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T
 his article combines a tutorial on state-of-the-art ten-
sor decomposition as it relates to big data analytics, 
with original research on parallel and distributed 
computation of low-rank decomposition for big ten-
sors, and a concise primer on Hadoop–MapReduce. A 

novel architecture for parallel and distributed computation of 
low-rank tensor decomposition that is especially well suited for 
big tensors is proposed. The new architecture is based on parallel 
processing of a set of randomly compressed, reduced-size replicas 
of the big tensor. Each replica is independently decomposed, and 
the results are joined via a master linear equation per tensor 
mode. The approach enables massive parallelism with guaranteed 

identifiability properties: if the big tensor is of low rank and the 
system parameters are appropriately chosen, then the rank-one 
factors of the big tensor will indeed be recovered from the analy-
sis of the reduced-size replicas. Furthermore, the architecture 
affords memory/storage and complexity gains of order /IJ F^ h for 
a big tensor of size I J K# #  of rank F with .F I J K# # #  No 
sparsity is required in the tensor or the underlying latent factors, 
although such sparsity can be exploited to improve memory, stor-
age, and computational savings. 

InTroducTIon
Tensors are data structures indexed by three or more indices, 
say ( , , , )i j k g , a generalization of matrices, which are data 
structures indexed by two indices, say ( , )r c  for (row, column). 
The term tensor has a different meaning in physics, however, it 
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has been widely adopted across various disciplines in recent 
years to refer to what was previously known as a multiway 
array. Matrices are two-way arrays, and there are three- and 
higher-way (or higher-order) tensors. 

Tensor algebra has many similarities to but also many strik-
ing differences from matrix algebra, e.g., determining tensor 
rank is NP-hard, and low-rank tensor factorization is unique 
under mild conditions. Tensor factorizations have already found 
many applications in signal processing (speech, audio, commu-
nications, radar, signal intelligence, and machine learning) and 
well beyond. For example, tensor factorization can be used to 
blindly separate unknown mixtures of speech signals in reverber-
ant environments [2], untangle audio sources in the spectro-
gram domain [3], unravel mixtures of code-division 
communication signals without knowledge of their spreading 
codes [4], localize emitters in radar and communication applica-
tions [5], detect cliques in social networks [6], and analyze fluo-
rescence spectroscopy data [7], to name a few (see [8] for 
additional machine-learning applications). 

Tensors are becoming increasingly important, especially for 
analyzing big data, and tensors easily turn really big, e.g., 

, , ,1 000 1 000 1 000 1# # =  billion entries. Memory issues related 
to tensor computations with large but sparse tensors have been 
considered in [9] and [10] and incorporated in the sparse tensor 
toolbox (http://www.sandia.gov/~tgkolda/TensorToolbox). The 
main idea in those papers is to avoid intermediate product explo-
sion when computing sequential tensor–matrix (mode) products, 
but the assumption is that the entire tensor fits in memory (in 
coordinate-wise representation), and the mode products expand 
(as opposed to reduce) the size of the core array that they multiply. 
Adaptive tensor decomposition algorithms for cases where the 
data is serially acquired (or elongated) along one mode have been 
developed in [11], but these assume that the other two modes are 
relatively modest in size. More recently, a divide-and-conquer 
approach for decomposing big tensors has been proposed in [12]. 
The idea of [12] is to break the data into smaller boxes that can be 
factored independently, and the results subsequently concatenated 
using an iterative process. This assumes that each smaller box 
admits a unique factorization (which cannot be guaranteed from 
global uniqueness conditions alone), requires reconciling the dif-
ferent column permutations and scalings of the different blocks, 
and entails significant communication and signaling overhead. 

All of the aforementioned techniques require that the full data 
be stored in (possibly distributed) memory. Realizing that this is a 
showstopper for truly big tensors, [6] proposed a random sam-
pling approach, wherein judiciously sampled significant parts of 
the tensor are independently analyzed, and a common piece of 
data is used to anchor the different permutations and scalings. The 
downside of [6] is that it only works for sparse tensors, and it offers 
no identifiability guarantees—although it usually works well for 
sparse tensors. A different approach was taken in [13], which pro-
posed randomly compressing a big tensor down to a far smaller 
one. Assuming that the big tensor admits a low-rank decomposi-
tion with sparse latent factors, such a random compression guar-
antees identifiability of the low-rank decomposition of the big 

tensor from the low-rank decomposition of the small tensor. This 
result can be viewed as a generalization of compressed sensing 
ideas from the linear to the multilinear case. Still, this approach 
works only when the latent low-rank factors of the big tensor are 
known to be sparse, and this is often not the case. 

This article considers appropriate compression strategies for 
big (sparse or dense) tensors that admit a low-rank decomposi-
tion/approximation, whose latent factors need not be sparse. 
Latent sparsity is usually associated with membership problems 
such as clustering and coclustering [14]. A novel architecture for 
parallel and distributed computation of low-rank tensor decom-
position that is especially well suited for big tensors is proposed. 
The new architecture is based on parallel processing of a set of 
randomly compressed, reduced-size replicas or the big tensor. 
Each replica is independently decomposed, and the results are 
joined via a master linear equation per tensor mode. The 
approach enables massive parallelism with guaranteed identifia-
bility properties: if the big tensor is indeed of low rank and the 
system parameters are appropriately chosen, then the rank-one 
factors of the big tensor will indeed be recovered from the analy-
sis of the reduced-size replicas. Furthermore, the architecture 
affords memory/storage and complexity gains of order /IJ F^ h for 
a big tensor of size I J K# #  of rank F  with .F I J K# # #  No 
sparsity is required in the tensor or the underlying latent factors, 
although such sparsity can be exploited to improve memory, stor-
age, and computational savings. 

This article combines 1) a short tutorial on state-of-the-art 
tensor decomposition as it relates to big data analytics, 2) novel 
research results on tensor compression and parallel and distrib-
uted tensor decomposition, and 3) a concise primer on Hadoop–
MapReduce, starting from a toy signal processing problem, and 
going up to sketching a Hadoop implementation of a proposed 
algorithm for tensor decomposition in the cloud. The combina-
tion is timely and well motivated given the emerging interest in 
(and relative scarcity of literature on) signal processing for big 
data analytics, and in porting/translating and developing new 
signal processing algorithms for cloud computing platforms. 

NotatioN
A scalar is denoted by an italic letter, e.g., a. A column vector is 
denoted by a bold lowercase letter, e.g., a, whose ith  entry is ( ) .ia  
A matrix is denoted by a bold uppercase letter, e.g., A, with 

,i j th^ h  entry , ;i jA^ h  (: , )jA , :iA^^ hh denotes the jth  column 
(respectively, ith  row) of .A  A tensor (three-way array) is 
denoted by an underlined bold uppercase letter, e.g., ,X  with 

, ,i j k th^ h  entry , , .ki jX^ h  : , : , kX^ h denotes the kth  frontal 
I J#  matrix slab of ,X  and similarly for the slabs along the 
other two modes. Vector, matrix, and three-way array size 
parameters (mode lengths) are denoted by uppercase letters, e.g., 

.I &  stands for the vector outer product; i.e., for two vectors a  
I 1#^ h and b  ,J 1#^ h  a b&  is an I J#  matrix with ( , )i j th  ele-

ment ;i ja b^ ^h h  i.e., a b& = .abT  For three vectors, a  ,I 1#^ h  b  
,J 1#^ h  c  ,K 1#^ h  a b c& &  is an I J K# #  three-way array 

with , ,i j k th^ h  element .i j ka b c^ ^ ^h h h  The vec :^ h operator 
stacks the columns of its matrix argument in one tall column; 7  
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stands for the Kronecker product; 9  stands for the Khatri–Rao 
(column-wise Kronecker) product: given A  I F#^ h and B  

,J F#^ h  A B9  is the JI F#  matrix 

 (: , ) (: , ) (: , ) (: , )F F1 1A B A B A B9 7 7g= 6 @. 

For a square matrix ,S  ( )Tr S  denotes its trace, i.e., the sum of 
elements on its main diagonal. x 2

2  is the Euclidean norm 
squared, and ,A F

2  F
2X  the Frobenious norm squared–the sum 

of squares of all elements of the given vector, matrix, or tensor. 

Tensor decomposITIon prelImInarIes
There is no comprehensive tutorial on tensor decompositions 
and applications from a signal processing point of view as of this 
writing, albeit there are several signal processing papers dealing 
with topics in tensor decomposition that have significant tuto-
rial value. The concise introduction in [15] is still useful, 
although outdated. An upcoming IEEE Signal Processing Mag-
azine tutorial article [8] covers the basic concepts and models 
well, and touches upon numerous applications. We also refer 
the reader to [16]–[18] for gentle introductions to tensor 
decompositions and applications from the viewpoint of compu-
tational linear algebra, chemistry, and the social sciences, 
respectively. Due to space limitations, here we only review 
essential concepts and results that directly relate to the core of 
our article. 

RaNk decompositioN
The rank of an I J#  matrix X  is the smallest number of rank-
one matrices (vector outer products of the form )a b&  needed 
to synthesize X  as 

 ,X a b ABf
f

F

f
T

1
&= =

=

/  

where : , , ,A a aF1 g= 6 @  and : , , .B b bF1 g= 6 @  This relation can 
be expressed element-wise as 

 ( , ) ( ) ( ) .i j i jX a bf
f

F

f
1

=
=

/  

The rank of an I J K# #  three-way array X  is the smallest 
number of outer products needed to synthesize X  as 

 .X a b cf
f

F

f f
1

& &=
=

/  

This relation can be expressed element-wise as 

 ( , , ) ( ) ( ) ( ) .i j k i j kX a b cf
f

F

f f
1

=
=

/

In the sequel we will assume that F  is minimal, i.e., 
( ),F rank X=  unless otherwise noted. The tensor X  comprises 

K  frontal slabs of size ;I J#  denote them ,Xk k
K

1=" ,  with 
: (: , : , ) .kX Xk =  Rearranging the elements of X  in a tall matrix 

X := ( ), , ( ) ,vec vecX XK1 g6 @  it can be shown that 

 ( ) : ( ) ,1vecX B A C x X C B AT +9 9 9= = = ^ h  

where, A  B are as defined for the matrix case, : , , ,C c cF1 g= 6 @  1  
is a vector of all 1s, and we have used the vectorization property 
of the Khatri–Rao product ( ( ) )vec AD d BT = ,B A d9^ h  where 

( )D d  is a diagonal matrix with the vector d  as its diagonal. 

caNdecomp-paRaFac
The above rank decomposition model for tensors is known as 
parallel factor analysis (PARAFAC) [19], [20] or canonical 
decomposition (CANDECOMP) [21], or CP (and CPD) for CAN-
DECOMP-PARAFAC (decomposition), or canonical polyadic 
decomposition (CPD, again). CP is usually fitted using an alter-
nating least squares procedure based on the model equation 

( ) .X B A CT9=  In practice we will have ( ) ,X B A CT9.  due 
to measurement noise and other imperfections, or simply 
because we wish to approximate a higher-rank model with a 
lower-rank one. Fixing A  and ,B  we solve 

 | | ( ) | | ,min X B A C
C

T
F
29-  

which is a linear least squares problem. We can bring any of the 
matrix factors to the right by reshuffling the data, yielding corre-
sponding conditional updates for A  and .B  We can revisit each 
matrix in a circular fashion until convergence of the cost func-
tion, and this is the most commonly adopted approach to fitting 
the CP model, in good part because of its conceptual and pro-
gramming simplicity, plus the ease with which one can incorpo-
rate additional constraints on the columns of ,A  ,B  C  [7]. 

tuckeR3
CP is in a way the most basic tensor model, because of its direct 
relationship to tensor rank and the concept of rank decomposi-
tion; but other algebraic tensor models exist, and the most nota-
ble one is known as Tucker3. Like CP, Tucker3 is a sum of outer 
products model, involving outer products of columns of three 
matrices, ,A  ,B  .C  Unlike CP however, which restricts interac-
tions to corresponding columns (so that the first column of A  
only appears in one outer product involving the first column of 
B  and the first column of ),C  Tucker3 includes all outer prod-
ucts of every column of A  with every column of B  and every 
column of .C  Each such outer product is further weighted by 
the corresponding entry of a so-called core tensor, whose dimen-
sions are equal to the number of columns of ,A  ,B  .C  

Consider again the I J K# #  three-way array X  comprising 
K  matrix slabs ,Xk k

K
1=" ,  arranged into the tall matrix X :=

( ), , ( ) .vec vecX XK1 g6 @  The Tucker3 model can be written in 
matrix form as 

 ( ) ,X B A GCT7.  

where G  is the core tensor in matrix form, and ,A  ,B  C  can be 
assumed orthogonal without loss of generality, because linear 
transformations of ,A  ,B  C  can be absorbed in .G  The nonzero 
elements of the core tensor determine the interactions between 
columns of ,A  ,B  .C  The associated model-fitting problem is 

 | | ( ) | | ,min X B A GCT
F
2

A,B,C,G
7-
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which is usually solved using an alternating least squares proce-
dure. The Tucker3 model can be fully vectorized as ( )vec X .

( ) .vecC B A G7 7^ h

ideNtiFiability
The distinguishing feature of the CP model is its essential 
uniqueness: under certain conditions, ,A  ,B  C  can be identi-
fied from X  up to a common permutation and scaling/counter-
scaling of columns [19]–[26]. In contrast, Tucker3 is highly 
nonunique; the inclusion of all possible outer products of col-
umns of ,A  ,B  C  results in overparametrization that renders it 
unidentifiable in most cases of practical interest. Still, Tucker3 
is useful as an exploratory tool and for data compression/inter-
polation; we will return to this shortly. 

Consider an I J K# #  tensor X  of rank .F  In vectorized 
form, it can be written as the IJK 1#  vector ,1x A B C9 9= ^ h  
for some A  ,I F#^ h  B  ,J F#^ h  and C  K F#^ h—a CP model of 
size I J K# #  and order F  parameterized by ) .( , ,A B C  (Notice 
the slight abuse of notation: we switched from 1x C B A9 9= ^ h  
to .1x A B C9 9= ^ h  The two are related via a row permutation, 
or by switching the roles of ,A  ,B  .)C  The Kruskal-rank of ,A  
denoted ,kA  is the maximum k such that any k columns of A  
are linearly independent : ( ) .rankk r AA A# =^ h  

ThEOREM 1 
Given X  ,x+^ h  ( )A,B,C  are unique up to a common column per-
mutation and scaling (e.g., scaling the first column of A  and coun-
terscaling the first column of B  and/or ,C  so long as their product 
remains the same), provided that [ ] .k k k F2 2 22A B C $+ + +  An 
equivalent and perhaps more intuitive way to express this is that 
the outer products a b cf f f& &  (i.e., the rank-one factors of )X  
are unique. 

Note that we can always reshuffle the order of these rank-one 
factors (e.g., swap a b c1 1 1& &  and )a b c2 2 2& &  without changing 
their sum ,X a b cf f ff

F

1
& &=

=
/  but this is a trivial and inherently 

unresolvable ambiguity that we will ignore in the sequel. Theorem 1 
is Kruskal’s celebrated uniqueness result [22], see also follow-up 

work in [23]–[25]. Kruskal’s result applies to given ( , , ),A B C  i.e., it 
can establish uniqueness of a given decomposition. Recently, more 
relaxed uniqueness conditions have been obtained, which only 
depend on the size and rank of the tensor, albeit they cover almost 
all tensors of the given size and rank, i.e., except for a set of meas-
ure zero. Two such conditions are summarized next. 

ThEOREM 2  
Consider an I J K# #  tensor X  of rank .F If 

  (  )r F K Fwhich impliesC $=

and 

 ( ) ( ) ( ),I I J J F F1 1 2 1$- - -

then the rank-one factors of X  are almost surely unique [27] 
(see also [24]). 

ThEOREM 3 
Consider an I J K# #  tensor X  of rank .F  Order the dimensions 
so that .I J K# #  Let i  be maximal such that ,I2i #  and like-
wise j  maximal such that .J2 j #  If ,F 2i j 2# + -  then the rank-
one factors of X  are almost surely unique [26]. For ,I J  powers of 
2, the condition simplifies to ( / ) .IJF 4#  More generally, the con-
dition implies that if (( ) ( ) / ),F I J1 1 16# + +  then X  has a 
unique decomposition almost surely. Before we proceed to discuss 
big data and cloud computing aspects of tensor decomposition, we 
state two lemmas from [13], which we will need in the sequel. 

LEMMA 1 
Consider : ,A U AT=u  where A  is ,I F#  and let the I L#  matrix 
U  be randomly drawn from an absolutely continuous distribution 
(e.g., multivariate Gaussian with a nonsingular covariance matrix). 
Then ( , )mink L kA A=u  almost surely (with probability 1) [13]. 

LEMMA 2  
Consider ,A U AT=u  where A ( )I F#  is deterministic, tall/square 
I F$^ h and full column rank ,r FA =  and the elements of U  
I L#^ h are independent and identically distributed (i.i.d.) Gauss-

ian zero mean, unit variance random variables. Then the distribu-
tion of Au  is absolutely continuous (nonsingular multivariate 
Gaussian) [13]. 

Tensor compressIon
When dealing with big tensors X  that do not fit in main memory, 
a reasonable idea is to try to compress X  to a much smaller tensor 
that somehow captures most of the systematic variation in .X  The 
commonly used compression method is to fit a low-dimensional 
orthogonal Tucker3 model (with low mode-ranks) [17], [18], then 
regress the data onto the fitted mode-bases. This idea has been 
exploited in existing CP model-fitting software, such as COMFAC 
[28], as a useful quick and dirty way to initialize alternating least 
squares computations in the uncompressed domain, thus acceler-
ating convergence. A key issue with Tucker3 compression of big 
tensors is that it requires computing singular value decomposi-
tions of the various matrix unfoldings of the full data, in an 

Lp

Up
T

Wp
T

V
p T

I

I

J

J

K

K

Mp

Mp

YpLp

Np
Np

X

[FIg1] a schematic illustration of tensor compression: going from 
an I J K# #  tensor x to a much smaller L M Np p p# #  tensor yp  
via multiplying (every slab of) x from the i -mode with ,Up

T  from 
the J-mode with ,Vp

T  and from the k-mode with ,Wp
T  where up  is 

,I Lp#  vp  is ,J Mp#  and wp  is .K Np#
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alternating fashion. This is a serious bottleneck for big data. Another 
issue is that Tucker3 compression is lossy, and it cannot guarantee 
that identifiability properties will be preserved. Finally, fitting a CP 
model to the compressed data can only yield an approximate model 
for the original uncompressed data, and eventually decompression 
and iterations with the full data are required to obtain fine estimates. 

Consider compressing x  into ,y Sx=  where S  is ,d IJK#

.d IJK%  Sidiropoulos and Kyrillidis [13] proposed using a spe-
cially structured compression matrix ,S U V WT T T7 7=  which 
corresponds to multiplying (every slab of) X  from the I -mode 
with ,UT  from the J -mode with ,VT  and from the K -mode with 

,WT  where U  is ,I L#  V  is ,J M#  and W  is ,K N#  with ,L I#  
,M J#  N K#  and ;LMN IJK%  see Figure 1. Such an S  corre-

sponds to compressing each mode individually, which is often nat-
ural, and the associated multiplications can be efficiently 
implemented; see “Complexity of Multiway Compression?” and 
“Complexity of Multiway Compression–Redux.” Due to a fortui-
tous property of the Kronecker product [29], 

 ( ) ( ) ( ) ,U V W A B C U A V B W CT T T T T T7 7 9 9 9 9=^ ^ ^h h h

from which it follows that

 ( ) ( ) ( ) .1 1y U V B W C A B CAT T T9 9 9 9= = u u u^ ^h h

i.e., the compressed data follow a CP model of size L M N# #  and 
order F  parameterized by , , ,A B Cu u u^ h  with :A U AT=u  : ,B V BT=u  

: .C W CT=u

This is nice to know, but we are really, naturally, interested in 
obtaining answers to the following two questions: 

1) Under what conditions on ,A  ,B  C  and ,U  ,V  W  are 
, , ,A B Cu u u^ h  identifiable from ?y

2) Under what conditions, if any, are ,A  ,B  C  identifiable from 
, , ?A B Cu u u^ h

We start by answering the first question in the next section. 

sTeppIng-sTone resulTs
The following result is a direct consequence of Lemma 1 and 
Kruskal’s uniqueness condition in Theorem 1. 

theoRem 4
Let ,1x A B C R IJK9 9 != ^ h  where A  is ,I F#  B  is ,J F#  C  
is ,K F#  and consider compressing it to y U V WT T T7 7= ^ h

( ) ( ) ( ) 1x U A V B W C A B C 1T T T9 9 9 9== u u u^ ^h h  ,RLMN!  where 
the mode-compression matrices , ,I L L IU # #^ h  ,(J MV #  

,)M J#  and W  ,K N N K# #^ h are independently drawn from 
an absolutely continuous distribution. If 

 ( , ) ( , ) ( , ) ,min min minL k M k N k F2 2A B C $+ + +  

then , ,A B Cu u u  are almost surely identifiable from the compressed 
data y  up to a common column permutation and scaling. 

More relaxed conditions for identifiability of , ,A B Cu u u  can be 
derived from Lemma 2, and Theorems 2 and 3. 

ThEOREM 5
For , , , , , , ,x A B C U V W  and y  as in Theorem 4, if ( , , ),minF I J K#  
,A  ,B  C  are all full column rank ,F^ h  ,N F$  and 

 ( ) ( ) ( ),L L M M F F1 1 2 1$- - -

then , ,A B Cu u u  are almost surely identifiable from the compressed 
data y  up to a common column permutation and scaling.

RemaRk 1
( , , )minF I J K# &  full column rank ,A  ,B  C  almost surely, 

i.e., tall matrices are full column rank except for a set of mea-
sure zero. In other words, if ( , , )minF I J K#  and ,A  ,B  C  are 
themselves considered to be independently drawn from an abso-
lutely continuous distribution with respect to the Lebesgue 
measure in ,R IF  ,R JF  and ,RKF  respectively, then they will all 
be full column rank with probability 1. 

ThEOREM 6
For ,, , , , , ,x A B C U V W  and y as in Theorem 4, if ( , , ),minF I J K#  

,A  ,B  C  are all full column rank ,F^ h  ,L M N# #  and 

 ( ) ( ) ,L M F1 1 16$+ +

then , ,A B Cu u u  are almost surely identifiable from the compressed 
data y  up to a common column permutation and scaling. 

complexITy oF mulTIway compressIon?
Multiplying a dense L I#  matrix UT  with a dense vector a  
to compute U aT  has complexity .LI  Taking the product of 
UT  and the first I J#  frontal slab (: , : , )1X  of the I J K# #  
tensor X  has complexity .LIJ  Premultiplying from the left 
all frontal slabs of X  by UT  (computing a mode product) 
therefore requires LIJK  operations, when all operands are 
dense. Multiway compression as in Figure 1 comprises 
three mode products, suggesting a complexity of 

,LIJK MLJK NLMK+ +  if the first mode is compressed first, 
followed by the second, and then the third mode. Notice 
that the order in which the mode products are computed 
affects the complexity of the overall operation; but order-
wise, this is ( ( , , ) ) .minO L M N IJK  Also notice that if , ,I J K  
are of the same order, and so are , , ,L M N  then the overall 
complexity is ( ) .O LI3  If a  is sparse with ( )NZ a  nonzero 
elements, we can compute U aT  as a weighted sum of the 
columns of UT  corresponding to the nonzero elements of 

.a  This reduces matrix-vector multiplication complexity to
( ) .LNZ a  It easily follows that if X  has NZ X^ h nonzero 

elements, the complexity of premultiplying from the left 
all frontal slabs of X  by UT  can be reduced to .LNZ X^ h  
The problem is that, after computing the first mode prod-
uct, the resulting tensor will be dense, hence subsequent 
mode products cannot exploit sparsity to reduce complex-
ity. Note that, in addition to computational complexity, 
memory or secondary storage to save the intermediate 
results of the computation becomes an issue, even if the 
original tensor X  is sparse.
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maIn resulTs
Theorems 4–6 can establish uniqueness of , , ,A B Cu u u  but we are 
ultimately interested in ., ,A B C  We know that ,A U AT=u  and we 
know ,UT  but, unfortunately, it is a fat matrix that cannot be 
inverted. To uniquely recover ,A  one needs additional structural 
constraints. Sidiropoulos and Kyrillidis [13] proposed exploiting 
column-wise sparsity in A  (and likewise ),,B C  which is often 
plausible in practice. A  need only be sparse with respect to (when 
expressed in) a suitable basis, provided the sparsifying basis is 
known a priori. Sparsity is a powerful constraint, but it is not 
always valid (or a sparsifying basis may be unknown). For this rea-
son, we propose here a different solution, based on creating and 
factoring a number of randomly reduced replicas of the full data.

Consider spawning P  randomly compressed reduced-size 
replicas Yp p

P
1=" ,  of the tensor ,X  where Yp  is created using 

mode compression matrices , ,U V Wp p p^ h; see Figure 2. Assume 
that identifiability conditions per Theorem 5 or Theorem 6 
hold, so that , ,A B Cp p pu u u  are almost surely identifiable (up to 
permutation and scaling of columns) from .Yp  Then, upon fac-
toring Yp  into F  rank-one components, we obtain 

 ,A U Ap p
T

p pP K=u  (1)

where pP  is a permutation matrix, and pK  is a diagonal scal-
ing matrix with nonzero elements on its diagonal. Assume that 
the first two columns of each U p  (rows of )U p

T  are common, 

and let U  denote this common part, and A p  denote the first 
two rows of .A pu  We therefore have 

 .Ap
T

p pP K=A U  

Dividing each column of pA  by the element of maximum 
modulus in that column, and denoting the resulting F2 #  mat-
rix ,A p
|  we obtain

 .A Ap
T

pKP= U|

Notice that K  does not affect the ratio of elements in each 2 1#  
column. If these ratios are distinct (which is guaranteed almost 
surely if U  and A  are independently drawn from absolutely con-
tinuous distributions), then the different permutations can be 
matched by sorting the ratios of the two coordinates of each 
2 1#  column of .A p

|

In practice, using a few more anchor rows will improve the 
permutation-matching performance, and is recommended in dif-
ficult cases with high noise variance. When S anchor rows are 
used, the optimal permutation matching problem can be cast as 

 | | | | ,min A A p F1
2P-

P

| |  

where optimization is over the set of permutation matrices. 
This may appear to be a hard combinatorial problem at first 
sight; but it is not. Using 

complexITy oF mulTIway compressIon–redux
In scalar form, the ( , , )m n th,  element of the tensor Y  after 
multiway compression can be written as 

 ( , , ) ( , ) ( , ) ( , ) ( , , ) .m n i j m k n i j kY U V W X
k

K

j

J

i

I

111
, ,=

===

///

claim s1 
Suppose that X  is sparse, with NZ X^ h nonzero elements, 
and suppose that it is stored as a serial list with entries for-
matted as [ , , , ],i j k v  where v  is the nonzero value at tensor 
position ( , , ) .i j k  Suppose that the list is indexed by an inte-
ger index ,s  i.e., [ ( ), ( ), ( ), ( )]i s j s k s v s  is the record corre-
sponding to the sth  entry of the list. Then the following 
simple algorithm will compute the multiway compressed 
tensor Y  in only NZLMN X^ h  operations, requiring only 
LMN  cells of memory to store the result, and IL JM KN+ +  
cells of memory to store the matrices ,U  ,V  .W

algorithm s1: efficient multiway compression pseudocode 
Y=zeros(L,M,N); 
for s=1:NZX, 
 for ell=1:L, 
 for m=1:M, 
 for n=1:N, 
  Y(ell,m,n) = Y(ell,m,n)+ U(i(s),ell)*V(j(s),m)*W(k(s),n)*v(s); 
 end 
 end 
 end
end

Notice that, even if X  is dense (i.e., ),IJKNZ X =^ h  the above 
algorithm only needs to read each element of X  once, so com-
plexity will be LMNIJK  but memory will still be very modest: 
only LMN  cells of memory to store the result, and IL JM KN+ +  
cells of memory to store the matrices ,U  ,V  .W  Contrast this to 
the naive way of serially computing the mode products, whose 
complexity order is ( ( , , ) )minO L M N IJK  but whose memory 
requirements are huge for dense ,U  ,V  ,W  due to intermediate 
result explosion—even for sparse .X  We see a clear complexity-
memory tradeoff between the two approaches for dense data, 
but Algorithm S1 is a clear winner for sparse data, because spars-
ity is lost after the first mode product. Notice that the above 
algorithm can be fully parallelized in several ways—by splitting 
the list of nonzero elements across cores or processors (paying in 
terms of auxiliary memory replications to store partial results for 
Y  and the matrices ,U  ,V  ,W  locally at each processor), or by 
splitting the ( , , )m n,  loops—at the cost of replicating the data 
list. As a final word, the memory access pattern (whether we 
read and write consecutive memory elements in blocks, or make 
wide strides) is the performance-limiting factor for truly big data, 
Algorithm S1 makes strides in reading elements of ,U  ,V  ,W  
and writing elements of .Y  There are ways to reduce these 
strides, at the cost of requiring more memory and more floating 
point operations.
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It follows that we may instead

 ( ),max Tr A AT
p1 P

P

| |  

over the set of permutation matrices. This is what is known as 
the linear assignment problem (LAP), and it can be efficiently 
solved using the Hungarian algorithm. 

After this column permutation-matching process, we go 
back to (1) and permute its columns to obtain A p

˘  satisfying 

 .A U Ap p
T

p
˘ PK=  

It remains to get rid of .pK  For this, we normalize each col-
umn by dividing it with its norm. This finally yields 

 .A U Ap p
Tˇ PK=  

For recovery of A  up to permutation and scaling of its columns, 
we then require that the matrix of the linear system

 
A

A

U

U
A

P

T

P
T

1 1
ˇ

ˇ
h h PK=> >H H  (2)

be full column rank. This implies that 

 ( )L I2 2
p

P

p
1

$+ -
=

/  

i.e., 

 ( ) .L I2 2
p

P

p
1

$- -
=

/

Note that every submatrix contains the two anchor rows that are 
common, and duplicate rows clearly do not increase the rank. Also 
note that once the dimensionality requirement is met, the matrix 
will be full rank with probability 1, because its nonredundant 
entries are drawn from a jointly continuous distribution (by design). 

Assuming ,L Lp =  , ,p P16 g! " , for simplicity (and sym-
metry of computational load), we obtain ( ) ,P L I2 2$- -  or, 
in terms of the number of threads

 .P L
I

2
2$
-
-

Likewise, from the corresponding full column rank require-
ments for the other two modes, we obtain 

 ,  .P M
J P N

Kand $ $

Notice that we do not subtract two from numerator and denom-
inator for the other two modes, because the permutation of col-
umns of , ,A B Cp p pu u u  is common, so it is enough to figure it out 
from one mode, and apply it to other modes as well. In short,

 , ,maxP L
I

M
J

N
K

2
2$
-
-e o.

RemaRk 2
Note that if, say, A  can be identified and it is full column rank, 
then B  and C  can be identified by solving a linear least squares 
problem—but this requires access to the full big tensor data. In 
the same vein, if A  and B  are identified, then C  can be identi-
fied from the full big tensor data even if A  and B  are not full 
column rank individually—it is enough that A B9  is full col-
umn rank, which is necessary for identifiability of C  even from 
the big tensor, hence not restrictive. Parallel randomly com-
pressed (PARACOMP)-based identification, on the other hand, 
only requires access to the factors derived from the small 
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[FIg2] a schematic illustration of the paracomp fork-join architecture. The fork step creates a set of p randomly compressed reduced-
size replicas p p 1= .PY" ,  each yp  is obtained by applying , ,U V Wp p p^ h to ,X  as detailed in Figure 1. each yp  is then independently 
factored (all p  threads can be executed in parallel). The join step collects the estimated mode loading submatrices , , CA Bp p pu u u^ h from the 
p  threads, and, after anchoring all to a common permutation and scaling, solves a master linear least squares problem per mode to 
estimate the full mode loading matrices , , .A B C^ h
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replicas. This is clearly advantageous, as the raw big tensor data 
can be discarded after compression, and there is no need for 
retrieving huge amounts of data from cloud storage. 

One can pick the mode used to figure out the permutation 
ambiguity, leading to the symmetrized condition 

, ,minP P P P1 2 3$ " , with 

 , ,maxP L
I

M
J

N
K

2
2

1 = -
-e o

 , ,maxP L
I

M
J

N
K

2
2

2 = -
-e o

 , , .maxP
L
I

M
J

N
K

2
2

3 =
-
-

e o  

If the compression ratios in the different modes are similar, it 
makes sense to use the longest mode for this purpose; if this is 
the last mode, then 

 , , .maxP
L
I

M
J

N
K

2
2$
-
-

e o

We have thus established the following result. 

ThEOREM 7
In reference to Figure 2, assume : 1vecx X A B C9 9 != =^ ^h h  

,R IJK  where A  is ,I F#  B  is ,J F#  and C  is K F#  (i.e., the rank 
of X  is at most ) .F  Assume that ,F I J K# # #  and ,A  ,B  C  are 
all full column rank ( ) .F  Further assume that ,L Lp =  ,M Mp =  

,N Np =  , , ,p P16 g! " ,  ,L M N# #  ( ) ( ) ,L M F1 1 16$+ +  
the elements of U p p

P
1=" ,  are drawn from a jointly continuous dis-

tribution, and likewise for ,Vp p
P

1=" ,  while each W p  contains two 
common anchor columns, and the elements of W p p

P
1=" ,  (except 

for the repeated anchors, obviously) are drawn from a jointly con-
tinuous distribution. Then the data for each thread : vecy Yp p= ^ h 
can be uniquely factored, i.e., , ,A B Cp p pu u u^ h is unique up to column 
permutation and scaling. If, in addition to the above, we also have 

/ , / , ( ) / ( )max I L J M K NP 2 2$ - -^ h  parallel threads, then 
, ,A B C^ h are almost surely identifiable from the thread outputs 

, ,A B Cp p p p
P

1=
u u u^ h" ,  up to a common column permutation and scaling. 
The above result is indicative of a family of results that can 

be derived, using different CP identifiability results. Its signifi-
cance may not be immediately obvious, so it is worth elaborat-
ing further at this point. On one hand, Theorem 7 shows that 
fully parallel computation of the big tensor decomposition is 
possible—the first such result, to the best of our knowledge, 
that guarantees identifiability of the big tensor decomposition 
from the intermediate small tensor decompositions, without 
placing stringent additional constraints. On the other hand, the 
conditions appear convoluted, and the memory/storage and 
computational savings, if any, are not necessarily easy to see. 
The following claim nails down the take-home message. 

CLAIM 1 
Under the conditions of Theorem 7, if ) / (K N2 2- - =^ h  

/ , / , ( ) / ( ) ,max I L J M K N2 2- -^ h  then the memory/storage and 
computational complexity savings afforded by the architecture shown 
in Figure 2 relative to brute-force computation are of order / .IJ F^ h  

Proof 1
Each thread must store LMN  elements, and we have 

) / (K NP 2 2= - -^ h threads in all, leading to a total data size of 
order LMK  versus ,IJK  so the ratio is / .IJ LM^ h  The condition 
( ) ( )L M F1 1 16$+ +  only requires LM  to be of order ,F  hence 
the total compression ratio can be as high as / .IJ FO^ h  Turning to 
overall computational complexity, note that optimal low-rank ten-
sor factorization is NP-hard, even in the rank-one case. Practical 
tensor factorization algorithms, however, typically have complex-
ity O IJKF^ h (per iteration, and overall if a bound on the max-
imum number of iterations is enforced). It follows that the 
practical complexity order for factoring out the P parallel threads 
is O PLMNF^ h versus O IJKF^ h for the brute-force computation. 
Taking into account the lower bound on ,P  the ratio is again of 
order / ,IJ LM^ h  and since the condition ( ) ( )L M F1 1 16$+ +  
only requires LM  to be of order ,F  the total computational com-
plexity gain can be as high as / .IJ FO^ h  

RemaRk 3 
The complexity of solving the master linear equation (2) in the final 
merging step for A  may be a source of concern—especially 
because it hasn’t been accounted for in the overall complexity cal-
culation. Solving a linear system of order of I  equations in I  
unknowns generally requires ( )O I3  computations; but closer scru-
tiny of the system matrix in (2) reveals interesting features. If all 
elements of the compression matrices U p" , (except for the com-
mon anchors) are i.i.d. with zero mean and unit variance, then, 
after removing the redundant rows, the system matrix in (2) will 
have approximately orthogonal columns for large .I  This implies 
that its left pseudoinverse will simply be its transpose, approxi-
mately. This reduces the complexity of solving (2) to .I F2  If higher 
accuracy is required, the pseudoinverse may be computed offline 
and stored. It is also important to stress that (2) is only solved once 
for each mode at the end of the overall process, whereas tensor 
decomposition typically takes many iterations. In short, the con-
stants are such that we need to worry more about the compression 
(fork) and decomposition stages, rather than the final join stage. 

Theorem 7 assumes ( , , )minF I J K#  to ensure (via Lemma 
2) absolute continuity of the compressed factor matrices, which is 
needed to invoke almost sure uniqueness per [26]. Cases where 

( , , )minF I J K2  can be treated using Kruskal’s condition for 
unique decomposition of each compressed replica 

 ( , ) ( , ) ( , ) .min min minL k M k N k F2 2A B C $+ + +  

It can be shown that ( , )mink I FA =  for almost every A  (except 
for a set of measure zero in );R IF  and likewise ( , ),mink J FB =  
and ( , ),mink K FC =  for almost every B  and .C  This simplifies 
the above condition to 

 ( , , ) ( , , ) ( , , ) .min min minL I F M J F N K F F2 2$+ + +

In other words, if the simplified condition holds, then CP 
decomposition of each reduced replica is unique for almost 
every ( ), ,A B C  and almost every set of compression matrices 
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( ) ., ,U V W  Assume ,I F$  ,J F$  but ,K F1  and pick 
,L M F= =  and .N 3=  Then the condition further reduces to 

 ( , ) ,minF K F2 3 2 2$+ +  

which is satisfied for any K 2$  (i.e., for any tensor). We also need 

 , , ,maxP L
I

M
J

N
K

2
2$
-
-c m  

which in this case N 3=^ h reduces to 

 , , .maxP L
I

M
J K 2$ -` j

When / / , / , ,maxI L I L J M K 2= -^ ^h h  then there are /I L^ h parallel 
threads of size LMN F3 2=  each, for total cloud storage ,IF3  i.e., 
order ;IF  hence the overall compression ratio (taking all replicas 
into account) is of order ( ) / ( ) / .IJK IF JK F=^ ^h h  The ratio of over-
all complexity orders is also ( ) / ( / .)IJKF IF JK F2 =^ ^h h  This is the 
same type of result as the one we derived for the case F #

( , , ) .min I J K  On the other hand, when ( / , / ,max I L I MK 2- =

),K 2-  there are K 2-  parallel threads of size LMN F3 2=  each, 
for total cloud storage ( ),F K3 22 -  i.e., order ;KF2  hence the 
overall compression ratio is ( ) / ( ( ) / ,)IJK KF IJ F2 2=^ h  and the ratio 
of overall complexity orders is also ( ) / ( ( ) / .)IJKF KF IJ F3 2=^ h  We 
see that there is a penalty factor F  relative to the case 

( , , );minF I J K#  this is likely an artifact of the method of proof, 
which we hope to improve in future work. We summarize the 
result in the following theorem. 

ThEOREM 8
In reference to Figure 2, assume : 1vecx X A B C9 9 != =^ ^h h  

,R IJK  where A  is ,I F#  B  is ,J F#  C  is K F#  (i.e., the rank of 
X  is at most ) .F  Assume that ,I F$  J F$  (K  can be ),F1  and 
pick ,L Lp =  ,M Mp =  ,N Np =  , , ,p P16 g! " ,  with 

,L M F= =  and .N 3=  The compression matrices are chosen as 
in Theorem 7. If / , / , ,max I L J MP K 2$ -^ h  then A, B, C^ h is id-
entifiable from , , ,A B Cp p p p

P
1=

u u u^ h" ,  for almost every , ,A B C^ h and 
almost every set of compression matrices. When ( / )I L =  

( / ), ( / ), ,max I L J M K 2-^ h  the total storage and complexity gains 
are of order ( / );JK F  whereas if ( / ), ( / ), ,max I L J MK K2 2- = -^ h  
the total storage and complexity gains are of order ( / ) .IJ F2  

lateNt spaRsity
If latent sparsity is present, we can exploit it to reduce .P  Assume 
that every column of A  ( , )B C  has at most na  (respectively, 

, )n nb c  nonzero elements. A column of A  can be uniquely recov-
ered from only n2 a  incoherent linear equations [30]. Therefore, 
we may replace the condition

 , , ,maxP L
I

M
J

N
K

2
2$
-
-c m

with 

 , , .maxP L
n

M
n

N
n2 2

2
2 2a b c$
-
-c m  (3)

Assuming 

 , , ,maxN
n

L
n

M
n

N
n

2
2 2 2 2

2
2 2c a b c

-
- =

-
-c m

it is easy to see that the total cloud storage and complexity gains 
are of order ( / ) ( / )IJ F K nc —improved by a factor of ( / ) .K nc  It is 
interesting to compare this result with the one in Sidiropoulos 
and Kyrillidis [13], which corresponds to using P 1=  in our pre-
sent context. Notice that (3) implies ( / ),n PL 2 a$  ( / ),n PM 2 b$  

(( ) / )PN n2 2 2c &$- -  2 ( ( / )) ( / ) .P N n P1 1 2& $+ -( / )n PN 2$ c c  
Substituting P 1=  we obtain ,L n2 a$  ,M n2 b$  ,N n2 c$  
which is exactly the condition required in [13]. We see that PARA-
COMP subsumes [13], offering greater flexibility in terms of 
choosing P  to reduce the size of replicas for easier in-memory 
processing, at the cost of an additional merging step at the end. 
Also note that PARACOMP is applicable in the case of dense latent 
factors, whereas [13] is not. 

RemaRk 4 
In practice we will use a higher ,P  i.e., 

 , , ,maxP L
n

M
n

N
n

2
2a b c

$
n n n

-
-

c m

with , ,3 4 5!n " , instead of 2, and an 1,  sparse underdeter-
mined linear equations solver for the final merging step for .A  
This will increase complexity from ( )O I F2  to ( ),O I F.3 5  and the 
constants are such that the difference is significant. This is the 
price paid for the reduced memory and intermediate complexity 
benefits afforded by latent sparsity. 

mapreduce ImplemenTaTIon
With the proliferation of large collections of data, as well as big 
clusters of (usually commodity) computers that were largely 
underutilized, arose the need for a unified framework of scalable 
distributed computation in the cloud. In [31], Dean et al. from 
Google introduced such a framework, called MapReduce. MapRe-
duce provides a very versatile level of programming abstraction: it 
conceals all its inner workings from the programmer, and simply 
requires the implementation of two functions: Map and Reduce. 

The Map function runs in parallel on many machines; each 
instance reads data serially from the Distributed File System  
(DFS), performs some sort of parsing or computation on that data, 
and emits a series of (key,value) pairs. (DFS is defined by 
MapReduce.) Consequently, the Reduce function runs in parallel 
on a set of machines, and each instance of Reduce receives as 
input (key,value) pairs with the same key; it performs some 
sort of (user defined) aggregation or computation on these val-
ues, and then emits a series of (key’,value’) pairs, which are 
eventually written to DFS. This way, any task that can be expressed 
as a combination of a Map and a Reduce function may be run in 
a distributed fashion on a cluster of computers, on data that is also 
stored in the cloud, and much bigger than what a typical personal 
computer can store or process in memory. The MapReduce frame-
work also deals with machine failures (an issue which arises very 
often in large clusters of computers) in a way that is transparent to 
the programmer. Among other safety measures, MapReduce uses 
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three-way replication of each computation, so that even if one 
machine fails, there are still two backup machines that are carry-
ing out the same task. This way, the user does not have to deal 
with the frustrations of machine failures. The original MapReduce 
implementation is internal to Google; however, there exists a very 
robust and well-tested open source implementation by Apache, 
called Hadoop [32]. The two primary programming languages that 
can be used with Hadoop are Java and Python. 

Signal processing algorithms are generally not realizable as a 
single MapReduce task, but it is often possible to break up a given 
algorithm in parts, each of which may be written as a MapReduce 
computation. In this way, the overall signal processing algorithm 
can be implemented as a chain of MapReduce tasks. 

The most typical introductory example of a MapReduce task 
is the WordCount application [33], where the goal is to esti-
mate the frequency of occurrence of each word in a corpus. 
Given that MapReduce was originally developed by Google, a 
search engine that relies heavily on indexing large collections of 
text to provide fast and accurate search results, the Word-
Count example fits perfectly in the original context. In “Solv-
ing a Toy Problem in Hadoop–MapReduce,” we instead use a 
very simple and common signal processing task to illustrate the 
way MapReduce works: computing the histogram of a big 

speech/audio, image, or video signal. The particular kind of 
 signal is not important here, but bear in mind that our motiva-
tion is to be able to handle big data, distributed over the cloud. 
To simplify exposition, we assume that the signal of interest is 
integer valued. 

sketch oF paRacomp iN mapReduce
We now provide a sketch of an implementation of PARACOMP in 
MapReduce. As in Figure 2, we break the algorithm down to three 
distinct steps: 1) compression, 2) decomposition, and 3) recovery 
of factor matrices. Each of the three steps consists of a few MapRe-
duce chain tasks. 

COMPRESSION
For the compression step, we first need to create P  triplets of ran-
dom compression matrices ,U p  ,Vp  .W p  This may be carried out 
simply by a mapper that emits p  (the replica index) as key, and the 
dimensions of the matrices as the value. Thus, each reducer is 
responsible for creating and storing on DFS all three compression 
matrices. Depending on how large the compression matrices are, 
instead of assigning a single reducer the burden of creating an 
entire batch of ,U p  ,Vp  ,W p  we may instead choose to assign each 
reducer to create a single row of each of the matrices. Taking a 
closer look at Algorithm S1 in “Complexity of Multiway Compres-
sion–Redux,” we can devise a MapReduce task for the compression 
step. Let us assume that the tensor is stored in a text file, in multi-
ple lines (as many as the nonzero values in the tensor), in the form 

 ( ), ( ), ( ), ( ),i s j s k s v s

which is appropriate for sparse tensors. Each mapper reads a seg-
ment of that file, processing one line at a time. By inspecting the 
core equation of Algorithm S1 in “Complexity of Multiway 
Compression–Redux” 

 ( , , ) ( , , ) ( ( ), ) ( ( ), ) ( ( ), ) ( ),m n m n i s j s m k s n v sY Y U V W, , ,= +

we see that for each mapper, it suffices to hold ( ( ), :),i sU  ( ( ), :),j sV  
and ( ( ), :)k sW  in memory, so that it calculates the contribution of 
the current nonzero value of the tensor ( )v s  to the partial sum 
that comprises ( , , ) .m nY ,  Since , ,L M N  are considerably 
smaller than , , ,I J K  we use ( )O L M N+ +  of memory on each 
mapper. Thus, each mapper emits as key the concatenation of 
( , , )m n,  and as value ( ( ), ) ( ( ), ) ( ( ), ) ( ) .i s j s m k s n v sU V W,  Fi-
nally, each reducer receives all partial values of the sum that builds 

( , , )m nY ,  up, sums up all incoming values, and emits a pair with 
key equal to ( , , )m n,  and value equal to ( , , ),m nY ,  which is 
eventually written to DFS. 

Since we execute multiple repetitions of the compression step, 
we may concatenate the repetition number p  to the key that is 
emitted by the mapper, as well as the key emitted by the reducer. 
Thus, at the end, there will be one file containing the nonzero val-
ues for each compressed tensor in the form: 

 , , , , ( , , )p m n m nYp, , .

solvIng a Toy problem In Hadoop–mapreduce
Consider a large speech/audio, image, or video signal, 
stored as a text file, with each line containing a signal 
value. This file is stored in a distributed fashion, in DFS. 
To compute its histogram, it suffices to use a single 
MapReduce job. 

■ Map: Each mapper gets a portion of the file and 
reads it line-by-line. For each line-entry, n, the mapper 

sets key n=  and value ,1=  and emits a ,n 1^ h pair. 

■ Reduce: As mentioned earlier, each instance of a 

reducer receives all such (key,value) pairs that have 

the same key. In this particular case, all instances of 
number n  will be processed by the same reducer, since 

the Map function set key .n=  As a consequence, each 
reducer has all the information needed to calculate the 
exact count of appearances of a given number .n  Thus, 
each reducer simply calculates the total number of 

,n 1^ h pairs (denoted by ),f  and emits a single tuple 
, ,n f^ h  which contains the number and its correspond-

ing frequency of occurrence.
Finally, when all reducers have terminated, the output of 
the above MapReduce task will contain lines in the form: 

(number, frequency). 
Even though the above example is very simple, the logic 

that underlies the transformation of an algorithm into a 
series of MapReduce tasks is the same: decompose the 

algorithm into self-contained pieces, find a (key, value) 
representation for the intermediate data of each piece, 

and finally express this computation as a pair of Map and 

Reduce functions.
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DECOMPOSITION
For the decomposition step, we spawn P  parallel processes on dif-
ferent machines, each one fitting the CP decomposition to the re-
spective compressed tensor. To do that in the MapReduce 
framework, we may use the Map function to feed the appropriate 
data to each reducer. More specifically, each mapper will read por-
tions of the file created by the compression step, and use as a key 
the repetition index ,p  and as value the rest of the row, i.e., 
( , , , ( , , )) .m n m nYp, ,  Consequently, P  reducers will be spawned, 
each receiving all the data of a single compressed tensor. We as-
sume that the compressed tensor fits in the main memory of a sin-
gle machine, therefore each reducer simply stores the incoming 
values in a three dimensional array, and proceeds with in-memory 
computation of the CP decomposition. In case the reducers are 
unable to store the compressed tensor in main memory, there ex-
ist methods that fit the CP decomposition on MapReduce [34]. 
However, solving each one of the parallel decompositions on Ma-
pReduce would significantly hurt performance, therefore we 
should aim for compressed tensors that fit in memory. 

RECOVERY OF FACTOR MATRICES
The final step involves the recovery of the factor matrices , ,A B C  
from the partial factors as obtained from the parallel decomposi-
tion step. Recovery for each factor matrix is achieved by stacking 
the partial results on top of each other, as well as the compression 
matrices in a similar fashion, and solving a least squares problem 
involving these two matrices. The stacking of both partial factors 
and compression matrices can be done through a simple MapRe-
duce task: each mapper will be emitting ( , )i f  (i.e., the indices of 
each matrix coefficient) as key, and the value will be the coeffi-
cient of the matrix at ( , )i f (denoted by )v  and the index ,p  indi-
cating the replica number. Then, each reducer will emit tuples of 
the form 

 , ,i f vl ,

where il will be the original row index adjusted appropriately 
using ,p  to account for the stacking. 

To solve the least squares step, we may use scalable algorithms 
that implement the Moore–Penrose pseudoinverse on MapReduce 
[35]. After pseudoinversion, we need to carry out matrix multipli-
cation, a problem that has also been thoroughly studied for 
MapReduce [36].

IllusTraTIve numerIcal resulTs
Our theorems ensure that PARACOMP works with ideal low- and 
known-rank tensors, but what if there is measurement noise or 
other imperfections, or we underestimate the rank? Does the over-
all approach fall apart in this case? From “The Color of Com-
pressed Noise” and “Is Component Ordering Preserved After 
Compression?” we have good reasons to believe that this is not the 
case, but one cannot be confident without numerical experiments 
that corroborate intuition. In this section, we provide indicative 
results to illustrate what can be expected from PARACOMP and 
the effect of various parameters on estimation performance. 

In all cases considered, ,I J K 500= = =  the noiseless tensor 
has rank ,F 5=  and is synthesized by randomly and independ-
ently drawing ,A  ,B  C  each from an i.i.d. zero-mean, unit-vari-
ance Gaussian distribution (randn(500,5) in MATLAB), and 
then taking their tensor product; i.e., computing the sum of outer 
products of corresponding columns of ,A  ,B  .C  Gaussian i.i.d. 
measurement noise is then added to this noiseless tensor to yield 
the observed tensor to be analyzed. The nominal setup uses 
L M N 50= = =  (so that each replica is 0.1% of the original ten-
sor), and P 12=  replicas are created for the analysis (so the over-
all cloud storage used for all replicas is 1.2% of the space needed to 
store the original tensor). S 3=  common anchor rows (instead of 

,S 2=  which is the minimum possible) are used to fix the permu-
tation and scaling ambiguity. These parameter choices satisfy PAR-
ACOMP identifiability conditions without much additional slack. 
The standard deviation of the measurement noise is nominally set 
to . .0 01v =

Figure 3 shows the total squared error for estimating ,A  i.e., 
,A A 2

2
- t  where At  denotes the estimate of A  obtained using 

PARACOMP, as a function of .L M N= =  The baseline is the total 
squared error attained by directly fitting the uncompressed 
500 500 500# #  tensor using a mature tensor decomposition 
algorithm (COMFAC, available at www.ece.umn.edu/~nikos)—the 
size of the uncompressed tensor used here makes such direct fit-
ting possible, for comparison purposes. We see that PARACOMP 
yields respectable accuracy with only 1.2% of the full data, and is 
just an order of magnitude worse than the baseline algorithm 
when ,L M N 150= = =  corresponding to 32% of the full data. 
This is one way we can tradeoff memory/storage/computation ver-
sus estimation accuracy in the PARACOMP framework: by control-
ling the size of each replica. Another way to tradeoff memory/
storage/computation for accuracy is through .P  Figure 4 shows 
accuracy as a function of the number of replicas (computation 
threads) ,P  for fixed .L M N 50= = =  Finally, Figure 5 plots 
accuracy as a function of measurement noise variance ,2v  for 
L M N 50= = =  and .P 12=
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summary and Take-Home poInTs

summaRy
We have reviewed the basics of tensors and tensor decomposition, 
and presented a novel architecture for parallel and distributed 
computation of low-rank tensor decomposition that is especially 
well suited for big tensors. It is based on parallel processing of a 
set of randomly compressed, reduced-size replicas of the big ten-
sor. We have also provided a friendly introduction to Hadoop–
MapReduce, starting from a toy signal processing problem, and 
going up to sketching a Hadoop implementation of tensor decom-
position in the cloud. 

motivatioN aNd impact
There is rapidly growing interest in signal processing for big data 
analytics, and in porting/translating and developing new signal pro-
cessing algorithms for cloud computing platforms. Tensors are 
multidimensional signals that have found numerous applications in 
signal processing, machine learning, data mining, and well beyond 
(psychology, chemistry, life sciences, etc.), and they are becoming 
increasingly important for online marketing, social media, search 
engines, and many more applications. Tensors easily grow to be 
really big, as their total size is the product of mode sizes, hence 
exponential in the number of modes (dimensions in signal process-
ing parlance). Big tensor data will thus be a big part of big data. 

take-home poiNts
1) PARACOMP enables massive parallelism with guaranteed 
identifiability properties: if the big tensor is indeed of low rank 
and the system parameters are appropriately chosen, then the 
rank-one factors of the big tensor will indeed be recovered 
from the analysis of the reduced-size replicas. 
2) PARACOMP affords memory/storage and complexity gains of 
order up to /IJ F^ h for a big tensor of size I J K# #  of rank .F  
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THe color oF compressed noIse
Consider a noisy tensor ,Y X Z= +  where Z  denotes zero-
mean additive white noise. In vectorized form, ,y x z= +  
with : ,vecy Y= ^ h  : ,vecx X= ^ h  and : .vecz Z= ^ h  After 
multiway compression, one obtains the reduced-size tensor 

,Yc  whose vectorized representation : vecy Yc c= ^ h =
U V W yT T T7 7^ h  = U V W xT T T7 7^ h  + .U V W zT T T7 7^ h  

Let : .z U V W zc
T T T7 7= ^ h  Clearly, [ ] ,E 0zc =  and 

 E Ez z U V W zz U V Wc c
T T T T T7 7 7 7= ^ ^h h6 6@ @

 EU V W zz U V WT T T T7 7 7 7= ^ ^h h6 @
 U V W U V WT T T2 7 7 7 7v= ^ ^h h

 ,U U V V W WT T T2 7 7v= ^ ^ ^^ h h hh

where we have used two properties of the Kronecker 
product: transposition 

 ,A B A BT T T7 7=^ h

and the mixed product rule [29] 

 .A B C D AC BD7 7 7=^ ^ ^h h h

We see that, if ,U  ,V  W  are orthonormal, then the noise in 
the compressed domain is white. Note that, for large I  and 
U  drawn from a zero-mean unit-variance uncorrelated dis-
tribution, U U IT .  by the law of large numbers. Further-
more, even if z  is not Gaussian, zc  will be approximately 
Gaussian for large ,IJK  by the central limit theorem. From 
these, it follows that least-squares fitting is approximately 
optimal in the compressed domain, even if it is not so in the 
uncompressed domain. Compression thus makes least-
squares fitting universal!

20 30 40 50 60 70 80 90 100 110

10−3

10−4

10−5

10−6

10−7

P

||A
 −

 A
ha

t||
F2

I = J = K = 500; L = M = N = 50;
Σ  = 0.01; S = 3

1.2% of The Full Data
in P = 12 Processors,
with 0.1% Each

PARACOMP
Direct,
No Compression

12% of Full Data
P = 120 Processors,
with 0.1% Each

[FIg4] mse as a function of ,p  the number of replicas/parallel 
threads spawned.



 IEEE SIGNAL PROCESSING MAGAZINE [69] SEPTEMBER 2014

No sparsity is required, although such sparsity can be exploited 
to improve memory, storage, and computational savings. 
3) We have shown that using white noiselike compression 
matrices 

 ■ approximately preserves component ordering  
 ■ ensures that the compressed noise is approximately white 

if the original measurement noise is white  
 ■ makes the compressed noise look Gaussian, rendering 

classical least-squares CP algorithms well suited for fitting 
the reduced-size replicas, even if the measurement noise in 
the big tensor is far from Gaussian.

4) Each replica is independently decomposed, and the results 
are joined via a master linear equation per tensor mode. The 
number of replicas and the size of each replica can be adjusted 
to fit the number of computing nodes and the memory avail-
able to each node, and each node can run its own CP software, 
depending on its computational capabilities. This flexibility is 
why PARACOMP is better classified as a computational archi-
tecture, as opposed to a method or algorithm.
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Is componenT orderIng preserved aFTer compressIon?
Consider randomly compressing a rank-one tensor ,a b c& &=X  
written in vectorized form as x a b c7 7= (recall that the Kro-
necker product 7  and the Khatri–Rao product 9  coincide 
when all arguments involved are vectors). The compressed ten-
sor is ,Xu  in vectorized form 

 x U V W a b cT T T7 7 7 7=u ^ ^h h

 ( ) ( ) ( ),U a V b W cT T T7 7=

using the mixed product rule [29]. It follows 

|| | |x x xT2
2 =u u u

 ( ) ( ) ( ) ( ) ( ) ( )a U b V c W U a V b W cT T T T T T7 7 7 7= ^ ^h h

 ( ) ( ) ( )a UU a b VV b c WW cT T T T T T7 7=

 | | | | | | | | | | | | ,U a V b W cT T T
2
2

2
2

2
2=

where we have used the transposition and mixed product rules, 
and that the Kronecker product of scalars is a plain product. 
Notice that for our choice of U  (i.i.d. zero-mean Gaussian of 

variance 1, i.e., randn(I,L) in Matlab), ,U U IT
L L. #  but UUT

is rank-deficient ( ),L I1  thus far from .I I I#  however, consider-
ing one generic element of ,U aT  say ,u aT  and its magnitude-
square, note that | | ,u a a uu aT T T2 =  so 

 | | | | | | .E Eu a a uu a a a aT T T T2
2
2= = =8 8B B

Next, it can be shown that 

 | | | | | | .2Var u a aT 2
2
4=8 B

So now, looking at || | | ,U aT 2
2

 || | | | | | | ,E LU a aT
2
2

2
2=8 B

and, since the different rows of UT  are independent, hence 
variance adds up 

 || | | | | | | .L2Var U a aT
2
2

2
4=8 B

So || | |U aT 2
2  has mean2/variance (‘SNR’) of ( / ) .L 2

Turning to || | |x 2
2u = || | | | | | | | | | | ,U a V b W cT T T

2
2

2
2

2
2  it can be 

shown that it has mean 

 || | | | | | | | | | | | | | | ,E LMNx a b c2
2

2
2

2
2

2
2=u8 B

and mean2/variance (‘SNR’) 

 
|| | |

|| | |
( ) ( ) ( )

.
E
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L M N

2 2 2Var x
x

2
2

2
2 2

2 2 2 2 2 2

2 2 2
=

+ + + -u

u^ h

6
6

@
@

Assuming without loss of generality that ,L M N# #  this SNR 
is of order ( / ) .L 2  What this means is that, for moderate , ,L M N  
and beyond, the Frobenious norm of a compressed rank-one 
tensor component (=  Euclidean norm of the corresponding 
vectorized representation) is approximately proportional to 
the Frobenious norm of the uncompressed rank-one tensor 
component of the original tensor. In other words: compression 
approximately preserves component ordering. This is import-
ant because it implies that low-rank least-squares approxima-
tion of the compressed tensor approximately corresponds to 
low-rank least-squares approximation of the big tensor. The 
result also suggests that it may be possible to match the com-
ponent permutations across replicas simply by sorting compo-
nent energies. These are ignored in the permutation-matching 
procedure discussed in the main text, due to the normaliza-
tion needed to account for the scaling ambiguity. Including 
energy in the matching process will enhance robustness to 
noise. It seems intriguing to try rank (principal component) 
deflation in this context, but we will pursue this elsewhere 
due to space limitations in the article.
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