. In such a
case the choice-based CA model in matrix form becomes

(6)

where we have defined the vector of measurements
and the vector of the i.i.d Gaussian noise variables .
The matrix is a matrix whose
columns comprise the profile differences. Note that there are no
outliers in the model in (6), but only the cardinality constraint
on the partworth vector.
The model is said to be statistically identifiable if and only if

for the two corresponding random vectors and are
not observationally equivalent, i.e., the distribution of the data
at the true parameter is different than that at any other possible
parameter value. The function is one-to-one, therefore
it follows from the expression in (4) that it is necessary and suf-
ficient to have to claim identifi-
ability. We emphasize that, in contrast with the theory in linear
compressed sensing [27], exact recovery of is impossible in
our case for finite , because of the model non-linearity. The
notion of statistical identifiability is instead employed, which
requires that as the log-likelihood function associated
with (6) has a unique global maximum [26].
Therefore, if no sparsity constraints were assumed on , one

would need to impose the condition that should be full row
rank (which necessitates ) for the estimation problem
to be well-defined. Interestingly, when one utilizes the fact that
has restricted cardinality, one can replace the full row rank

condition by a milder condition. To express such a necessary
and sufficient condition in a convenient way, we follow ideas
and definitions similar to the ones in [27]. Similar to [27], for
the matrix we define the as the smallest integer
, such that there exist linearly dependent columns in .
Then, following the derivation in [27], a necessary and sufficient
condition can be expressed in terms of the and the
cardinality bound as

(7)

In other words, if (7) is true then any given vector obeying
the cardinality constraint in (6) will lead to a product
which is unique. Interestingly, the identifiability condition is
the same as if one was observing linear measurements directly,
without taking the sign.
We now compute the CRLB for the model in (6). The CRLB

is a lower bound on the variance of all unbiased estimators [28,
Ch. 3], and therefore serves in practice as a useful exploratory
tool. First of all, there is the Fischer Information Matrix (FIM)
[28, Ch. 3] for the unconstrained problem, i.e., the FIM for the
problem of estimating in (6) without making use of the de-
terministic prior cardinality constraint on . This matrix is the
expected value of the Hessian of the log-likelihood, where the
expectation is taken with respect to the measurement vector .
We denote the log-likelihood function for the model in (6) as

. Naturally, can be obtained from the expression in
(4) by setting . The FIM for the unconstrained problem
is defined as .

Given , the FIM for the unconstrained problem is

(8)

where is a positive diagonal matrix with elements

(9)

The derivation is straightforward but is included in the
Appendix for completeness. Inverting yields the uncon-
strained CRLB for point , a bound on MSE which holds for
all unbiased estimators [28].2 Note that will be singular if
is not full-row-rank, but we are interested in the constrained
CRLB, i.e., the CRLB for points for which we know that they
obey the cardinality constraint in (6). The claim is that for such
points the bound will be typically lower.
The CRLB for constrained parameter sets is a well-studied

topic, see, e.g., [16] and references therein. In essence, the con-
straint sets considered in [16] are sets of the form

where and are smooth func-
tions. It has been shown in [16] that smooth inequality con-
straints do not affect the CRLB; only active equality constraints
yield a CRLB which is lower than the unconstrained one. The
intuition behind this result is that active equality constraints re-
strict the unknown parameters into a lower dimensional man-
ifold of the parameter space, leading to much looser require-
ments about the bias gradient of the estimators applicable. For
example, when searching for unbiased estimators applicable to
a specific point , it suffices to consider estimators un-
biased along the feasible directions only [16]. The feasible di-
rections can be found at any point by approximating
locally the manifold by a tangent linear space, which in turn
can be described by finding a basis for the nullspace of the gra-
dient matrix associated with function . Using these definitions,
one can associate at each point a matrix whose range
space is the feasible subspace for . Once such description is
found the value of the constrained CRLB depends only on the
unconstrained FIM and the matrix of feasible directions eval-
uated at the point .
The results of [16] were extended to the case of a singular

unconstrained FIM in [17], [18], and later in [19], extensions
were made towards the case of non-smooth constraint sets (non-
differentiable functions and ) encompassing also cardinality
constraints. In particular, using the terminology of [19], the set
in (6) is locally balanced, meaning that it can be described

locally at every point by the span of a set of feasible
directions. In other words, one can again associate at every point
a matrix of feasible directions , albeit this cannot be found by
differentiation.
To introduce some notation, let denote that matrix

is symmetric positive semidefinite, and let symbol denote

2It is of course possible to make the discussion more general by allowing
estimators with a specified bias gradient (not necessarily equal to zero), but here
we concentrate on unbiased estimators for simplicity.



5708 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 22, NOVEMBER 15, 2013

the Moore-Penrose pseudoinverse. To state the CRLB for our
model in (6), we use the following lemma from [18], [19]:

Lemma 1: Let denote the range space of the matrix
of feasible directions . If the condition

(10)

holds, the covariance of any unbiased estimator for the point
satisfies . Conversely, if

the above condition does not hold, there is no unbiased finite-
variance estimator for .

All that is required now is to be able to specify at any point
the matrix of feasible directions. Let
denote the support set of , i.e., the set of indices

where the point is non-zero. Following the same arguments
as in [19] one may easily show the following:
• For points of maximal support, i.e., for points where

, a matrix of feasible directions
consists of the subset of columns of the identity matrix
corresponding to the set .

• For points of non-maximal support, i.e., for points where
, every direction of the identity matrix is a

feasible direction, therefore .
The CRLB results concerning the model in (6) are summarized
in the next theorem:

Theorem 1: Consider the estimation problem in (6) with
and assume that (7) holds. For a finite-variance un-

biased estimator to exist, the FIM for the uncostrained problem
must satisfy (10) whenever . Furthermore, the
covariance of any unbiased estimator for satisfies

(11)

Here, comprises the columns of corresponding to
.

The condition in (10) ensures the existence of the inverses in
(11), and note that it is automatically satisfiedwhen
and (7) holds. We observe here that the bounds in (11) are

either identical to the bounds that would have been obtained
had there been no constraints in the problem (this is the case
whenever has non-maximal support), or the bounds for
estimators with oracle performance, i.e., the best achievable
MSE obtained by estimators that have perfect knowledge of the
support set of the point to be estimated (whenever has max-
imal support). This has also been observed to be the case for the
simpler linear model considered in [19], but it is nice to see that
it carries over for the nonlinear model in (6).
Remark 1: The above identifiability and CRLB results are

also applicable when one has fewer measurements than part-
worths , which could be the case when is very large,
and/or choice-data collected from an individual are limited. In
this case, however, the condition in (10) cannot be satisfied
when , as matrix becomes rank-deficient, and

therefore maximal support in becomes critical to guarantee
meaningful estimation.

B. Outlier-Contaminated Model

It is convenient to work with the model in matrix form, which
in this general case becomes

(12)

This case is interesting because there are always more model
unknowns than measurements, so one expects sparsity to be the
key which makes the problem meaningful. Defining the con-
catenated matrix and following the reasoning
in the previous section, one may easily determine a sufficient
condition for identifiability of and expressed in terms of

and the cardinality bounds and as

(13)

The condition is not likely to be also necessary, in the sense
that the bound in (13) might actually be tighter than neces-
sary. To get a feel on how restrictive the condition in (13) is,
note that generating from a continuous distribution yields a

, almost surely. Thus, roughly speaking,
assuming that (note that in the regime that we are
focusing on, and ), one may have—when ma-
trix is designed analogously—almost half the measurements
contaminated with outliers while still retaining identifiability.
Regarding the CRLB, the main difference for the model

in (12) is that one always has more unknowns than measure-
ment equations, therefore the unconstrained FIM is expected
to be singular in this case. Indeed, it follows readily from
Section III-A that the unconstrained FIM is given by

(14)

where is a positive diagonal matrix with elements

(15)

which is singular because is a fat matrix by construction.
The results for the unbiased constrained CRLB are of similar

flavor to the previous ones given in Theorem 1.With a reasoning
similar to that of Section III-A we associate to each point
a feasible subspace spanned by

(16)

where and are produced by sampling the columns of the
identity matrices and corresponding to
and , respectively. We are primarily interested in the
CRLB for the estimation of the partworth vector, which can be
expressed conveniently as shown in the next theorem.

Theorem 2: Consider the estimation problem in (12) and
assume that (13) holds. For a finite variance unbiased estimator
to exist, the FIM for the unconstrained problem in (12) must
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satisfy the condition in (10) with matrix defined as in (16).
The CRLB on the MSE of any unbiased estimator for point
is given as follows

(17)

where is diagonal with if and
if . No finite-variance unbiased estimator exists

whenever .

Proof: Suppose first that and
. With and defined in (14) and (16) respectively, observe

that

(18)

and note that the product in (18) is non-singular because of
the identifiability condition in (13) and because . From
Lemma 1, the CRLB for the point is given by the inverse
of (18) multiplied by left and right with and respectively.
Note that we are interested in obtaining the upper left
block of , which can be expressed explicitly
using block-wise inversion on (18), yielding (after straightfor-
ward manipulations) the bound

(19)

Defining es-
sentially completes the proof. The cases where
and/or are proved by setting and/or

respectively, and noting that in case where
the product in (18) becomes singular.

IV. ML CONSISTENCY

Consider the estimation problem in (12) with unknown pa-
rameters . We now show that the ML estimator pro-
posed in (5) will be consistent for the vector of partworths, as-
suming that the number of outlier-contaminated measurements
increases sublinearly with . For the consistency proof, we as-
sume that are samples from an underlying probability
distribution and satisfy the identifiability condition in (13).
Define the set and consider the normalized

log-likelihood function

(20)

In (5) we enforce that . Assuming that ,
and that for any positive , as the law
of large numbers implies

(21)

where the expectation in (21) is taken with respect to and
and the symbol denotes convergence in probabilty. By the
well-known information inequality [28, pp. 211], has a
unique maximum at the true parameter , when this is identi-
fiable. Now, to claim consistency, i.e., to claim that con-
verges in probability to as , one also needs addi-
tional technical conditions to hold. These are typically required
to ensure that the limiting and maximization operations in (21)
and (5) can be interchanged. Sufficient conditions for the max-
imum of the limit to be the limit of the maximum are that (i) the
parameter space is compact and (ii) the normalized log-likeli-
hood converges uniformly in probability to as
[26].
The condition (i) follows immediately, since the parameter

space is closed and bounded. To prove (ii), note that
is continuous, therefore it suffices to prove the existence of a
bounding function for [26], i.e., a function
such that

(22)

The existence of such a function along with the con-
tinuity of implies that the normalized log-likelihood
converges uniformly in probability to as , by
the uniform law of large numbers [26]. To this end, note that
the derivative is convex
and tends to as and to zero as . Also,
observe that the set is a union of subspaces, therefore it
contains all points in the line segment between a given point
and the point . Hence, a mean value expansion of

around the point yields

where is some point in the line segment between
and the zero-point and is a suitable constant. Since any
point satisfies and we have that

(23)

Defining the right hand side of (23) as proves the de-
sired bounding condition in (22).
Note that there are isolated cases where the ML estimator

may still fail to be consistent due to, for example, insufficient
randomness in the data. An interesting such case is when
and . The ML estimator cannot be consistent in this
case and this is evident already from the CRLB: In fact, one
can observe that there is no finite variance unbiased estimator
for the vector of partworths when and . This is
since is zero for all , and hence in this
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noiseless case the FIM becomes singular. Indeed, one can make
use of the following well known bounds on

and

(24)

to derive that (assuming that without loss of gener-
ality)

(25)

The intuition behind this noiseless case is interrelated to identi-
fiability: if there is a vector consistent with all observations,
any vector with will be consistent with the observa-
tions as well. Therefore, in the noiseless case there will be ambi-
guities regarding the magnitude of the true partworth vector, not
resolvable by any algorithm not utilizing additional magnitude
information. This is consistent with the results of [30], in which
the authors provide additional theory and bounds regarding the
reconstruction error of the vector in this noiseless case.

V. RELAXED ML ESTIMATOR

In principle, the ML estimation problem in (5) can be solved
exactly by enumerating all possible sparsity patterns for ,
and for each sparsity pattern solving a convex optimization
problem. Unfortunately however, this direct enumeration ap-
proach is often computationally intractable. Instead, one may
formulate a tractable approximation to (5) by replacing the
cardinality constraints in (5b) with convex -norm constraints.
This is motivated since the -norm is the tightest convex
relaxation of the cardinality function [20]. Such a replacement
yields the convex optimization problem

(26a)

(26b)

which can be solved efficiently, using, e.g., modern interior
point methods [20]. The box-constraints can also be dropped
when moving from (5) to (26), since the relaxed ML program
(26) always has a maximizer. Further, a more compact way of
expressing the relaxed ML estimator is

(27)

since (26) and (27) can be shown to be equivalent for a suitable
choice of the regularization parameters and . These con-
trol the trade-off between the value of and the number
of non-zero elements of and respectively.

Remark 2: The minimizer of may be viewed as
a maximum a-posteriori probability (MAP) estimate of and

, under the assumption that both and are random with a
Laplacian prior and and are jointly independent. MAP
estimation is very commonly used in statistics [28].

The rest of the section is devoted to briefly discussing the
choice of the regularization parameters and in practice.
These parameters are most often tuned in a heuristic fashion:
One starts from a suitable initial point and iterates until
the desired sparsity/fit trade-off is achieved. Some assistance
may be drawn from the following proposition.

Proposition 1: The point is optimal for
problem (27) if and only if and

, where and de-
note the gradients of with respect to and
respectively, evaluated at .

The proof follows directly from subdifferential calculus
and is omitted for brevity. Therefore, for

and , the min-
imization in (27) yields the sparsest possible pair ,
the zero vector. A reasonable heuristic approach to tune the
parameters is to initialize by choosing and

, and adjust to achieve the desired sparsity/fit
trade-off. Devising systematic methods on how to choose the
penalty parameters is an important topic on its own which
deserves further investigation.

VI. DISTRIBUTED CHOICE-BASED CA

Although the relaxed ML formulation in (27) is a convex op-
timization problem in standard form (and therefore solvable by
polynomial time algorithms), it is often of interest to solve it in
a distributed fashion. This is because in applications of interest,
data are often stored (or collected) in a distributed manner,
simply because individuals are not collocated, or due to limited
storage, complexity, or even confidentiality constraints. Even if
data are centrally available, often the number of
observed samples is extremely large, and standard interior point
methods cannot handle efficiently the optimization in (27).
Interestingly, the structure of (27) lends itself naturally to

distributed implementation via the alternating-direction method
of multipliers (ADMM), an iterative Lagrangian method espe-
cially well-suited for parallel processing [21]. ADMM blends
the benefits of dual decomposition and augmented Lagrangian
methods. Essentially, the name derives from the fact that the al-
gorithm alternates between optimizing different variables in the
augmented Lagrangian function.
If we assume that the observed data are partitioned into

blocks , then the goal is to split the objective function
of (27) into terms, and let each term to be handled by its indi-
vidual processing unit (such as a thread or processor). To ensure
the scalability properties of the algorithm, it is convenient to de-
fine the (convex) function as

(28)
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Introducing local auxiliary variable vectors and the
global variable , one can equivalentlywrite problem (27)
in its consensus form [21]

(29a)

(29b)

Problem (29) is called the global consensus problem, owing to
the consensus constraint [in (29b)] which enforces all the local
variables to be equal. The optimization problem in (29) can
be solved by applying the generic global variable consensus
ADMM algorithm described in [21, Ch. 7]. The derivation of
the distributed algorithm follows easily from the theory in [21,
Ch. 7]; therefore, here we only present and explain the basic
steps of the distributed algorithm. Upon defining the dual vari-
ables and a fixed parameter (often called the
penalty parameter), each iteration of the algorithm comprises
the following three main updates ( below denotes the iteration
index):

(30a)

(30b)

(30c)

The step in (30a) can be carried out in parallel for each
data block. The second step requires gathering the vectors

and to form their averages, which are
denoted as and , respectively. Note that the objective
in (30b) is fully separable in the global variable , therefore the
minimization can be carried out component-wise. In this case,
a scalar -update is

(31)

which admits a simple closed form solution. Explicitly,
the solution of (31) is , where
is the so-called soft thresholding operator defined as

[21]. Thus, each iteration
of the ADMM algorithm requires a gather and a broadcast
operation: after the optimization in (30a), each node needs
to communicate along with to the
centralizer. The centralizer then gathers these variables, forms
the necessary averages, updates the global variable ,
and broadcasts this updated global variable to the nodes. Note
that the algorithm is scalable with respect to , because outlier
processing is strictly restricted to the individual nodes—out-
lier variables need not be shared for convergence. Overall,
observe that the iterations produce an algorithm which is not
only distributed, but also decentralized: A node does not need
access to the individual data of another—only the consensus
variable is needed to be shared for convergence. Such
decentralized solutions might be preferable from centralized
ones for many reasons, even for modestly sized datasets (for
example, due to the confidentiality requirements).

Following a random initialization, the iterations in (30) are
guaranteed to converge to an optimal point for (29) as .
In practice, although ADMM can be very slow to converge to
high accuracy, it usually converges to modest accuracy within
a few tens of iterations [21]. Thankfully, our simulation exam-
ples indicate that modest accuracy is sufficient in this context,
motivating the practical use of this algorithm.

VII. NUMERICAL RESULTS

A. Estimation Performance Compared to the CRLB

1) Outlier-Free Measurements: In this part, we explore the
MSE performance of two different ML estimator (MLE) vari-
ants, in the case where outliers are not present in the data. Profile
differences were generated as i.i.d Gaussian vectors drawn
from , each comprising elements. The unknown
vector was generated (sparse) i.i.d. Gaussian with
non-zero elements drawn from . The MSE of both vari-
ants was evaluated using Monte Carlo trials. For
each trial, binary data were generated according to the model
in (6). The additive noise in the responses was assumed i.i.d.
drawn from . The particular MLE variants chosen here
are a sparsity-agnostic ML estimator (MLE-SAG), which
assumes that and ignores sparsity on , and a spar-
sity-aware MLE (MLE-SAW) which assumes that and
also knows that is NZ-sparse. To implement the MLE-SAW,
instead of solving (5) directly by setting and enumerating
all possible sparsity patterns for , we obtain the estimate for
the partworth vector through relaxation. In particular, we first (i)
solve the problem in (27) with to obtain a plausible spar-
sity pattern for , and then (ii) we re-solve the problem having
the sparsity pattern in fixed. For carrying out (i) we choose

, where , and retain the
NZ largest elements as a plausible non-zero pattern.
The (Root)-MSE results are depicted in Fig. 1, where two ad-

ditional CRLB curves are plotted as functions of the number of
samples . CRLB-PS is the CRLB of any unbiased estimator
utilizing the knowledge that is NZ-sparse, while CRLB-NPS
is the CRLB of any unbiased estimator not utilizing the infor-
mation that is NZ-sparse. Observe the difference in the best
achievable error performance, to get a feel on how sparsity in

can affect the expected estimation accuracy. One expects
that the effect of the prior information regarding partworth spar-
sity on the best achievableMSE performance will diminish as
grows, and that the two CRLB curves will meet at some point,
but we see that the rate of which this happens can actually be
rather slow. Both estimators (and MLE-SAW in particular) op-
erate close to their respective CRLBs, which is intuitively sat-
isfying. The price paid by the estimator which does not account
for sparsity in the pathworth vector is evident from the figure.
2) Outlier-Contaminated Measurements: Next, the case

where outliers are also present in the responses is examined.
In this experiment we consider an outlier percentage of 1%
[outliers correspond to (uniform at random) sign changes].
Other than the outlier addition in the responses, we use the
exact same setup as in the outlier-free case, to evaluate the MSE
performance of our sparsity-aware ML formulation (MLE-OD)
in (27) against the CRLB, and also the performance of the
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Fig. 1. RMSE comparison of the different MLE variants against their respec-
tive CRLBs for different sample sizes . The MLE which accounts for part-
worth sparsity was implemented using the two-step procedure described in the
text.

SVM partworth estimator proposed in [11] (CA SVM), as this
is another related method which deals explicitly with outliers.
While both estimators know exactly the degree of outlier and
partworth sparsity, for the SVM estimator of [11] we assume in
addition exact knowledge of the outlier support, i.e., we provide
the SVM with perfect knowledge of the outlying data points in
every trial (thus eliminating the need to tune the regularization
parameter for the SVM as far as outliers are concerned). To
account for the sparsity in , the -norm regularized coun-
terpart of the SVM of [11] was used (see in particular ([11],
(6)) and ensuing discussion). The regularization parameter
for was tuned in every trial using a five point equispaced
grid so as to yield the closest to NZ-sparsity level
in the estimate . Upon obtaining a plausible sparsity pattern
for , we re-solve the SVM problem having the sparsity
pattern fixed. On the other hand, MLE-OD was implemented
by first (i) solving (27) using and

to obtain a plausible sparsity pattern
for (by retaining the NZ and largest elements
in and as non-zeros, respectively), and re-solving the
problem having the sparsity pattern in fixed.
The Root-MSE results are plotted in Fig. 2, as a function of

the number of measurements. Observe that MLE-OD, which
makes full use of the model where data are generated from,
operates closer to the CRLB than CA SVM. The outlier-detec-
tion performance of the method is also reported in the figure
text, measuring the average percentage of detected outliers (total
number of outliers detected divided by the total number of out-
liers present) for different . As it turns out, for this set of trials
the method seems to exhibit consistently an outlier-detection
performance of at least 93%. The method has outlier-misses,
but these missed outliers seem to be relatively harmless to the
estimation acuracy, as implied by the RMSE performance in
Fig. 2. Note that CA SVM (provided with perfect outlier knowl-
edge) identified the correct support of the partworth vector with

Fig. 2. RMSE comparison of the MLE versus the SVM estimator from [11]
and the CRLB for different number of samples , when outliers are present
in the data [outlier percentage 1%]. Both the MLE and the SVM were im-
plemented using the two-step procedure described in the text. Mean outlier
efficiency of MLE-OD was found 99.2%, 95.7%, 96.3%, 93.7%, 94.2% for

samples, respectively.

an accuracy of 100%—still however, we see from Fig. 2 that
its performance is limited by the model mismatch. The perfor-
mance of an outlier-agnostic MLE variant (MLE-NOD)—an
MLE variant which ignores the presence of outlying data points
but still accounts for sparsity in —is also included. Observe
how important the log-likelihood robustification can be in prac-
tice; the outlier-agnostic MLE essentially breaks down even
from few badly corrupted data points.

B. Additional Comparisons With Other SVM Variants

In this section we compare our distributed implementation
in (30) against a particular SVM variant inspired by [8]. The
loss function associated with this variant is the so-called hinge
loss, which yields the tightest convex relaxation of the classi-
fier that attempts to minimize the number of misclassifications.
The hinge loss is inherently robust against sparse outliers [8],
and this is the reason why the comparison with this variant is
also important. We use both synthetic and real data coming from
a conjoint choice experiment for coffee makers. In the com-
parisons we always include the SVM variant proposed in [11],
whose performance has been shown to be very competitive (and
even superior) to that of [8].
1) Synthetic Data: The metric chosen for the comparison

here is the Normalized Mean Squared Error (NMSE) between
the estimated and “true” partworths, i.e., the MSE after part-
worths have been normalized in ( -norm) magnitude. Normal-
ized metrics are useful in some CA studies, especially when data
are limited; similar metrics were also adopted in [8], [11]. The
performance of the three methods was estimated using
Monte Carlo trials. For each trial, product profiles were gen-

erated as i.i.d Gaussian vectors, each comprising at-
tributes/features. For each trial we constructed choice
questions, by constructing vector differences randomly among
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the generated profiles. We considered two different settings: (i)
one where all choice questions were used for the
purpose of estimation, and (ii) a reduced-size (questionnaire)
setting, where 50 choice questions were randomly drawn from
this complete set of 500. Choice data were generated according
to model (3). We experimented using two different outlier per-
centages in the responses, 4% and 10% (outliers correspond to
sign change in ). The unknown partworth vector was assumed
sparse ( non-zero entries) i.i.d. Gaussian.
To account for sparsity in the partworths, the -norm regu-

larized counterparts of the SVMs proposed in [8] (abbreviated
here as -SVM) and [11] (abreviated here as CA SVM) were
used. For our distributed ML estimator we assumed
clusters of data of equal size, and a penalty parameter .
For the ADMM, variables and were always initial-
ized from zero. For the purpose of illustration, we demonstrate
in Fig. 3 the objective suboptimality [the distance from the op-
timal value of (27)] of the distributed algorithm versus iterations
for different values of penalty parameter . This is for a typical
problem instance with 50 choice questions, and 4%
outliers, where one can see that the algorithm converges in suf-
ficient accuracy (on the order of in at most 60–70 itera-
tions, depending on the value of the penalty parameter . In this
particular example one observes better convergence behavior
for , but this in general depends on the particular data in-
stance generated. We assume that the degree of sparsity in both
and is known by all estimators, allowing to tune the param-

eters in every trial, using a grid and picking the values that yield
sparsity levels closer to those known by the estimators. Propo-
sition 1 was used to construct a grid for the MLE, with points
equally spaced within the box (10 values
in each dimension). For the CA SVM 10 equispaced points for
each one of the two parameters were used (from 1 to 10 for each
parameter). For -SVM, 10 equispaced points (from 1 to 10)
were used for its single partworth sparsity parameter. For every
method, upon obtaining the best sparsity pattern for , the
problem was re-solved using an interior point method, having
the sparsity pattern fixed.
The results of the comparison are reported in Table I. Note

that these are just reference illustrations: the performance of
every method considered can perhaps be further improved by
allowing more careful tuning, using denser grids and/or per-
haps manual work. It is however evident from the trials that the
methods which explicitly account for outliers in the responses
perform better than those who do not, and that they exhibit
highly competitive performance for all practical purposes, as
far as NMSE is concerned. The ML estimator is slightly supe-
rior, stemming from better use of the statistical model used for
data generation. The -SVM appears to be consistently infe-
rior than the other two methods, although its performance in the
reduced-sized questionnaire with a small percentage of outliers
is competitive as well.
2) Real Data: In a similar comparison, we now use a real

dataset where consumer responses might violate our modeling
assumptions. We briefly describe the general setup; all details
can be found in [24, Ch. 13.6].
Hypothetical coffee makers were defined using the following

five attributes:

Fig. 3. Objective suboptimality of distributed MLE in (30) versus iteration for
a typical sample run with , 50 choice questions and 4% outliers, for
different values of penalty parameter .

TABLE I
NMSE COMPARISON OF THE THREE METHODS: -SVM, CA SVM FROM
[11], AND THE PROPOSED METHOD (30). THE METHOD THAT YIELDS LOWER

NMSE IS MARKED WITH BOLD

— [Brand] brand-name (Phillips, Braun, Moulinex)
— [Capacity] number of cups (6, 10, 15)
— [Price] price in Dutch Guilders f: (39, 69, 99)
— [Thermos] presence of a thermos flask (yes, no)
— [Filter] presence of a special filter (yes, no)

A total of sixteen profiles were constructed from combinations
of the levels of these attributes using an incomplete design [24].
These sixteen profiles are represented mathematically as vec-
tors in (with three binary entries describing the brand of the
product). In the choice experiment, respondents were asked to
make choices out of sets of three profiles, each set containing
the same base alternative [24]. Therefore, each choice expresses
two strict preferences between different coffee makers. In total,
185 respondents were recruited in the experiment and each one
provided data for 16 choices. Links for the actual dataset used
in this part can be found in [24].
For all three estimators, our metric in this case was the pre-

dictive performance, or the “hit-rate” of each method, which we
assessed by reserving the last out of the 16 choices for each indi-
vidual and testing how often the estimated utility functions pre-
dict the correct winning product. A different partworth vector
was assumed for each individual, which was estimated based on
his/her choices alone. The parameters for the MLE
were tuned using a grid in each dimension (four equispaced
points for , five points for , and five points
for , and picking the values for which the predictive
performance was maximized. This performance was assessed
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from the (first fifteen) choices using the leave-one-out error ap-
proach of [8]. The choice of the parameters for the SVMs was
carried out in a similar fashion, using the same grids as above
for each associated parameter.
The observed classification performance was found very

competitive for the MLE and CA SVM, % for the
MLE (176/185) and % for the CA SVM (174/185). The
-SVM resulted in lower classification accuracy %

(171/185), suggesting that careful outlier modeling can have
considerable implications in predictions as well.

VIII. CONCLUSION & FUTURE WORK

The paper proposes a new method for choice-based CA.
The proposed framework allows for exploring choice-based
CA through the scope of sparse estimation, giving insight into
identifiability conditions and Cramér-Rao bounds which may
serve as useful design tools. For the estimation of the model
parameters, the proposed ML estimator leads to a formulation
which can efficiently handle large scale datasets through a
simple distributed implementation, which seems to perform
very well in practice. There is a number of interesting topics
arising as future work, including a theoretical analysis of the
ML performance in finite sample sizes. Note that our CRLB
results indicate that stable recovery of partworths (with a
recovery error in the order of the standard errors) is indeed pos-
sible for finite , despite the model non-linearity. Therefore, a
theoretical performance analysis of the ML estimator for finite
could yield interesting results, under perhaps additional

conditions. Exploring conditions under which the estimates
obtained by (27) and (5) coincide is also an interesting research
topic, which we do not touch upon in this paper.

APPENDIX

A. Derivation of the Unconstrained CRLB for (6)

The gradient and hessian of are respectively (assuming
that for simplicity)

Upon defining the matrix , observe
that the hessian of can be written as ,
where is a diagonal matrix with elements

(32)

The probability density function for the is

(33)

Note that the so-called regularity condition [28] on the log-like-
lihood is satisfied because

(34)

therefore the CRLB for the unconstrained problem holds. The
(unconstrained) FIM is the expected value of the with
respect to , hence, it suffices to compute the expected
value of each entry of the diagonal matrix . We get

(35)

and thereby proving the expression given in (8).
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