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Convergence of the Huber Regression M-Estimate
in the Presence of Dense Outliers

Efthymios Tsakonas, Joakim Jaldén, Nicholas D. Sidiropoulos, and Björn Ottersten

Abstract—We consider the problem of estimating a determin-
istic unknown vector which depends linearly on noisy measure-
ments, additionally contaminated with (possibly unbounded) addi-
tive outliers. The measurement matrix of the model (i.e., the ma-
trix involved in the linear transformation of the sought vector) is
assumed known, and comprised of standardGaussian i.i.d. entries.
The outlier variables are assumed independent of themeasurement
matrix, deterministic or random with possibly unknown distribu-
tion. Under these assumptions we provide a simple proof that the
minimizer of the Huber penalty function of the residuals converges
to the true parameter vector with a -rate, even when outliers
are dense, in the sense that there is a constant linear fraction of
contaminated measurements which can be arbitrarily close to one.
The constants influencing the rate of convergence are shown to ex-
plicitly depend on the outlier contamination level.

Index Terms—Breakdown point (BP), dense outliers, Huber es-
timator, performance analysis.

I. INTRODUCTION

I T is often the case in robust statistical inference that we
wish to estimate a signal from a set of measurement sam-

ples, where a fraction of them violates our standard modeling
assumptions. The statistical signal processing literature often
refers to these deviating samples as outliers, and dealing with
them is critical for the successful application of any given
learning method in practice.
Consider for example the linear regression model in which

measurements are collected as ,
for which the sequence with is known,
is the parameter of interest, and are i.i.d. Gaussian

noise variables with . In order to find a suitable
estimate for , the standard least squares approach minimizes
the sum of squares of the residuals,
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This coincides with the maximum likelihood (ML) estimator,
when the noise is indeed i.i.d. Gaussian. However, even if a very
limited number of observations does not follow the assumed
Gaussian density, the least squares estimate can be very far away
from the true value. The issue of robustness against outliers has
been widely studied in the context of linear regression, and it
has a long history in robust statistics [1].
Following ideas similar to [2], the author in [3] proposed to

explicitly model outliers as sparse additive auxiliary
variables in the linear regression model, and then regularize the
ML estimator with their -norm as a viable method to detect
them. The resulting -regularized ML variant (the terminology
LASSO from [2] also applies)

(1)

was proven in [3] to be equivalent to the famous Huber M–es-
timator , where

(2)

and is the (convex) Huber penalty function defined
as

(3)

The parameter in (1) and (3) is a fixed regularization
parameter which controls the outlier rejection in the method.
Several works have considered small errors in addition to out-

liers in the measurements [4], [5], [7]. Much of the existing lit-
erature has focused on assuming nothing else about the outliers

other than that they are sparse [4], [5], [6], [7]. As-
suming sparsity of gross errors, Candes et al. in [5] proposed
convex optimization algorithms which bound the reconstruction
error by a constant times the ideal reconstruction error (under
certain restricted isometry conditions), i.e., the error had there
been no outliers in the measurements. It is worth noting that
[5] requires outlier sparsity, but in turn accommodates outliers
which can possibly bemalicious, i.e., possibly taking values de-
pendent on the particular realization of the sequence .
The focus of this letter is on exploring the performance of

the simple Huber estimator when outliers are not malicious,
i.e., when they can be assumed deterministic or random with
possibly unknown distribution, however independent from the
sequence and the Gaussian noise variables af-
fecting all themeasurements. For the case where is a se-
quence of standard Gaussian i.i.d. vectors, we provide a simple
proof that the minimizer of the Huber penalty function of the
residuals converges to the true parameter vector with a -rate,
equal to the decay rate of the oracle Cramér-Rao Lower Bound
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(CRLB) [8], [9], even when outliers are dense (and possibly un-
bounded). The constants influencing the rate of convergence are
shown to explicitly depend on the outlier contamination level.
When the Gaussian noise variables are absent, re-

covery in the presence of dense (and possiblymalicious) outliers
is possible under certain conditions, using themethods proposed
in [10], assuming however that the parameter vector of interest
is sufficiently sparse. Do note that the result in [10] relies on a
specific construction model for the sequence , termed
as the cross-and-bouquet model.
Notation: Bold lower (upper) case letters stand for vectors

(matrices). The cardinality (number of elements) of a set is
denoted as . We denote the -(pseudo)norm (the operator
that counts the number of non-zeros in a vector) as , the
minimum eigenvalue and the trace of a positive definite matrix
as and , respectively. The complement of an

event is denoted as . The symbol stands for the set of nat-
ural numbers. The gradient of a function is denoted as .
Symbol stands for the complementary CDF of the standard
Gaussian density and stands for the Gamma function.

II. MAIN CONTRIBUTION AND CONTEXT

We consider the linear regression model

(4)

where are assumed zero-mean i.i.d. standard
Gaussian vectors whose realizations are known, and are
i.i.d. Gaussian noise variables.
The outlier variables are assumed independent

of , either deterministic or random with possibly un-
known distribution. A (possibly dense) linear growth outlier
model is assumed, in which , where
is a fixed constant. Bursty impulsive noise in electrical circuits
is an example where this linear growth outlier model can be ap-
plied. There are, however, many other application examples for
the model in (4), see, e.g., [5] for an example in Orthogonal Fre-
quency-Division Multiplexing.
The objective is to derive an upper bound on the reconstruc-

tion performance (measured in terms of the Euclidean distance
from the true parameter ) of the Huber estimate

(5)

with defined in (3). Note that neither the fraction of outliers,
nor their positions are assumed known to the estimator in (5).
The main result of the letter is summarized in the next theorem,
which we state now and prove in Section III. The theorem pre-
cisely establishes that , where is
the big- in probability notation, see [16].
Theorem 1: Consider the data model in (4) and let be de-

fined as in (5). For any fixed and , there exists
a constant such that

(6)

An immediate implication of the above theorem is that the
Huber estimator is a consistent estimator of in (4), evenwhen
outliers are dense and possibly unbounded, or even possibly in-
troducing a very large bias, as long as they do not depend on

. Observe also that approaches at a -rate,
which is the same rate that would have been achieved by simple
LS had there been no outliers in the observations. The outlier ef-
fect becomes obvious upon examining the constant factor before

, where one sees that the bound is inversely proportional
to the fraction of outlier-free measurements.
It is important to emphasize that the above result does not

contradict the notion of the breakdown point (BP) which is cen-
tral in robust estimation [11]. The BP is defined as the max-
imal fraction of outliers in the observations which can be han-
dled by the estimator (i.e., the maximal fraction of errors above
which the estimation error cannot be bounded) [1], [11]. It is
well-known that no estimator can succeed if more than 50%
of the observations are arbitrarily corrupted (hence the BP has
maximum value ), but this implicitly assumes that the corrup-
tions may possibly be malicious. Such malicious outliers are ex-
cluded in our context by virtue of the independence assumption
on the variables . It should also be noted that the exis-
tence of a breakdown point for a given estimator does not imply
that this estimator is consistent below its breakdown point, only
that the error magnitude can be bounded.
Relation with the oracle CRLB: It is worth pointing out that

the rate of convergence coincides with the rate dictated by the
CRLB, derived explicitly in [8], in the case where the variables

are unknown deterministic. In particular, when has
maximal support, we know from [8] that the CRLB for a fixed
known set of depends only on the outlier-free measure-
ments (hence the term oracle CRLB) and is simply given by

(7)

where if and otherwise. As long
as there is an outlier-free linear fraction of measurements this
lower bound on the root mean square error decays at a rate
as well. In the next section we prove Theorem 1.

III. PROOF OF THEOREM 1

Consider an -ball centered around as
} with and define the index sets

(8)

with and some positive constants. Define the probability
. Further, let be

a positive constant that we will suitably choose later on in the
proof, and set

where is the regularization parameter in the Huber penalty.
Note that by picking and in this manner we have that

for all . Consider the matrix .
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The proof consists of two parts: In the first part we show that,
assuming that events

happen jointly, the following bound [cf. Theorem 1]

(9)

holds, with . In the second part we complete the
proof of the theorem by bounding the probability of the event

[i.e., the probability that (i)-(iii) happen jointly].
For the first part, we begin by proving that [assuming (i)-(iii)]

(10)
is satisfied for all , if one chooses .
Let us partition the sum of into

(11)

and define and
. Since is a convex function, the

inequality

holds for all . Thus, it suffices to prove that

Since in the definition of is such that samples with index
fall in the quadratic region of the Huber function, we

have that

(12)

Recalling assumption (ii), observe from (12) that
is a positive definite quadratic function and hence, strongly
convex [12]. Therefore, (10) holds if one chooses

.
Now, let be the minimizer of in the neighborhood

. By definition, and therefore (10)
implies that

which in turn implies that .
From (ii) and (iii) we therefore have that

(13)

with . Since lies in the interior of and
is convex, it follows that is also the global minimizer

of , and the first step of the proof is complete. We next
turn into the second part, where we bound the probability of the
event .

Observe that (i) happens with high probability as in-
creases. In fact, a simple counting argument can show that

with probability 1, from which it
follows that as .
To show that (ii) also happens with high probability as in-

creases, recall the definition of set in (8) and notice that

where is the Boolean indicator function. We have the fol-
lowing equalities:

(14)

The equality is due to the tail probability of the Gaussian
density, since as
. To prove the equality , note that the vectors are

standard Gaussian i.i.d independent of , therefore

with probability 1. Moreover, note that
with probability 1. The limit of the product is equal to the

product of the individual limits whenever these limits exist [13,
Th. 3.4]. Hence, the equality in holds, which implies that

as .
Finally, we prove that (iii) happens with constant probability

as increases, which can however be made arbitrarily close to
one by selecting . From Markov’s inequality we get that

(15)

and we may further upper bound the expected value of the norm
of the gradient in (15) as follows. First, observe that

(16a)

(16b)

where the outer expectation in (16b) is only with respect to
the variables . The variables and
have been assumed independent, therefore (16b) yields

(17)
where the outer expectation is with respect to
and the inner is with respect to the variable .
The variable is Chi-distributed [14], therefore

[14]. Moreover, the
function is Lipschitz continuous with ,
therefore (15)-(17) yields the bound

(18)

For any fixed , selecting such that the right hand side
in (18) becomes equal to , yields the constant in (6).
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Fig. 1. RMSE performance of Huber estimator in the presence of malicious,
non-malicious (Cauchy) outliers, as well as the oracle CRLB as a function of
. Observe the RMSE behavior before and after the breakdown point of the

estimator (see the eclipse).

Now, to conclude the proof, let , and denote the com-
plementary events to (i), (ii) and (iii), respectively. From the
union bound we obtain that

(19)

The right hand side of (19) can be made greater than or equal
to , since and as and

. The proof of Theorem 1 is now complete.

IV. NUMERICAL EXPERIMENTS

We construct a simple simulation setup to illustrate how
malicious and non-malicious outliers affect the RMSE
performance of the Huber estimate. Consider the model
(4) with , and the Huber estimator in
(5) with . The true parameter vector
was generated standard Gaussian with particular realization

, and kept fixed
throughout the experiment. We assess the RMSE performance
of (5) using Monte Carlo (MC) simulations. In every trial, the

’s are generated from the standard Gaussian distribution
and ’s are independent . Non-malicious outliers
are assumed standard independent Cauchy random variables
(zero location, unit scale) [14], and they are added to the last

measurements. The non-malicious outlier samples are
further biased, by adding the constant value . On the
other hand, malicious outliers are generated by adding to the last

samples the values for ,
with chosen either as 100, 200 or 300. Notice how outliers in
the second case are specifically designed to adversarially affect
the estimation of .
Fig. 1 depicts the RMSE of (5) in every case (malicious/non-

malicious), as well as the root-CRLB, as a function of the outlier
percentage . All curves are produced by averaging over 100
independent MC runs, and the interior-point method developed
in [15] was used to solve the optimization problem in (5). Ob-
serve that the RMSE performance of (5) in the non-malicious
outlier-case is comparable to that in the malicious case(s) when

outliers are below 50%, but the latter RMSE degrades signifi-
cantly after 50% (which is precisely the breakdown point of the
estimator [1], [11]). On the other hand, notice that the Huber
estimate is similar to the theoretical CRLB in (7) when outliers
are not malicious, even for large outlier percentages.

V. DISCUSSION AND CONCLUDING REMARKS

This letter examined the performance of the Huber estimator
in a scenario where the collected linear measurements are cor-
rupted by an arbitrary linear fraction of gross errors, and when
in addition, all measurements are contaminated by standard er-
rors. When the measurement matrix of the model comprises
i.i.d. Gaussian entries and gross errors are not malicious (i.e.,
when gross errors are independent of the measurement model
matrix), it is shown that the Huber estimate converges to the
sought parameter vector with the same rate as if there had been
no gross corruptions. The result holds even if these corruptions
are dense.
One can observe from the proof that the core properties that

make this convergence behavior possible are the convexity and
the Lipschitz continuity of the Huber penalty function. On the
flip side, we believe that the Gaussianity assumption on themea-
surement matrix of the model is not critical to the analysis, and
can possibly be replaced by a milder assumption. We leave this
latter conjecture as a topic for future work.
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