
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 1, JANUARY 1, 2014 211

Non-Negative Matrix Factorization Revisited:
Uniqueness and Algorithm for Symmetric

Decomposition
Kejun Huang, Student Member, IEEE, Nicholas D. Sidiropoulos, Fellow, IEEE, and Ananthram Swami, Fellow, IEEE

Abstract—Non-negative matrix factorization (NMF) has found
numerous applications, due to its ability to provide interpretable
decompositions. Perhaps surprisingly, existing results regarding its
uniqueness properties are rather limited, and there is much room
for improvement in terms of algorithms as well. Uniqueness as-
pects of NMF are revisited here from a geometrical point of view.
Both symmetric and asymmetric NMF are considered, the former
being tantamount to element-wise non-negative square-root factor-
ization of positive semidefinite matrices. New uniqueness results
are derived, e.g., it is shown that a sufficient condition for unique-
ness is that the conic hull of the latent factors is a superset of a
particular second-order cone. Checking this condition is shown to
be NP-complete; yet this and other results offer insights on the role
of latent sparsity in this context. On the computational side, a new
algorithm for symmetric NMF is proposed, which is very different
from existing ones. It alternates between Procrustes rotation and
projection onto the non-negative orthant to find a non-negative
matrix close to the span of the dominant subspace. Simulation re-
sults show promising performance with respect to the state-of-art.
Finally, the new algorithm is applied to a clustering problem for
co-authorship data, yielding meaningful and interpretable results.

Index Terms—Nonnegative matrix factorization (NMF), sym-
metric NMF, uniqueness, sparsity, Procrustes rotation.

I. INTRODUCTION

A. Background and Motivation

N ON-NEGATIVE Matrix Factorization (NMF) is the
problem of (approximately) factoring , where

is is , with is
(inequalities interpreted element-wise). The

smallest possible for which such decomposition is possible
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is the non-negative rank of . Due to the non-negativity con-
straints, the non-negative rank can be higher than the usual
matrix rank over the real field.
NMF has been studied for more than 30 years [2]–[4],

originally known as non-negative rank factorization or positive
matrix factorization. Non-negative matrices have many inter-
esting properties and a long history in science and engineering
[5]. Lee and Seung [6] popularized NMF when they discovered
that it tends to decompose images of visual objects in mean-
ingful parts—i.e., NMF “is able to learn the parts of objects”.
NMF quickly found numerous other applications in diverse
disciplines—see [7] and references therein. Unfortunately,
it was recently shown that (asymmetric) NMF is NP-hard
[8]; yet sustained interest in NMF has produced many good
algorithms, including optimization-based methods [9]–[13] and
geometry-based methods [14]–[18].
NMF has been such a success story across disciplines be-

cause non-negativity is a valid constraint in so many applica-
tions, andNMF often provides meaningful/interpretable results,
and sometimes even ‘correct’ results—that is, it yields the true
latent factors . As an example, matrix S could represent
an keyword by document incidence matrix, wherein entry

is the number of occurences of keyword in document .
The -dimensional reduction can be interpreted as
follows. The columns of represent document prototypes
as consisting of keywords in specific proportions. The columns
of H represent each document as a weighted combination of
these prototypes. In a clustering scenario, the columns ofW are
the cluster centroids, and the columns ofH are the (soft) cluster
membership indicators. A specific application of clustering via
NMF is [19], where NMF was applied to an article by journal
matrix, resulting in a soft clustering of articles by topic. See also
Xu et al. [20] for an application of NMF to document clustering.
Another interpretation of is that the -th row of is a
reduced representation of the -th ‘keyword’ or ‘concept’
in latent -dimensional space, and likewise the -th column of
is the reduced representation of the -th document in

the same latent space; is the inner product of these two la-
tent representations, measuring ‘relevance’.
Uniqueness of NMF is tantamount to the question of whether

or not these true latent factors are the only interpretation of the
data, or alternative ones exist. Unfortunately, NMF is in general
non-unique. One can inquire about existence and uniqueness of
NMF of for a given without any other side information; or
about uniqueness of a particular factorization , i.e.,
given a particular pair of factors as side information.

1053-587X © 2013 IEEE
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Additional constraints can be added to help make the factoriza-
tion unique, e.g., sparsity [21] or minimum determinant [22].
Thomas [23] and Chen [3] first gave different geometric inter-
pretations of NMF, and stated the uniqueness problem in a geo-
metric way. Donoho et al. [24] and Laurberg et al. [25] later pro-
vided uniqueness conditions by exploiting the aforementioned
geometric viewpoint. The sufficient conditions they provided,
however, require one of the two matrix factors to contain a
scaled identity matrix—a particularly strict condition. Mous-
saoui et al. [26] and Laurberg et al. [25] also provided neces-
sary conditions. We will review these conditions in Section III,
and discuss their relationship with the uniqueness conditions we
provide herein.
The symmetric version of NMF ( with having

non-negative elements) is relatively less studied. Notice that
in symmetric NMF is a square-root factor of the symmetric pos-
itive semi-definite matrix that is also element-wise non-neg-
ative. Thus symmetric NMF is an element-wise non-negative
square-root factorization of positive semidefinite matrices. In
the mathematical programming field, such matrices are called
completely positive matrices [27]. It has recently been shown
that checking whether a positive semidefinite matrix is com-
pletely positive is also NP-hard [28]. Algorithmic work on sym-
metric NMF is very limited relative to asymmetric NMF. The
state-of-art in terms of symmetric NMF algorithms can be found
in He et al. [29], which proposed three algorithms—the multi-
plicative update, -SNMF and -SNMF, and showed that the
latter two outperform other alternatives. Other papers on sym-
metric NMF include Catral et al. [30] who studied the sym-
metric NMF problem for that is not necessarily positive semi-
definite, and conditions under which asymmetric NMF yields a
symmetric approximation; and Ding et al. [31], who developed
interesting links between symmetric NMF and ‘soft’ k-means
clustering.
The contributions of the paper are as follows. Adopting a

geometric viewpoint similar to [3], [23]–[25], but taking a dif-
ferent approach, new results and perspectives on uniqueness
of NMF are derived here. A subtlety of NMF is that proper-
ties that hold in the asymmetric case do not necessarily hold
in the symmetric case. Our novel necessary conditions and suf-
ficient conditions for uniqueness hold for both the symmetric
and asymmetric cases. The necessary conditions in Theorem
3 have a nice interpretation in terms of the support sets (the
set of cells with positive weights) of the columns (rows) of

. In terms of the document clustering example discussed
earlier, the interpretation is that two different prototype docu-
ments cannot be composed of the same set of keywords (even
if in different proportions). In other words, every pair of pro-
totype documents must differ in the inclusion of at least one
keyword. The necessary conditions in Theorem 3 are easy to
verify. We also establish a new sufficient condition for unique-
ness (Theorem 4): we show that the conic hulls of the latent fac-
tors (the and matrices) must be supersets of a particular
second-order cone. We demonstrate via examples that our suffi-
cient conditions are broader than those currently known. How-
ever, checking the sufficient condition is proved to be NP-com-
plete. Corollary 2 provides a nice connection with sparsity of the
original matrix and the latent factors. For the symmetric case,

we develop a novel algorithm based on an alternating approach
and the use of Procrustes projections. The complexity of each
iteration is in contrast with in the SNMF ap-
proaches of [29], which represent the state-of-the-art for sym-
metric NMF. Recall that , and in typical cases , so
that the proposed algorithms are computationally cheap. Simu-
lations on synthetic data indicate that the proposed algorithms
converge significantly faster than SNMF. We also applied our
symmetric NMF algorithm to a clustering problem for co-au-
thorship data, yielding meaningful and interpretable results.
A conference summary of part of our results has been pre-

sented at ICASSP 2013 [1]. Relative to [1], this journal version
includes proofs, additional analytical and algorithmic results,
and further experiments.

B. Notation

A scalar is denoted by an italic letter, e.g., or . A column
vector is denoted by a bold lowercase letter, e.g., . The -th
entry of is . A matrix is denoted by a bold uppercase letter,
e.g., , where is its -th entry, is the -th row of
, and is the -th column of . A set is denoted by a

calligraphic uppercase letter, e.g., .
is the positive orthant in . are the -th stan-

dard coordinate vector, all ones vector, and the zero vector, re-
spectively. By using we can also represent the -th row and
-th column of as and .
Inequality marks represent element-wise inequalities,

whether applied to scalars, vectors or matrices. Symmetric
NMF is written as , where is symmetric
positive semi-definite, is . We focus on the low-rank
case, so . Without loss of generality, we assume
there is no all-zero column or row in any matrix. If this happens,
we can simply delete it (them) first.

II. CONVEX ANALYSIS PRELIMINARIES

Before we analyze the properties of NMF, we briefly review
some prerequisites from convex analysis; see [32], [33] for fur-
ther background.
Definition 1 (Polyhedral Cone): A polyhedral cone is a set

that is both a polyhedron and a cone.
There are two ways to describe a polyhedral cone. The first

is by taking the intersection of a number of half-spaces, which
takes the form

where each column of defines a half-space which contains
the origin at the boundary. Notice that the right hand side is in
order to make this set a cone. Assuming there are no redundant
constraints, the -th constraint satisfied as equality is called a
facet of .
The other way to describe a polyhedral cone is by taking the

conic hull of a number of vectors, i.e.,

where the columns of are the vectors we are taking. If a
column of cannot be represented by the conic combination
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(non-negative linear combination) of the rest of the columns,
then it is called an extreme ray of .
Given a polyhedral cone represented by the intersection of

half-spaces, an extreme ray of the cone would be a vector sat-
isfying all the inequality constraints, and furthermore, at least

linearly independent constraints are satisfied as equalities.
Similarly, given a polyhedral cone represented by the conic hull
of vectors, a facet of it is a hyperplane defined by at least
linearly independent extreme rays (and the origin), and the rest
of the extreme rays must be on one side of that hyperplane.
Definition 2 (Simplicial Cone): A simplicial cone is a

polyhedral cone such that all of its extreme rays are linearly
independent.
If is a simplicial cone,

then for every element , there is a unique corresponding
that indicates how to conically combine the extreme rays to

generate . For general polyhedral cones, this combination is in
most cases not unique.
Moreover, it is easy to change the representation of a sim-

plicial cone from halfspace-intersection to conic hull. For
example, if where is invertible, then is a
simplicial cone and . However, for gen-
eral polyhedral cones this switching between representations is
a hard problem [34].
Definition 3 (Dual Cone): The dual cone of a set , denoted

by , is defined as .
Some important properties of dual cones are as follows (cf.

Laurberg et al. [25]):
Property 1: .
For one column of the matrix , in the primal cone it defines

an extreme ray, while in the dual cone it defines a facet. There-
fore, there is a one-to-one correspondence between the extreme
rays of the primal polyhedral cone and facets of the dual poly-
hedral cone, and vice versa.
Property 2: If is invertible, then

.
From this property, it is easy to see that if is unitary, i.e.,

, then . In
other words, the conic hull of a unitary matrix is self dual.
Property 3: If and are convex cones, and , then

.
Here is an example of a cone and its dual cone, which will

be useful later. Donoho and Stodden also studied the following
cones in [24].
Example 1: Define the second-order cone in

(1)

Its dual cone is another second-order cone

(2)

The reason we are interested in and its dual cone is because
they have a very special relationship with the non-negative or-
thant : . Fig. 1 gives a graphical view of
and in . In fact, and its rotated versions are the

only simplicial cones that satisfy this, as stated in the following
lemma.

Fig. 1. A 2-D slice view of the relationship between in , looking
at the plane .

Lemma 1: If satisfies that , and
the columns of are scaled to have unit norm, then
1)
2)
Proof: See Appendix A.

III. UNIQUENESS OF NMF: KNOWN RESULTS

Recall that we are interested in the factorization
where the matrix and the matrix have
non-negative elements. For uniqueness analysis, we shall as-
sume that , and thus both and are full rank.
(Notice that if and are drawn from a jointly continuous
distribution and is in fact constructed by taking their product,
then almost surely.) Therefore, if

, then there exists a full rank matrix such that
and . A trivial choice of would be

a positively scaled permutation matrix; such ambiguity is un-
avoidable without side information.
Definition 4 (Uniqueness of Asymmetric NMF): The NMF of

is said to be (essentially) unique if implies
and , where is a diagonal

matrix with its diagonal entries positive, and is a permutation
matrix.
In the case of symmetric NMF, if ,

there exists a real orthonormal matrix such that
(to maintain symmetry). This removes the scaling

ambiguity.
Definition 5 (Uniqueness of Symmetric NMF): The sym-

metric NMF of is said to be (essentially) unique
if implies , where is a permutation
matrix.
Using the convex analysis fundamentals in Section II, the

uniqueness of NMF has been approached from two different
points of view, which are summarized next.

A. Donoho’s Analysis

The stepping stone in Donoho’s analysis is the following
lemma, which can be traced back to [3].
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Lemma 2: If , the NMF of the non-negative
matrix is unique if and only if there is a unique simplicial
cone with extreme rays satisfying

(3)

where is defined as

(4)

and is a matrix whose columns span .
Once we find a simplicial cone satisfying (3), the matrix
can be obtained by taking all the extreme rays of as its

columns. Such a cone search procedure is in essence equivalent
to the asymmetric NMF problem itself, therefore it does not ac-
tually tell us how to check uniqueness. Notice that ordering and
scaling information cannot be recovered, consistent with Defi-
nition 4. Donoho and Stodden’s sufficient condition for unique
NMF is the following.
Theorem 1 (Donoho et al. [24]): The NMF is

unique if the following conditions are satisfied.
• Separability: For each there exists

such that

• Generative Model: The set is partitioned
into groups , each containing exactly el-
ements (therefore ). For every and

, there exists an element such that

• Complete Factorial Sampling: For any
, there exists such that

B. Laurberg’s Analysis

Laurberg et al. [25] offered a different viewpoint on the
uniqueness of NMF, summarized in Lemma 3.
Lemma 3: If , the NMF is unique

if and only if the non-negative orthant is the only simplicial
cone with extreme rays that satisfies

.
Unlike Lemma 2, Lemma 3 is stated in terms of an existing

solution of NMF. Furthermore, it works in the inner dimension
rather than the column space of which is typically of much

higher dimension. In this paper, most of the new uniqueness
conditions will be proved using Lemma 3. This type if geometric
interpretation can be traced back to [23], but Laurberg et al.’s
statement is clearer to understand in this context. Laurberg et al.
also gave a sufficient condition for uniqueness of NMF. We use
the version Laurberg used in [35], which is easier to interpret.
Theorem 2 (Laurberg et al. [35]): The NMF is

unique if the following assumptions are satisfied.

• Sufficiently Spread: For each there is a
such that

• Strongly Boundary Close: Matrix satisfies the fol-
lowing conditions
1) For each there is an such
that

2) There exists a permutation matrix such that for all
there exists a set fulfilling:

for all ; and the matrix

...
. . .

...

is invertible.
Remark 1: Apparently, the reason Laurberg et al. started

with a compact and elegant necessary and sufficient condition
(Lemma 3), but then worked out a far stricter and seemingly
awkward sufficient condition is that Lemma 3 is very hard to
check, even though it assumes that a particular NMF is given.
In essence, it asks the following question: given a polyhedral
cone described as the intersection of half-spaces, and a finite
number of points contained in that polyhedral cone, can we find
a simplicial cone that is both a subset of the polyhedral cone
and also a superset of those points? As Vavasis [8] has shown,
this problem is NP-hard. The same applies to the necessary and
sufficient condition in Lemma 2.
There are no results on the uniqueness of symmetric NMF

so far, to the best of our knowledge. It is not obvious how to
apply Donoho’s approach to the symmetric case, since only the
columns of the data matrix are considered, thus symmetry is
completely ignored. Mimicking Laurberg’s analysis, however,
we can get a similar result to be used as a geometric criterion
for the uniqueness of symmetric NMF.
Lemma 4: If , the symmetric NMF

is unique if and only if the non-negative or-
thant is the only self-dual simplicial cone with extreme
rays that satisfies .

Proof: ByDefinition 5, if the symmetric NMF
is essentially unique, then for any unitary matrix
implies that is a permutation matrix. Now implies

, and being a permuta-
tion matrix means . Thus, this is simply a geo-
metric way to describe Definition 5.

IV. NEW RESULTS: UNIQUENESS OF SYMMETRIC AND
ASYMMETRIC NMF

We are now ready to present our new conditions on the
uniqueness of symmetric and asymmetric NMF. We start with
a necessary condition.
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Fig. 2. A graphical view of Example 2 plotted in the same manner as Fig. 1.
The triangle drawn with solid line is ; the inner and outer circles are
and respectively; the shaded area is , and the polygon drawn
with the dashed line is . When , the condition stated in
Theorem 4 is satisfied, so the symmetric NMF is unique; when

, so the symmetric NMF is not unique; when ,
although , all the extreme rays of lie on the
boundary of . The dotted triangle in Fig. 2(b) and (c) shows another self-dual
simplicial cone satisfying . (a) . (b) .
(c) .

Theorem 3 (Necessary Condition): Define

If the asymmetric NMF is unique, then there do not
exist such that , or

. The condition must also hold in the symmetric case,
i.e., when .

Proof: See Appendix B. In the case of asymmetric NMF
the result can be found in [26] (the statement is not completely
clear, but the essence is there). Gillis ([36], Remark 2) later pre-
sented the same result clearly. What is necessary for uniqueness
of asymmetric NMF, however, is not automatically necessary
for uniqueness of symmetric NMF. In Appendix B we prove
that the result holds for symmetric NMF as well.
Corollary 1: If the asymmetric NMF or symmetric

NMF is unique, then each column of (and row
of ) contains at least one element that is equal to 0.

Proof: If the -th column of does not have 0 element,
then clearly , and , which
violates the condition given in Theorem 3; and likewise for the
rows of in the asymmetric case.
Using Donoho and Stodden’s analysis, the requirement that

every column of has a zero entry means that every extreme
ray of is on the boundary of , and every row of
having a zero entry means there are columns of on every facet
of . This condition is intuitive, because otherwise we
can always perturb into a slightly bigger or smaller
cone that still satisfies , so that
NMF will not be unique according to Lemma 2.
We need the second-order cone defined in (1) fromExample

1 to help derive our sufficient condition.
Theorem 4 (Sufficient Condition): Define the second-order

cone

and let . If satisfies that
1)
2)

and the same for , then the asymmetric NMF is
unique. This condition is also sufficient in the symmetric case,
i.e., when .

Proof: See Appendix C.
The interpretation of the second part of the sufficient condi-

tion is the following. First of all, according to Property 3 of the
dual cones, is equivalent to ,
which means all the extreme rays of are contained
in . Per the proof of Theorem 4, ’s are the extreme rays of

, and they lie on the boundary of too. This state-
ment requires that all the other extreme rays of lie
in the interior of . An example shows how to use the suffi-
cient condition, and the importance of the second requirement
in order to achieve sufficiency.
Example 2 [25]: Consider the symmetric NMF

where

For , symmetric NMF is unique if and only if
. This is because if , the proposed sufficient condition

is satisfied, therefore the symmetric NMF is unique. If ,
define

One can check that is unitary and in this case, hence
symmetric NMF is not unique. Fig. 2 illustrates the relationship
between and for selected values of . Notice that
when , as is shown in Fig. 2(b), although
is satisfied, there are other extreme rays of that

lie on the boundary of and are orthogonal to each other. Thus,
it is still possible in this case to form a suitable simplicial cone
which satisfies the requirement given in Lemma 3.
Laurberg et al. [25] first gave this example and pointed out

that uniqueness depends on the value of in this case. How-
ever, the sufficient condition for uniqueness given in [25] fails
to demonstrate when uniqueness holds in this case, except for

; whereas our new sufficient condition in Theorem 4 is
able to identify the full interval where uniqueness holds.
Remark 2: Example 2 illustrates the usage of Theorem 4

to check the uniqueness of NMF in low-dimensional cases.
Unfortunately, as the dimension increases, it becomes very
hard to check the sufficient condition, since checking whether

is true is NP-complete. To see the NP-com-
pleteness of this problem, we can first intersect both
and with the hyperplane . Then it becomes checking
whether a ball is a subset of a polytope described as the convex
hull of points. Freund and Orlin [37] considered several set
containment problems and proved that the aforementioned one
is NP-complete.
From a computational complexity point of view, we started

from a criterion (Lemma 3) that is NP-hard to check, and
reached a sufficient condition that is NP-complete to check,
which does not seem like much progress. However, Theorem 4
treats and in a balanced fashion, unlike other sufficient
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conditions which are strict on one matrix factor, lenient on the
other. Furthermore, Theorem 4 gives implications about how
the latent factors look like if they indeed satisfy its sufficient
conditions, as shown next.
Corollary 2: If the condition given in Theorem 4 is satisfied

for the asymmetric NMF or the symmetric NMF
, then for all is an extreme ray

of . Thus, each column of (row of
) contains at least zero entries.
Proof: We have argued in the proof of Theorem 4 (cf.

Appendix C) that if the sufficient condition is satisfied, the ’s
are extreme rays of (and in the asym-
metric case). An extreme ray is the intersection of at least
independent facets of a polyhedral cone with dimension .
Therefore for , we have

and that at least of them are satisfied as equalities. There-
fore, each column of (row of ) contains at least zero
entries.
Corollary 2 builds a link between uniqueness and latent spar-

sity of NMF. It is observed in practice that if the true latent fac-
tors are sparse, NMF usually tends to recover the correct so-
lution, up to scaling and permutation. However, counter-exam-
ples do exist, e.g., Example 2 when . Now we
understand that the reason sparse latent factors usually lead to
unique NMF is because if the latent factors are sparse, it is more
likely that the sufficient condition given in Theorem 4 is satis-
fied. Using Donoho’s analysis, we also have the following result
if only the latent sparsity condition is met.
Proposition 1: If for any is an extreme

ray of both and , then there does not exist
another simplicial cone with extreme rays that satisfies
either or .

Proof: See Appendix D.
The result in Proposition 1 is not a strong statement, since set

containment is not a linear ordering. However, it does rule out
a lot of possibilities of finding another NMF, especially within
a local neighborhood of the current solution. We examine the
ability to reconstruct the sparse latent factors by NMF, under
the constraint that each column of (row of ) contains at
least zeros, both in the symmetric and asymmetric case,
in the following example.
Example 3: In this example we randomly generate a 200 30

non-negative matrix , with a certain proportion of randomly
selected entries set to zero, and the non-zero entries drawn from
an i.i.d. exponential distribution. The columns of are ordered
so that

Then we form the low rank complete positive matrix
. Symmetric NMF is applied to .

The columns of are then ordered analogously, to fix the
permutation ambiguity. For density (the proportion of non-zero
entries in ) varying from 0.5 to 0.8, in which case the matrix

TABLE I
MAXIMUM RECONSTRUCTION ERROR FOR SYMMETRIC NMF

TABLE II
MAXIMUM RECONSTRUCTION ERROR FOR ASYMMETRIC NMF

we randomly generated satisfies that ’s are extreme rays
of with high probability, this procedure is repeated
100 times, and the maximum reconstruction error
is given in Table I.
This indicates that over the 400 Monte-Carlo tests we tried,

symmetric NMF successfully recovered the latent factors in
each and every case. The algorithm we used for symmetric
NMF is the one proposed later in this paper, see Section V.
Example 4: In this example we randomly generate a 200 30

non-negative matrix and a 30 250 non-negative matrix ,
with a certain proportion of randomly selected entries set to
zero, and the non-zero entries drawn from an i.i.d. exponential
distribution. The columns of are scaled to sum up to 1

and the rows of are ordered such that

Then we form the low rank non-negative matrix .
Asymmetric NMF is applied to . The columns of

are scaled to sum up to 1, with the scaling absorbed into
the rows of , in order to avoid the scaling ambiguity; and the
rows of are then re-ordered, with the same re-ordering ap-
plied to the columns of , to fix the permutation ambiguity.
For density varying from 0.5 to 0.8, in which case the matrices
and we randomly generated satisfy that ’s are extreme

rays of and with high probability, this
procedure is repeated 100 times, and the maximum reconstruc-
tion errors for and are given in Table II.
Notice that the zero elements are randomly located, therefore

neither Donoho’s separability assumption [24] nor Laurberg’s
sufficiently spread assumption [25] are satisfied. However, as
can be observed, in all cases the asymmetric NMF is able to
reconstruct the true latent factors. The algorithm used here was
Fast-HALS cf. [13, Algorithm 2].
The results given in the above examples are reassuring to a

certain degree, in light of the fact that the true sufficient condi-
tion is NP-complete to check. They also showcase how strict the
previously suggested sufficient conditions [24], [25] are, since
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Fig. 3. The set of non-negative matrix pairs that: Unique NMF:
gives an essentially unique NMF T1: satisfies the sufficient condition given in
Theorem 1. T2: satisfies the sufficient condition given in Theorem 2. T4: satis-
fies the sufficient condition given in Theorem 4.

in those examples the columns of are highly unlikely to con-
tain all scaled versions of ’s.
Fig. 3 shows graphically the relationship between some of the

uniqueness results. One thing to notice is that both Donoho et
al. and Laurberg et al. gave asymmetric conditions—their con-
dition on is much stricter than their condition on , while
our new result poses the same conditions on both and .
As a result, their weaker conditions on are loose enough to
preclude containment of Theorem 1, Theorem 2 in Theorem 4.

V. SYMMETRIC NMF: ALGORITHM

A. Formulation

Suppose there exists an exact symmetric NMF of with
components. Then is symmetric positive semi-defi-

nite; consider its reduced eigen-decomposition

where is orthogonal and is diagonal. Define

Since

where both and are , there exists a unitary matrix
such that

Therefore, after obtaining via eigen-analysis, we can formu-
late the recovery of as follows:

(5a)

(5b)

B. Method

The constraint is not convex with respect
to , suggesting that (5) is a hard problem.We propose updating

Fig. 4. Proposed algorithm for symmetric NMF.

and in an alternating fashion. The updating rule for is
extremely simple: since is non-negative, we simply set

(6)

When updating , the solution is given by the Procrustes pro-
jection [38], i.e.,

(7)

where and are unitary matrices given by the singular value
decomposition of

(8)

This simple algorithm is summarized in Fig. 4.
Proposition 2: The value of the objective function in (5a) is

monotonically non-increasing during iterations of the algorithm
given in Fig. 4, since each update step is conditionally optimal
for given or vice-versa. Furthermore, with a (possibly
very loose) upper bound on the elements of , every limit point
generated by the algorithm shown in Fig. 4 is a stationary point
of problem (5).

Proof: The set of unitary matrices is not convex, hence
well-known results on the limit point behavior of block coor-
dinate descent such as [39], [40] do not apply. In [41, The-
orem 3.1], however, it is shown that every limit point of block
coordinate descent is a stationary point if
1) The constraint set of each block is compact; and
2) Conditional updates are optimal, and the block that yields
the best improvement is chosen to be updated in each
iteration.

In our case, the constraint set for is the set of real unitary
matrices (i.e., the orthogonal group), which is compact [42, pp.
4]. The constraint set of is the non-negative orthant, which
is not bounded; but we can add a (very loose) bound on the
elements of to make it compact. Moreover, since we only use
two blocks, after updating one block, in the next step the other
block will give us a better (or at least no worse) improvement. In
other words, the update strategy proposed in [41] always yields
an alternating update in the case of only two blocks.
In terms of per-iteration complexity, the matrix multiplica-

tions and both require flops, whereas the
SVD performed on the relatively small-sized matrix

requires flops [43, pp. 254]. If we assume
, which is typically the case in practice, then the term

dominates, which results in a per-iteration complexity.
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Fig. 5. Convergence of the proposed algorithm vs. -SNMF and -SNMF [29] with and their modified versions [45] employing low rank
approximation (LRA): noiseless (top row) and noisy (bottom row). x-axis counts elapsed time.

The computation of dominant eigenvalues and eigenvectors
in the very first step entails complexity , but consid-
ering the fact that this is done only once, its cost is
amortized over many iterations of symmetric NMF.
The Karush-Kuhn-Tucker conditions [44] for problem (5) are

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

where and are Lagrange multipliers for the constraints
being element-wise non-negative and unitary, respec-

tively, and “ ” denotes the Hadamard product, i.e., element-wise
matrix multiplication. The iterates in Fig. 4 always satisfy (9c)
and (9f) by construction. Since (9b) is the only condition that
involves , we may simply solve (9b) to obtain a suitable

for any given . For the remaining
KKT conditions, we first eliminate and rewrite them as

(10a)

(10b)

The left hand side of (10b) can be used as the termination cri-
terion. One must notice that this quantity must be checked after
the -update, since it is automatically satisfied after the -up-
date.Moreover, since , we can also
check instead. Notice that

happens to be the orthogonality condition of the
least squares problem, cf. the cost function in (5). Checking

is preferable to checking successive dif-
ferences of the cost in (5), because it avoids early termination

during swamps—intervals during which the progress in terms
of the cost function is slow.
In practice, we may encounter cases where .

For , we are trying to find a good non-negative
low rank approximation of , and we can simply take the first
dominant eigen-components, then apply the same updating rules
afterwards. For , we need to modify the basic
algorithm; the modified version can be found in Appendix E.

C. Simulation

1) Synthetic Data: The matrix is generated by taking
, where is a non-negative matrix with certain

amount of zeros and the non-zero entries drawn from an i.i.d.
exponential distribution, and the elements of first drawn from
an i.i.d. Gaussian distribution, and then symmetrized by taking

. We take the size of to be 1000 150. The
tolerance we set to terminate the algorithm in Fig. 4 is , and
we let -SNMF and -SNMF to run the same amount of time
to compare their performances.
The convergence of a single run of our proposed algorithm

under various conditions is illustrated in Fig. 5 (in terms of time
used) and Fig. 6 (in terms of number of iterations used), com-
paring to -SNMF and -SNMF provided in [29] with

, since their experiments showed (and we verified) that this
value gives faster convergence, and the low-rank approximation
(LRA) version of these algorithms using the strategy provided
in [45], on the same . The cost employed in both -SNMF and
-SNMF is , which is different from (5a), but
we compare all of them using on the -axis
as common basis. Since our proposed algorithm uses eigen-de-
composition of the data matrix as a pre-processing step, we in-
clude the time it takes to compute this eigen-decomposition in
the timing reported on the -axis in Fig. 5, for fair comparison.
In Fig. 5, we show the convergence when is noiseless
in the top row, and with small noise (the entries of are first
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Fig. 6. Convergence of the proposed algorithm vs. -SNMF and -SNMF [29] with and their modified versions [45] employing low rank
approximation (LRA): noiseless (top row) and noisy (bottom row). x-axis counts number of iterations.

drawn from an i.i.d. Gaussian distribution with standard devia-
tion and then symmetrized) in the bottom row; and
the densities (proportion of non-zero entries) of the true latent
factor are (from left to right) 0.5, 0.7, 0.9, 1. In the noiseless
case, our proposed algorithm tends to converge to an exact de-
composition, whereas none of the SNMF variants is able to give
a good approximation within that amount of time, although at
the beginning they reduce the cost function faster. When small
noise is added, the proposed algorithm shows good robustness,
and again out-performs the two SNMF algorithms after some
point. Notice that given the noise power, the symmetrization
strategy, and the size of the matrix, the value of is ap-
proximately 150, and our proposed algorithm is able to reach
that error bound. An interesting observation is that the rate of
convergence is somehow related to the sparsity of the true la-
tent factor—the smaller the density, the faster the algorithm con-
verges. Furthermore, overall the convergence rate looks linear,
but swamps are sometimes encountered, which is why our pro-
posed termination criterion is preferable than checking succes-
sive differences of the cost function. Our algorithm clearly out-
performs all of the SNMF variants in this case.
It is important to note that after the computation of the

dominant eigen-components in the first step of our algorithm,
each iteration (update cycle) entails complexity ,
whereas one iteration of either -SNMF or -SNMF en-
tails complexity (note that ). Therefore our
algorithm also has an edge in terms of scaling up for big
data, provided we have a scalable way to compute dominant
eigenvalues and eigenvectors. Reduced-complexity variants of
-SNMF and -SNMF have been very recently proposed in
[45], employing low-rank approximation (LRA) preprocessing
to reduce the per-iteration complexity to . Such a
comparison of per-iteration counts is incomplete, however,
as it does not take into account the number of iterations till

convergence. Fig. 6 shows that the number of iterations is much
smaller and the average convergence rate much faster for the
proposed algorithm relative to the SNMF variants, in all cases
considered. Note that in Fig. 6 the -axis counts the number of
iterations instead of total elapsed time as in Fig. 5.
2) Real Data: We applied the new algorithm given in Fig. 4

to a real-life dataset containing co-authorship data from the U.S.
Army Research Laboratory Collaborative Technology Alliance
(ARL-CTA) on Communications and Networks (C&N), a large-
scale research project that involved multiple academic and in-
dustry research groups, led by Telcordia. The ARL C&N CTA
was an 8-year program, and produced numerous publications,
involving over 500 individuals. A. Swami and N. Sidiropoulos
were both involved as researchers and authors in this project,
and A. Swami had significant oversight on much of the re-
search—they know the ‘social dynamics’ and history of the con-
sortium, and can interpret/sanity check the results of automated
social network analysis of this dataset. The particular data ana-
lyzed here is a 518 518 symmetric non-negative matrix ,
where is the number of papers co-authored by author-
and author- ( is the number of papers written by author- ).
The task is to cluster the authors, based only on . Ding et
al. [31] have shown that k-means clustering can be approxi-
mated by symmetric NMF of the pair-wise similarity matrix

, where the columns of represent the
data points that we want to cluster, and the number of columns
of , is the number of clusters. The cluster that belongs
to is determined by taking . In our case, we do
not have access to , but we may interpret as the pair-wise
similarity matrix , to be decomposed as ,
with .
We run symmetric NMF on for . The weight of

cluster is measured by , and the weight of author
in the cluster is measured by . Table III lists the top-10
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TABLE III
TOP-10 CONTRIBUTORS OF THE TOP-3 CLUSTERS

contributors of the top-3 clusters, for (top) and
(bottom). The results are very reasonable. The first cluster is
Georgios Giannakis’ group at the University of Minnesota, the
participant who contributed most publications to the project.
The second cluster is more interesting: it comprises Lang Tong’s
group at Cornell, but also close collaborators from ARL (Brian
Sadler, Ananthram Swami) who co-authored many papers with
Cornell researchers and alumni over the years. The third cluster
is even more interesting, and would have been harder to deci-
pher for someone without direct knowledge of the project. It
consists of Telcordia researchers (Telcordia was the lead of the
project), but it also contains researchers from the City Univer-
sity of New York (CUNY), and, to a lesser extent, the Univer-
sity of Delaware (UDEL), suggesting that geographic proximity
may have a role. Interestingly, the network of collaborations be-
tween Telcordia, CUNY, and UDEL dates back to the FEDLAB
project (which was in a sense the predecessor of the CTA), and
continued through much of the CTA as well. Notice that the
three clusters remain stable even when is used,
although NMF is not guaranteed to be nested (for even higher
, e.g., , this stability breaks down, as larger clusters

are broken down into more tightly woven pieces).

VI. CONCLUSION

We have revisited NMF from a geometric point of view,
paying particular attention to uniqueness and algorithmic is-
sues. NMF has found numerous applications in diverse areas,
and its success stems in good measure by its ability to unravel
the true latent factors in certain cases—which makes our limited
understanding of when uniqueness holds particularly annoying.
Symmetric NMF is element-wise non-negative square-root fac-
torization of positive semidefinite matrices, and it too has many
applications—not least as an approximation to the NP-hard
k-means problem. We provided new uniqueness conditions
that help shed light into the matter, and explained why sparse
latent factors usually lead to unique NMF in practice, although
checking a key condition that we derived was also shown to be
NP-complete. Beyond uniqueness, a new algorithm for sym-
metric NMFwas proposed, using Procrustes rotations. This was

shown to be a useful addition to the existing NMF toolbox. We
also applied our new symmetric NMF algorithm to a clustering
problem for co-authorship data from the ARL C&N CTA, and
we obtained meaningful and nicely interpretable results.

APPENDIX A
PROOF OF LEMMA 1

Assume satisfies that

According to Property 2 and 3 of dual cone, this is equivalent to

means that every column of is in , therefore

(11)

Let , i.e., . Similarly, for ,
we have

(12)

Both (11) and (12) involve only non-negative numbers, so we
can take their product and sum over all ’s to get

(13)

The left hand side of (13) equals , since . Using the
Cauchy-Schwarz inequality, the right hand side of (13) is

(14)

The right hand side equals to too, again thanks to .
Therefore, all the inequalities (11)–(14) are equalities. Notice
that (14) is satisfied as an equality if and only if is a pos-
itively scaled version of , for all . Since we
assume for all ’s, then , i.e., .
Therefore, the columns of are orthogonal to each other. Fur-
thermore, if (13) is satisfied as equality, it implies that (11) and
(12) are also equalities. In other words, the extreme rays of
lie on the boundary of , i.e., .

APPENDIX B
PROOF OF THEOREM 3

A. Asymmetric Case

For the case of asymmetric NMF the essence of the result can
be found in [26]; see also Gillis [36, Remark 2]. We provide a
short proof because it is instructive for the new leg of the proof
for the symmetric case. Suppose , then there exist a
positive scalar such that

Define a upper triangular matrix as
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then

Let and . Since .
satisfies that

Therefore , which means is an alternative
NMF of . A similar argument can be applied when .

B. Symmetric Case

Suppose , then there exists a positive scalar such
that

Let be a Givens rotation matrix [43] defined as

where

Since is unitary but not a permutation matrix, and
, according to Definition 5, the symmetric NMF of is not
unique.

APPENDIX C
PROOF OF THEOREM 4

We first prove that if , then
is an extreme ray of . This is because
1) is an extreme ray of (the constraint (2) is satisfied as
equality at , hence ’s are on the boundary of , and
every ray that lies on the boundary of a second order cone
is an extreme ray of this cone); and

2) is contained in (obviously ).
The ’s being extreme rays of means that there do not
exist two other elements in that can conically generate ,
and since , there certainly do not exist two
other elements in that can conically generate ;
therefore, the ’s are the extreme rays of . Since

, the condition given in Theorem 4 implies
that all other extreme rays of lie strictly inside .

A. Asymmetric Case

According to Lemma 3, we need to show that under this
condition, if a simplicial cone satisfies that

, then . Since and
, obviously . According to Lemma

3, we know that can only be a rotated version of , and
that all of its extreme rays lie on the boundary of . How-
ever, since none of the extreme rays of except ’s lie

on the boundary of can only be the non-negative orthant
itself. Therefore under this condition the asymmetric NMF

is unique.

B. Symmetric Case

According to Lemma 4, if the symmetric NMF is unique,
then we cannot rotate to such that .
Since , and is self-dual, then we have

. Again, any rotated version of that is a
subset of satisfies that its extreme rays lie on the boundary
of . However, none of the extreme rays of ex-
cept ’s lie on the boundary of , therefore can only be the
non-negative orthant itself. As a result, under this condition
the symmetric NMF is unique.

APPENDIX D
PROOF OF PROPOSITION 1

A. Such That

Recall that the columns of are in the polyhedral cone
, which is a subset of . If a

direction is an extreme ray of a polyhedral cone in described
by inequalities, then at least linearly independent con-
straints are satisfied as equalities. Suppose is one column of
. is , so gives us equalities;

if is a column of , it has at least zeros since is an
extreme ray of , so at least of the inequality
constraints are satisfied as equalities. Therefore we have
overall at least constraints satisfied as equalities, and so
all columns of lie on different extreme rays of . Donoho
and Stodden [24, Lemma 4] proved that under this case, there
does not exist another simplicial cone with extreme rays
such that .

B. Such That

is a simplicial cone with extreme rays, so every
of its extreme rays, i.e., columns of , define a

facet of . If , then is a linear
combination of all the columns of except the -th one. There-
fore is in the facet defined by all the columns of except
the -th one. We have assumed that every row of has at least

zeros. Therefore, there are at least columns of on
each facet of . If they are linearly independent, which
is guaranteed by the fact that is an extreme ray of ,
then every facet of contains linearly indepen-
dent columns of . Then there does not exist another order-
simplicial cone such that , as has
been argued in the proof of [24, Theorem 1].

APPENDIX E
MODIFIED SYMMETRIC NMF ALGORITHM FOR THE CASE

RANK CP-RANK

The completely positive rank (cp-rank) of a completely pos-
itive matrix is the minimum that allows exact symmetric
NMF of [27]. It is well-known that the cp-rank need not be
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equal to the rank of . If we indeed encounter a completely pos-
itive matrix with cp-rank strictly larger than its rank, this Ap-
pendix shows how to modify the algorithm given in Fig. 4 to
seek an exact symmetric NMF, assuming we know the cp-rank.
Let the rank of the complete positive matrix be , then we

can perform the thin eigenvalue decomposition

where is with orthonormal columns, and is di-
agonal. Assume the cp-rank is , then there exists a symmetric
NMF of

where is with non-negative elements. The rank of
is , otherwise the rank of would not be . Therefore, we can
take the thin SVD of

where is with orthonormal columns, is
diagonal, and is with orthonormal columns. Then

As we can see, the right-hand-side is also an eigenvalue decom-
position. Since the eigenvalue decomposition is unique, this im-
plies that and . In other words, let

where , then there exists a orthonormal
matrix such that . Thus, finding can be posed
as the following optimization problem

(15a)

(15b)

Notice that compared to problem (5), we only have ,
since is not square, and is now a projection matrix.
Similar to algorithm given in Fig. 4, we propose to solve this

problem by alternatingly updating and . For , the update
rule is simply

(16)

For the case of , the answer is not directly given by the Pro-
crustes rotation. However, it is easy to show that the solution is
similar to what the Procrustes rotation provided us in the unitary
case. Since

minimizing is equivalent to maximizing
.

Proposition 3: The solution of the following optimization
problem

is , where and come from the singular value
decomposition of .

Proof: Let the singular value decomposition of be

where is is and is . Then we have

where is the -th diagonal entry of , and are the
-th column of , respectively. Therefore,

because

Furthermore, let , then

which attains the upper bound we just obtained. Therefore, the
solution for this optimization problem is .
Example 5: Let

Then while . If we apply the
algorithm provided in Fig. 4, in which case we set , the
result is
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Fig. 7. Convergence of the modified proposed algorithm vs. original algorithm
given in Fig. 4 for a matrix whose rank is less than its cp-rank.

and the factorization is not exact, whereas if we set and
apply the modified algorithm described in this Appendix, the
result is

and the factorization is exact. The convergence of each case is
shown in Fig. 7.
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