
©
 is

to
c

k
p

h
o

to
.c

o
m

/t
A

2Y
o

4N
o

R
i

Digital Object Identifier 10.1109/MSP.2014.2329196

Date of publication: 19 August 2014

1053-5888/14©2014IEEE IEEE SIGNAL PROCESSING MAGAZINE [57] SEPTEMBER 2014

T
 his article combines a tutorial on state-of-the-art ten-
sor decomposition as it relates to big data analytics,
with original research on parallel and distributed
computation of low-rank decomposition for big ten-
sors, and a concise primer on Hadoop–MapReduce. A

novel architecture for parallel and distributed computation of
low-rank tensor decomposition that is especially well suited for
big tensors is proposed. The new architecture is based on parallel
processing of a set of randomly compressed, reduced-size replicas
of the big tensor. Each replica is independently decomposed, and
the results are joined via a master linear equation per tensor
mode. The approach enables massive parallelism with guaranteed

identifiability properties: if the big tensor is of low rank and the
system parameters are appropriately chosen, then the rank-one
factors of the big tensor will indeed be recovered from the analy-
sis of the reduced-size replicas. Furthermore, the architecture
affords memory/storage and complexity gains of order /IJ F^ h for
a big tensor of size I J K# # of rank F with .F I J K# # # No
sparsity is required in the tensor or the underlying latent factors,
although such sparsity can be exploited to improve memory, stor-
age, and computational savings.

InTroducTIon
Tensors are data structures indexed by three or more indices,
say (, , ,)i j k g , a generalization of matrices, which are data
structures indexed by two indices, say (,)r c for (row, column).
The term tensor has a different meaning in physics, however, it

[Nicholas D. Sidiropoulos, Evangelos E. Papalexakis, and Christos Faloutsos]

[A scalable distributed architecture for big tensor decomposition]

Parallel Randomly
Compressed Cubes

 IEEE SIGNAL PROCESSING MAGAZINE [58] SEPTEMBER 2014

has been widely adopted across various disciplines in recent
years to refer to what was previously known as a multiway
array. Matrices are two-way arrays, and there are three- and
higher-way (or higher-order) tensors.

Tensor algebra has many similarities to but also many strik-
ing differences from matrix algebra, e.g., determining tensor
rank is NP-hard, and low-rank tensor factorization is unique
under mild conditions. Tensor factorizations have already found
many applications in signal processing (speech, audio, commu-
nications, radar, signal intelligence, and machine learning) and
well beyond. For example, tensor factorization can be used to
blindly separate unknown mixtures of speech signals in reverber-
ant environments [2], untangle audio sources in the spectro-
gram domain [3], unravel mixtures of code-division
communication signals without knowledge of their spreading
codes [4], localize emitters in radar and communication applica-
tions [5], detect cliques in social networks [6], and analyze fluo-
rescence spectroscopy data [7], to name a few (see [8] for
additional machine-learning applications).

Tensors are becoming increasingly important, especially for
analyzing big data, and tensors easily turn really big, e.g.,

, , ,1 000 1 000 1 000 1# # = billion entries. Memory issues related
to tensor computations with large but sparse tensors have been
considered in [9] and [10] and incorporated in the sparse tensor
toolbox (http://www.sandia.gov/~tgkolda/TensorToolbox). The
main idea in those papers is to avoid intermediate product explo-
sion when computing sequential tensor–matrix (mode) products,
but the assumption is that the entire tensor fits in memory (in
coordinate-wise representation), and the mode products expand
(as opposed to reduce) the size of the core array that they multiply.
Adaptive tensor decomposition algorithms for cases where the
data is serially acquired (or elongated) along one mode have been
developed in [11], but these assume that the other two modes are
relatively modest in size. More recently, a divide-and-conquer
approach for decomposing big tensors has been proposed in [12].
The idea of [12] is to break the data into smaller boxes that can be
factored independently, and the results subsequently concatenated
using an iterative process. This assumes that each smaller box
admits a unique factorization (which cannot be guaranteed from
global uniqueness conditions alone), requires reconciling the dif-
ferent column permutations and scalings of the different blocks,
and entails significant communication and signaling overhead.

All of the aforementioned techniques require that the full data
be stored in (possibly distributed) memory. Realizing that this is a
showstopper for truly big tensors, [6] proposed a random sam-
pling approach, wherein judiciously sampled significant parts of
the tensor are independently analyzed, and a common piece of
data is used to anchor the different permutations and scalings. The
downside of [6] is that it only works for sparse tensors, and it offers
no identifiability guarantees—although it usually works well for
sparse tensors. A different approach was taken in [13], which pro-
posed randomly compressing a big tensor down to a far smaller
one. Assuming that the big tensor admits a low-rank decomposi-
tion with sparse latent factors, such a random compression guar-
antees identifiability of the low-rank decomposition of the big

tensor from the low-rank decomposition of the small tensor. This
result can be viewed as a generalization of compressed sensing
ideas from the linear to the multilinear case. Still, this approach
works only when the latent low-rank factors of the big tensor are
known to be sparse, and this is often not the case.

This article considers appropriate compression strategies for
big (sparse or dense) tensors that admit a low-rank decomposi-
tion/approximation, whose latent factors need not be sparse.
Latent sparsity is usually associated with membership problems
such as clustering and coclustering [14]. A novel architecture for
parallel and distributed computation of low-rank tensor decom-
position that is especially well suited for big tensors is proposed.
The new architecture is based on parallel processing of a set of
randomly compressed, reduced-size replicas or the big tensor.
Each replica is independently decomposed, and the results are
joined via a master linear equation per tensor mode. The
approach enables massive parallelism with guaranteed identifia-
bility properties: if the big tensor is indeed of low rank and the
system parameters are appropriately chosen, then the rank-one
factors of the big tensor will indeed be recovered from the analy-
sis of the reduced-size replicas. Furthermore, the architecture
affords memory/storage and complexity gains of order /IJ F^ h for
a big tensor of size I J K# # of rank F with .F I J K# # # No
sparsity is required in the tensor or the underlying latent factors,
although such sparsity can be exploited to improve memory, stor-
age, and computational savings.

This article combines 1) a short tutorial on state-of-the-art
tensor decomposition as it relates to big data analytics, 2) novel
research results on tensor compression and parallel and distrib-
uted tensor decomposition, and 3) a concise primer on Hadoop–
MapReduce, starting from a toy signal processing problem, and
going up to sketching a Hadoop implementation of a proposed
algorithm for tensor decomposition in the cloud. The combina-
tion is timely and well motivated given the emerging interest in
(and relative scarcity of literature on) signal processing for big
data analytics, and in porting/translating and developing new
signal processing algorithms for cloud computing platforms.

NotatioN
A scalar is denoted by an italic letter, e.g., a. A column vector is
denoted by a bold lowercase letter, e.g., a, whose ith entry is () .ia
A matrix is denoted by a bold uppercase letter, e.g., A, with

,i j th^ h entry , ;i jA^ h (: ,)jA , :iA^^ hh denotes the jth column
(respectively, ith row) of .A A tensor (three-way array) is
denoted by an underlined bold uppercase letter, e.g., ,X with

, ,i j k th^ h entry , , .ki jX^ h : , : , kX^ h denotes the kth frontal
I J# matrix slab of ,X and similarly for the slabs along the
other two modes. Vector, matrix, and three-way array size
parameters (mode lengths) are denoted by uppercase letters, e.g.,

.I & stands for the vector outer product; i.e., for two vectors a
I 1#^ h and b ,J 1#^ h a b& is an I J# matrix with (,)i j th ele-

ment ;i ja b^ ^h h i.e., a b& = .abT For three vectors, a ,I 1#^ h b
,J 1#^ h c ,K 1#^ h a b c& & is an I J K# # three-way array

with , ,i j k th^ h element .i j ka b c^ ^ ^h h h The vec :^ h operator
stacks the columns of its matrix argument in one tall column; 7

 IEEE SIGNAL PROCESSING MAGAZINE [59] SEPTEMBER 2014

stands for the Kronecker product; 9 stands for the Khatri–Rao
(column-wise Kronecker) product: given A I F#^ h and B

,J F#^ h A B9 is the JI F# matrix

 (: ,) (: ,) (: ,) (: ,)F F1 1A B A B A B9 7 7g= 6 @.

For a square matrix ,S ()Tr S denotes its trace, i.e., the sum of
elements on its main diagonal. x 2

2 is the Euclidean norm
squared, and ,A F

2 F
2X the Frobenious norm squared–the sum

of squares of all elements of the given vector, matrix, or tensor.

Tensor decomposITIon prelImInarIes
There is no comprehensive tutorial on tensor decompositions
and applications from a signal processing point of view as of this
writing, albeit there are several signal processing papers dealing
with topics in tensor decomposition that have significant tuto-
rial value. The concise introduction in [15] is still useful,
although outdated. An upcoming IEEE Signal Processing Mag-
azine tutorial article [8] covers the basic concepts and models
well, and touches upon numerous applications. We also refer
the reader to [16]–[18] for gentle introductions to tensor
decompositions and applications from the viewpoint of compu-
tational linear algebra, chemistry, and the social sciences,
respectively. Due to space limitations, here we only review
essential concepts and results that directly relate to the core of
our article.

RaNk decompositioN
The rank of an I J# matrix X is the smallest number of rank-
one matrices (vector outer products of the form)a b& needed
to synthesize X as

 ,X a b ABf
f

F

f
T

1
&= =

=

/

where : , , ,A a aF1 g= 6 @ and : , , .B b bF1 g= 6 @ This relation can
be expressed element-wise as

 (,) () () .i j i jX a bf
f

F

f
1

=
=

/

The rank of an I J K# # three-way array X is the smallest
number of outer products needed to synthesize X as

 .X a b cf
f

F

f f
1

& &=
=

/

This relation can be expressed element-wise as

 (, ,) () () () .i j k i j kX a b cf
f

F

f f
1

=
=

/

In the sequel we will assume that F is minimal, i.e.,
(),F rank X= unless otherwise noted. The tensor X comprises

K frontal slabs of size ;I J# denote them ,Xk k
K

1=" , with
: (: , : ,) .kX Xk = Rearranging the elements of X in a tall matrix

X := (), , () ,vec vecX XK1 g6 @ it can be shown that

 () : () ,1vecX B A C x X C B AT +9 9 9= = = ^ h

where, A B are as defined for the matrix case, : , , ,C c cF1 g= 6 @ 1
is a vector of all 1s, and we have used the vectorization property
of the Khatri–Rao product (())vec AD d BT = ,B A d9^ h where

()D d is a diagonal matrix with the vector d as its diagonal.

caNdecomp-paRaFac
The above rank decomposition model for tensors is known as
parallel factor analysis (PARAFAC) [19], [20] or canonical
decomposition (CANDECOMP) [21], or CP (and CPD) for CAN-
DECOMP-PARAFAC (decomposition), or canonical polyadic
decomposition (CPD, again). CP is usually fitted using an alter-
nating least squares procedure based on the model equation

() .X B A CT9= In practice we will have () ,X B A CT9. due
to measurement noise and other imperfections, or simply
because we wish to approximate a higher-rank model with a
lower-rank one. Fixing A and ,B we solve

 | | () | | ,min X B A C
C

T
F
29-

which is a linear least squares problem. We can bring any of the
matrix factors to the right by reshuffling the data, yielding corre-
sponding conditional updates for A and .B We can revisit each
matrix in a circular fashion until convergence of the cost func-
tion, and this is the most commonly adopted approach to fitting
the CP model, in good part because of its conceptual and pro-
gramming simplicity, plus the ease with which one can incorpo-
rate additional constraints on the columns of ,A ,B C [7].

tuckeR3
CP is in a way the most basic tensor model, because of its direct
relationship to tensor rank and the concept of rank decomposi-
tion; but other algebraic tensor models exist, and the most nota-
ble one is known as Tucker3. Like CP, Tucker3 is a sum of outer
products model, involving outer products of columns of three
matrices, ,A ,B .C Unlike CP however, which restricts interac-
tions to corresponding columns (so that the first column of A
only appears in one outer product involving the first column of
B and the first column of),C Tucker3 includes all outer prod-
ucts of every column of A with every column of B and every
column of .C Each such outer product is further weighted by
the corresponding entry of a so-called core tensor, whose dimen-
sions are equal to the number of columns of ,A ,B .C

Consider again the I J K# # three-way array X comprising
K matrix slabs ,Xk k

K
1=" , arranged into the tall matrix X :=

(), , () .vec vecX XK1 g6 @ The Tucker3 model can be written in
matrix form as

 () ,X B A GCT7.

where G is the core tensor in matrix form, and ,A ,B C can be
assumed orthogonal without loss of generality, because linear
transformations of ,A ,B C can be absorbed in .G The nonzero
elements of the core tensor determine the interactions between
columns of ,A ,B .C The associated model-fitting problem is

 | | () | | ,min X B A GCT
F
2

A,B,C,G
7-

 IEEE SIGNAL PROCESSING MAGAZINE [60] SEPTEMBER 2014

which is usually solved using an alternating least squares proce-
dure. The Tucker3 model can be fully vectorized as ()vec X .

() .vecC B A G7 7^ h

ideNtiFiability
The distinguishing feature of the CP model is its essential
uniqueness: under certain conditions, ,A ,B C can be identi-
fied from X up to a common permutation and scaling/counter-
scaling of columns [19]–[26]. In contrast, Tucker3 is highly
nonunique; the inclusion of all possible outer products of col-
umns of ,A ,B C results in overparametrization that renders it
unidentifiable in most cases of practical interest. Still, Tucker3
is useful as an exploratory tool and for data compression/inter-
polation; we will return to this shortly.

Consider an I J K# # tensor X of rank .F In vectorized
form, it can be written as the IJK 1# vector ,1x A B C9 9= ^ h
for some A ,I F#^ h B ,J F#^ h and C K F#^ h—a CP model of
size I J K# # and order F parameterized by) .(, ,A B C (Notice
the slight abuse of notation: we switched from 1x C B A9 9= ^ h
to .1x A B C9 9= ^ h The two are related via a row permutation,
or by switching the roles of ,A ,B .)C The Kruskal-rank of ,A
denoted ,kA is the maximum k such that any k columns of A
are linearly independent : () .rankk r AA A# =^ h

ThEOREM 1
Given X ,x+^ h ()A,B,C are unique up to a common column per-
mutation and scaling (e.g., scaling the first column of A and coun-
terscaling the first column of B and/or ,C so long as their product
remains the same), provided that [] .k k k F2 2 22A B C $+ + + An
equivalent and perhaps more intuitive way to express this is that
the outer products a b cf f f& & (i.e., the rank-one factors of)X
are unique.

Note that we can always reshuffle the order of these rank-one
factors (e.g., swap a b c1 1 1& & and)a b c2 2 2& & without changing
their sum ,X a b cf f ff

F

1
& &=

=
/ but this is a trivial and inherently

unresolvable ambiguity that we will ignore in the sequel. Theorem 1
is Kruskal’s celebrated uniqueness result [22], see also follow-up

work in [23]–[25]. Kruskal’s result applies to given (, ,),A B C i.e., it
can establish uniqueness of a given decomposition. Recently, more
relaxed uniqueness conditions have been obtained, which only
depend on the size and rank of the tensor, albeit they cover almost
all tensors of the given size and rank, i.e., except for a set of meas-
ure zero. Two such conditions are summarized next.

ThEOREM 2
Consider an I J K# # tensor X of rank .F If

 ()r F K Fwhich impliesC $=

and

 () () (),I I J J F F1 1 2 1$- - -

then the rank-one factors of X are almost surely unique [27]
(see also [24]).

ThEOREM 3
Consider an I J K# # tensor X of rank .F Order the dimensions
so that .I J K# # Let i be maximal such that ,I2i # and like-
wise j maximal such that .J2 j # If ,F 2i j 2# + - then the rank-
one factors of X are almost surely unique [26]. For ,I J powers of
2, the condition simplifies to (/) .IJF 4# More generally, the con-
dition implies that if (() () /),F I J1 1 16# + + then X has a
unique decomposition almost surely. Before we proceed to discuss
big data and cloud computing aspects of tensor decomposition, we
state two lemmas from [13], which we will need in the sequel.

LEMMA 1
Consider : ,A U AT=u where A is ,I F# and let the I L# matrix
U be randomly drawn from an absolutely continuous distribution
(e.g., multivariate Gaussian with a nonsingular covariance matrix).
Then (,)mink L kA A=u almost surely (with probability 1) [13].

LEMMA 2
Consider ,A U AT=u where A ()I F# is deterministic, tall/square
I F$^ h and full column rank ,r FA = and the elements of U
I L#^ h are independent and identically distributed (i.i.d.) Gauss-

ian zero mean, unit variance random variables. Then the distribu-
tion of Au is absolutely continuous (nonsingular multivariate
Gaussian) [13].

Tensor compressIon
When dealing with big tensors X that do not fit in main memory,
a reasonable idea is to try to compress X to a much smaller tensor
that somehow captures most of the systematic variation in .X The
commonly used compression method is to fit a low-dimensional
orthogonal Tucker3 model (with low mode-ranks) [17], [18], then
regress the data onto the fitted mode-bases. This idea has been
exploited in existing CP model-fitting software, such as COMFAC
[28], as a useful quick and dirty way to initialize alternating least
squares computations in the uncompressed domain, thus acceler-
ating convergence. A key issue with Tucker3 compression of big
tensors is that it requires computing singular value decomposi-
tions of the various matrix unfoldings of the full data, in an

Lp

Up
T

Wp
T

V
p T

I

I

J

J

K

K

Mp

Mp

YpLp

Np
Np

X

[FIg1] a schematic illustration of tensor compression: going from
an I J K# # tensor x to a much smaller L M Np p p# # tensor yp
via multiplying (every slab of) x from the i -mode with ,Up

T from
the J-mode with ,Vp

T and from the k-mode with ,Wp
T where up is

,I Lp# vp is ,J Mp# and wp is .K Np#

 IEEE SIGNAL PROCESSING MAGAZINE [61] SEPTEMBER 2014

alternating fashion. This is a serious bottleneck for big data. Another
issue is that Tucker3 compression is lossy, and it cannot guarantee
that identifiability properties will be preserved. Finally, fitting a CP
model to the compressed data can only yield an approximate model
for the original uncompressed data, and eventually decompression
and iterations with the full data are required to obtain fine estimates.

Consider compressing x into ,y Sx= where S is ,d IJK#

.d IJK% Sidiropoulos and Kyrillidis [13] proposed using a spe-
cially structured compression matrix ,S U V WT T T7 7= which
corresponds to multiplying (every slab of) X from the I -mode
with ,UT from the J -mode with ,VT and from the K -mode with

,WT where U is ,I L# V is ,J M# and W is ,K N# with ,L I#
,M J# N K# and ;LMN IJK% see Figure 1. Such an S corre-

sponds to compressing each mode individually, which is often nat-
ural, and the associated multiplications can be efficiently
implemented; see “Complexity of Multiway Compression?” and
“Complexity of Multiway Compression–Redux.” Due to a fortui-
tous property of the Kronecker product [29],

 () () () ,U V W A B C U A V B W CT T T T T T7 7 9 9 9 9=^ ^ ^h h h

from which it follows that

 () () () .1 1y U V B W C A B CAT T T9 9 9 9= = u u u^ ^h h

i.e., the compressed data follow a CP model of size L M N# # and
order F parameterized by , , ,A B Cu u u^ h with :A U AT=u : ,B V BT=u

: .C W CT=u

This is nice to know, but we are really, naturally, interested in
obtaining answers to the following two questions:

1) Under what conditions on ,A ,B C and ,U ,V W are
, , ,A B Cu u u^ h identifiable from ?y

2) Under what conditions, if any, are ,A ,B C identifiable from
, , ?A B Cu u u^ h

We start by answering the first question in the next section.

sTeppIng-sTone resulTs
The following result is a direct consequence of Lemma 1 and
Kruskal’s uniqueness condition in Theorem 1.

theoRem 4
Let ,1x A B C R IJK9 9 != ^ h where A is ,I F# B is ,J F# C
is ,K F# and consider compressing it to y U V WT T T7 7= ^ h

() () () 1x U A V B W C A B C 1T T T9 9 9 9== u u u^ ^h h ,RLMN! where
the mode-compression matrices , ,I L L IU # #^ h ,(J MV #

,)M J# and W ,K N N K# #^ h are independently drawn from
an absolutely continuous distribution. If

 (,) (,) (,) ,min min minL k M k N k F2 2A B C $+ + +

then , ,A B Cu u u are almost surely identifiable from the compressed
data y up to a common column permutation and scaling.

More relaxed conditions for identifiability of , ,A B Cu u u can be
derived from Lemma 2, and Theorems 2 and 3.

ThEOREM 5
For , , , , , , ,x A B C U V W and y as in Theorem 4, if (, ,),minF I J K#
,A ,B C are all full column rank ,F^ h ,N F$ and

 () () (),L L M M F F1 1 2 1$- - -

then , ,A B Cu u u are almost surely identifiable from the compressed
data y up to a common column permutation and scaling.

RemaRk 1
(, ,)minF I J K# & full column rank ,A ,B C almost surely,

i.e., tall matrices are full column rank except for a set of mea-
sure zero. In other words, if (, ,)minF I J K# and ,A ,B C are
themselves considered to be independently drawn from an abso-
lutely continuous distribution with respect to the Lebesgue
measure in ,R IF ,R JF and ,RKF respectively, then they will all
be full column rank with probability 1.

ThEOREM 6
For ,, , , , , ,x A B C U V W and y as in Theorem 4, if (, ,),minF I J K#

,A ,B C are all full column rank ,F^ h ,L M N# # and

 () () ,L M F1 1 16$+ +

then , ,A B Cu u u are almost surely identifiable from the compressed
data y up to a common column permutation and scaling.

complexITy oF mulTIway compressIon?
Multiplying a dense L I# matrix UT with a dense vector a
to compute U aT has complexity .LI Taking the product of
UT and the first I J# frontal slab (: , : ,)1X of the I J K# #
tensor X has complexity .LIJ Premultiplying from the left
all frontal slabs of X by UT (computing a mode product)
therefore requires LIJK operations, when all operands are
dense. Multiway compression as in Figure 1 comprises
three mode products, suggesting a complexity of

,LIJK MLJK NLMK+ + if the first mode is compressed first,
followed by the second, and then the third mode. Notice
that the order in which the mode products are computed
affects the complexity of the overall operation; but order-
wise, this is ((, ,)) .minO L M N IJK Also notice that if , ,I J K
are of the same order, and so are , , ,L M N then the overall
complexity is () .O LI3 If a is sparse with ()NZ a nonzero
elements, we can compute U aT as a weighted sum of the
columns of UT corresponding to the nonzero elements of

.a This reduces matrix-vector multiplication complexity to
() .LNZ a It easily follows that if X has NZ X^ h nonzero

elements, the complexity of premultiplying from the left
all frontal slabs of X by UT can be reduced to .LNZ X^ h
The problem is that, after computing the first mode prod-
uct, the resulting tensor will be dense, hence subsequent
mode products cannot exploit sparsity to reduce complex-
ity. Note that, in addition to computational complexity,
memory or secondary storage to save the intermediate
results of the computation becomes an issue, even if the
original tensor X is sparse.

 IEEE SIGNAL PROCESSING MAGAZINE [62] SEPTEMBER 2014

maIn resulTs
Theorems 4–6 can establish uniqueness of , , ,A B Cu u u but we are
ultimately interested in ., ,A B C We know that ,A U AT=u and we
know ,UT but, unfortunately, it is a fat matrix that cannot be
inverted. To uniquely recover ,A one needs additional structural
constraints. Sidiropoulos and Kyrillidis [13] proposed exploiting
column-wise sparsity in A (and likewise),,B C which is often
plausible in practice. A need only be sparse with respect to (when
expressed in) a suitable basis, provided the sparsifying basis is
known a priori. Sparsity is a powerful constraint, but it is not
always valid (or a sparsifying basis may be unknown). For this rea-
son, we propose here a different solution, based on creating and
factoring a number of randomly reduced replicas of the full data.

Consider spawning P randomly compressed reduced-size
replicas Yp p

P
1=" , of the tensor ,X where Yp is created using

mode compression matrices , ,U V Wp p p^ h; see Figure 2. Assume
that identifiability conditions per Theorem 5 or Theorem 6
hold, so that , ,A B Cp p pu u u are almost surely identifiable (up to
permutation and scaling of columns) from .Yp Then, upon fac-
toring Yp into F rank-one components, we obtain

 ,A U Ap p
T

p pP K=u (1)

where pP is a permutation matrix, and pK is a diagonal scal-
ing matrix with nonzero elements on its diagonal. Assume that
the first two columns of each U p (rows of)U p

T are common,

and let U denote this common part, and A p denote the first
two rows of .A pu We therefore have

 .Ap
T

p pP K=A U

Dividing each column of pA by the element of maximum
modulus in that column, and denoting the resulting F2 # mat-
rix ,A p
| we obtain

 .A Ap
T

pKP= U|

Notice that K does not affect the ratio of elements in each 2 1#
column. If these ratios are distinct (which is guaranteed almost
surely if U and A are independently drawn from absolutely con-
tinuous distributions), then the different permutations can be
matched by sorting the ratios of the two coordinates of each
2 1# column of .A p

|

In practice, using a few more anchor rows will improve the
permutation-matching performance, and is recommended in dif-
ficult cases with high noise variance. When S anchor rows are
used, the optimal permutation matching problem can be cast as

 | | | | ,min A A p F1
2P-

P

| |

where optimization is over the set of permutation matrices.
This may appear to be a hard combinatorial problem at first
sight; but it is not. Using

complexITy oF mulTIway compressIon–redux
In scalar form, the (, ,)m n th, element of the tensor Y after
multiway compression can be written as

 (, ,) (,) (,) (,) (, ,) .m n i j m k n i j kY U V W X
k

K

j

J

i

I

111
, ,=

===

///

claim s1
Suppose that X is sparse, with NZ X^ h nonzero elements,
and suppose that it is stored as a serial list with entries for-
matted as [, , ,],i j k v where v is the nonzero value at tensor
position (, ,) .i j k Suppose that the list is indexed by an inte-
ger index ,s i.e., [(), (), (), ()]i s j s k s v s is the record corre-
sponding to the sth entry of the list. Then the following
simple algorithm will compute the multiway compressed
tensor Y in only NZLMN X^ h operations, requiring only
LMN cells of memory to store the result, and IL JM KN+ +
cells of memory to store the matrices ,U ,V .W

algorithm s1: efficient multiway compression pseudocode
Y=zeros(L,M,N);
for s=1:NZX,
 for ell=1:L,
 for m=1:M,
 for n=1:N,
 Y(ell,m,n) = Y(ell,m,n)+ U(i(s),ell)*V(j(s),m)*W(k(s),n)*v(s);
 end
 end
 end
end

Notice that, even if X is dense (i.e.,),IJKNZ X =^ h the above
algorithm only needs to read each element of X once, so com-
plexity will be LMNIJK but memory will still be very modest:
only LMN cells of memory to store the result, and IL JM KN+ +
cells of memory to store the matrices ,U ,V .W Contrast this to
the naive way of serially computing the mode products, whose
complexity order is ((, ,))minO L M N IJK but whose memory
requirements are huge for dense ,U ,V ,W due to intermediate
result explosion—even for sparse .X We see a clear complexity-
memory tradeoff between the two approaches for dense data,
but Algorithm S1 is a clear winner for sparse data, because spars-
ity is lost after the first mode product. Notice that the above
algorithm can be fully parallelized in several ways—by splitting
the list of nonzero elements across cores or processors (paying in
terms of auxiliary memory replications to store partial results for
Y and the matrices ,U ,V ,W locally at each processor), or by
splitting the (, ,)m n, loops—at the cost of replicating the data
list. As a final word, the memory access pattern (whether we
read and write consecutive memory elements in blocks, or make
wide strides) is the performance-limiting factor for truly big data,
Algorithm S1 makes strides in reading elements of ,U ,V ,W
and writing elements of .Y There are ways to reduce these
strides, at the cost of requiring more memory and more floating
point operations.

 IEEE SIGNAL PROCESSING MAGAZINE [63] SEPTEMBER 2014

|| | | () ()

| | | | | | | | ()

| | | | | | | | () .

2

2

Tr

Tr

Tr

A A A A A A
A A A A
A A A A

p F p
T

p

F p F
T

p

F p F
T

p

1
2

1 1

1
2 2

1

1
2 2

1

P P P

P P

P

- = - -

= + -

= + -

| | | | | |

| | | |

| | | |

^ h

It follows that we may instead

 (),max Tr A AT
p1 P

P

| |

over the set of permutation matrices. This is what is known as
the linear assignment problem (LAP), and it can be efficiently
solved using the Hungarian algorithm.

After this column permutation-matching process, we go
back to (1) and permute its columns to obtain A p

˘ satisfying

 .A U Ap p
T

p
˘ PK=

It remains to get rid of .pK For this, we normalize each col-
umn by dividing it with its norm. This finally yields

 .A U Ap p
Tˇ PK=

For recovery of A up to permutation and scaling of its columns,
we then require that the matrix of the linear system

A

A

U

U
A

P

T

P
T

1 1
ˇ

ˇ
h h PK=> >H H (2)

be full column rank. This implies that

 ()L I2 2
p

P

p
1

$+ -
=

/

i.e.,

 () .L I2 2
p

P

p
1

$- -
=

/

Note that every submatrix contains the two anchor rows that are
common, and duplicate rows clearly do not increase the rank. Also
note that once the dimensionality requirement is met, the matrix
will be full rank with probability 1, because its nonredundant
entries are drawn from a jointly continuous distribution (by design).

Assuming ,L Lp = , ,p P16 g! " , for simplicity (and sym-
metry of computational load), we obtain () ,P L I2 2$- - or,
in terms of the number of threads

 .P L
I

2
2$
-
-

Likewise, from the corresponding full column rank require-
ments for the other two modes, we obtain

 , .P M
J P N

Kand $ $

Notice that we do not subtract two from numerator and denom-
inator for the other two modes, because the permutation of col-
umns of , ,A B Cp p pu u u is common, so it is enough to figure it out
from one mode, and apply it to other modes as well. In short,

 , ,maxP L
I

M
J

N
K

2
2$
-
-e o.

RemaRk 2
Note that if, say, A can be identified and it is full column rank,
then B and C can be identified by solving a linear least squares
problem—but this requires access to the full big tensor data. In
the same vein, if A and B are identified, then C can be identi-
fied from the full big tensor data even if A and B are not full
column rank individually—it is enough that A B9 is full col-
umn rank, which is necessary for identifiability of C even from
the big tensor, hence not restrictive. Parallel randomly com-
pressed (PARACOMP)-based identification, on the other hand,
only requires access to the factors derived from the small

I

J

X

K

Fork
Join
(LS)

L1

M1

N1

L2

M2

N2

LP

MP

NP

Y1

Y2

YP

(U 1
, V 1

, W
1
)

(U2, V2, W2)

(U
P , V

P , W
P)

(A
1 , B

1 , C
1)

~
~

~

(A2, B2, C2)
~ ~ ~

(A P
, B P

, C P
)

~
~

~

(A, B, C)

. .
 .

. .
 .

. .
 .

[FIg2] a schematic illustration of the paracomp fork-join architecture. The fork step creates a set of p randomly compressed reduced-
size replicas p p 1= .PY" , each yp is obtained by applying , ,U V Wp p p^ h to ,X as detailed in Figure 1. each yp is then independently
factored (all p threads can be executed in parallel). The join step collects the estimated mode loading submatrices , , CA Bp p pu u u^ h from the
p threads, and, after anchoring all to a common permutation and scaling, solves a master linear least squares problem per mode to
estimate the full mode loading matrices , , .A B C^ h

 IEEE SIGNAL PROCESSING MAGAZINE [64] SEPTEMBER 2014

replicas. This is clearly advantageous, as the raw big tensor data
can be discarded after compression, and there is no need for
retrieving huge amounts of data from cloud storage.

One can pick the mode used to figure out the permutation
ambiguity, leading to the symmetrized condition

, ,minP P P P1 2 3$ " , with

 , ,maxP L
I

M
J

N
K

2
2

1 = -
-e o

 , ,maxP L
I

M
J

N
K

2
2

2 = -
-e o

 , , .maxP
L
I

M
J

N
K

2
2

3 =
-
-

e o

If the compression ratios in the different modes are similar, it
makes sense to use the longest mode for this purpose; if this is
the last mode, then

 , , .maxP
L
I

M
J

N
K

2
2$
-
-

e o

We have thus established the following result.

ThEOREM 7
In reference to Figure 2, assume : 1vecx X A B C9 9 != =^ ^h h

,R IJK where A is ,I F# B is ,J F# and C is K F# (i.e., the rank
of X is at most) .F Assume that ,F I J K# # # and ,A ,B C are
all full column rank () .F Further assume that ,L Lp = ,M Mp =

,N Np = , , ,p P16 g! " , ,L M N# # () () ,L M F1 1 16$+ +
the elements of U p p

P
1=" , are drawn from a jointly continuous dis-

tribution, and likewise for ,Vp p
P

1=" , while each W p contains two
common anchor columns, and the elements of W p p

P
1=" , (except

for the repeated anchors, obviously) are drawn from a jointly con-
tinuous distribution. Then the data for each thread : vecy Yp p= ^ h
can be uniquely factored, i.e., , ,A B Cp p pu u u^ h is unique up to column
permutation and scaling. If, in addition to the above, we also have

/ , / , () / ()max I L J M K NP 2 2$ - -^ h parallel threads, then
, ,A B C^ h are almost surely identifiable from the thread outputs

, ,A B Cp p p p
P

1=
u u u^ h" , up to a common column permutation and scaling.
The above result is indicative of a family of results that can

be derived, using different CP identifiability results. Its signifi-
cance may not be immediately obvious, so it is worth elaborat-
ing further at this point. On one hand, Theorem 7 shows that
fully parallel computation of the big tensor decomposition is
possible—the first such result, to the best of our knowledge,
that guarantees identifiability of the big tensor decomposition
from the intermediate small tensor decompositions, without
placing stringent additional constraints. On the other hand, the
conditions appear convoluted, and the memory/storage and
computational savings, if any, are not necessarily easy to see.
The following claim nails down the take-home message.

CLAIM 1
Under the conditions of Theorem 7, if) / (K N2 2- - =^ h

/ , / , () / () ,max I L J M K N2 2- -^ h then the memory/storage and
computational complexity savings afforded by the architecture shown
in Figure 2 relative to brute-force computation are of order / .IJ F^ h

Proof 1
Each thread must store LMN elements, and we have

) / (K NP 2 2= - -^ h threads in all, leading to a total data size of
order LMK versus ,IJK so the ratio is / .IJ LM^ h The condition
() ()L M F1 1 16$+ + only requires LM to be of order ,F hence
the total compression ratio can be as high as / .IJ FO^ h Turning to
overall computational complexity, note that optimal low-rank ten-
sor factorization is NP-hard, even in the rank-one case. Practical
tensor factorization algorithms, however, typically have complex-
ity O IJKF^ h (per iteration, and overall if a bound on the max-
imum number of iterations is enforced). It follows that the
practical complexity order for factoring out the P parallel threads
is O PLMNF^ h versus O IJKF^ h for the brute-force computation.
Taking into account the lower bound on ,P the ratio is again of
order / ,IJ LM^ h and since the condition () ()L M F1 1 16$+ +
only requires LM to be of order ,F the total computational com-
plexity gain can be as high as / .IJ FO^ h

RemaRk 3
The complexity of solving the master linear equation (2) in the final
merging step for A may be a source of concern—especially
because it hasn’t been accounted for in the overall complexity cal-
culation. Solving a linear system of order of I equations in I
unknowns generally requires ()O I3 computations; but closer scru-
tiny of the system matrix in (2) reveals interesting features. If all
elements of the compression matrices U p" , (except for the com-
mon anchors) are i.i.d. with zero mean and unit variance, then,
after removing the redundant rows, the system matrix in (2) will
have approximately orthogonal columns for large .I This implies
that its left pseudoinverse will simply be its transpose, approxi-
mately. This reduces the complexity of solving (2) to .I F2 If higher
accuracy is required, the pseudoinverse may be computed offline
and stored. It is also important to stress that (2) is only solved once
for each mode at the end of the overall process, whereas tensor
decomposition typically takes many iterations. In short, the con-
stants are such that we need to worry more about the compression
(fork) and decomposition stages, rather than the final join stage.

Theorem 7 assumes (, ,)minF I J K# to ensure (via Lemma
2) absolute continuity of the compressed factor matrices, which is
needed to invoke almost sure uniqueness per [26]. Cases where

(, ,)minF I J K2 can be treated using Kruskal’s condition for
unique decomposition of each compressed replica

 (,) (,) (,) .min min minL k M k N k F2 2A B C $+ + +

It can be shown that (,)mink I FA = for almost every A (except
for a set of measure zero in);R IF and likewise (,),mink J FB =
and (,),mink K FC = for almost every B and .C This simplifies
the above condition to

 (, ,) (, ,) (, ,) .min min minL I F M J F N K F F2 2$+ + +

In other words, if the simplified condition holds, then CP
decomposition of each reduced replica is unique for almost
every (), ,A B C and almost every set of compression matrices

 IEEE SIGNAL PROCESSING MAGAZINE [65] SEPTEMBER 2014

() ., ,U V W Assume ,I F$,J F$ but ,K F1 and pick
,L M F= = and .N 3= Then the condition further reduces to

 (,) ,minF K F2 3 2 2$+ +

which is satisfied for any K 2$ (i.e., for any tensor). We also need

 , , ,maxP L
I

M
J

N
K

2
2$
-
-c m

which in this case N 3=^ h reduces to

 , , .maxP L
I

M
J K 2$ -` j

When / / , / , ,maxI L I L J M K 2= -^ ^h h then there are /I L^ h parallel
threads of size LMN F3 2= each, for total cloud storage ,IF3 i.e.,
order ;IF hence the overall compression ratio (taking all replicas
into account) is of order () / () / .IJK IF JK F=^ ^h h The ratio of over-
all complexity orders is also () / (/ .)IJKF IF JK F2 =^ ^h h This is the
same type of result as the one we derived for the case F #

(, ,) .min I J K On the other hand, when (/ , / ,max I L I MK 2- =

),K 2- there are K 2- parallel threads of size LMN F3 2= each,
for total cloud storage (),F K3 22 - i.e., order ;KF2 hence the
overall compression ratio is () / (() / ,)IJK KF IJ F2 2=^ h and the ratio
of overall complexity orders is also () / (() / .)IJKF KF IJ F3 2=^ h We
see that there is a penalty factor F relative to the case

(, ,);minF I J K# this is likely an artifact of the method of proof,
which we hope to improve in future work. We summarize the
result in the following theorem.

ThEOREM 8
In reference to Figure 2, assume : 1vecx X A B C9 9 != =^ ^h h

,R IJK where A is ,I F# B is ,J F# C is K F# (i.e., the rank of
X is at most) .F Assume that ,I F$ J F$ (K can be),F1 and
pick ,L Lp = ,M Mp = ,N Np = , , ,p P16 g! " , with

,L M F= = and .N 3= The compression matrices are chosen as
in Theorem 7. If / , / , ,max I L J MP K 2$ -^ h then A, B, C^ h is id-
entifiable from , , ,A B Cp p p p

P
1=

u u u^ h" , for almost every , ,A B C^ h and
almost every set of compression matrices. When (/)I L =

(/), (/), ,max I L J M K 2-^ h the total storage and complexity gains
are of order (/);JK F whereas if (/), (/), ,max I L J MK K2 2- = -^ h
the total storage and complexity gains are of order (/) .IJ F2

lateNt spaRsity
If latent sparsity is present, we can exploit it to reduce .P Assume
that every column of A (,)B C has at most na (respectively,

,)n nb c nonzero elements. A column of A can be uniquely recov-
ered from only n2 a incoherent linear equations [30]. Therefore,
we may replace the condition

 , , ,maxP L
I

M
J

N
K

2
2$
-
-c m

with

 , , .maxP L
n

M
n

N
n2 2

2
2 2a b c$
-
-c m (3)

Assuming

 , , ,maxN
n

L
n

M
n

N
n

2
2 2 2 2

2
2 2c a b c

-
- =

-
-c m

it is easy to see that the total cloud storage and complexity gains
are of order (/) (/)IJ F K nc —improved by a factor of (/) .K nc It is
interesting to compare this result with the one in Sidiropoulos
and Kyrillidis [13], which corresponds to using P 1= in our pre-
sent context. Notice that (3) implies (/),n PL 2 a$ (/),n PM 2 b$

(() /)PN n2 2 2c &$- - 2 ((/)) (/) .P N n P1 1 2& $+ -(/)n PN 2$ c c
Substituting P 1= we obtain ,L n2 a$,M n2 b$,N n2 c$
which is exactly the condition required in [13]. We see that PARA-
COMP subsumes [13], offering greater flexibility in terms of
choosing P to reduce the size of replicas for easier in-memory
processing, at the cost of an additional merging step at the end.
Also note that PARACOMP is applicable in the case of dense latent
factors, whereas [13] is not.

RemaRk 4
In practice we will use a higher ,P i.e.,

 , , ,maxP L
n

M
n

N
n

2
2a b c

$
n n n

-
-

c m

with , ,3 4 5!n " , instead of 2, and an 1, sparse underdeter-
mined linear equations solver for the final merging step for .A
This will increase complexity from ()O I F2 to (),O I F.3 5 and the
constants are such that the difference is significant. This is the
price paid for the reduced memory and intermediate complexity
benefits afforded by latent sparsity.

mapreduce ImplemenTaTIon
With the proliferation of large collections of data, as well as big
clusters of (usually commodity) computers that were largely
underutilized, arose the need for a unified framework of scalable
distributed computation in the cloud. In [31], Dean et al. from
Google introduced such a framework, called MapReduce. MapRe-
duce provides a very versatile level of programming abstraction: it
conceals all its inner workings from the programmer, and simply
requires the implementation of two functions: Map and Reduce.

The Map function runs in parallel on many machines; each
instance reads data serially from the Distributed File System
(DFS), performs some sort of parsing or computation on that data,
and emits a series of (key,value) pairs. (DFS is defined by
MapReduce.) Consequently, the Reduce function runs in parallel
on a set of machines, and each instance of Reduce receives as
input (key,value) pairs with the same key; it performs some
sort of (user defined) aggregation or computation on these val-
ues, and then emits a series of (key’,value’) pairs, which are
eventually written to DFS. This way, any task that can be expressed
as a combination of a Map and a Reduce function may be run in
a distributed fashion on a cluster of computers, on data that is also
stored in the cloud, and much bigger than what a typical personal
computer can store or process in memory. The MapReduce frame-
work also deals with machine failures (an issue which arises very
often in large clusters of computers) in a way that is transparent to
the programmer. Among other safety measures, MapReduce uses

 IEEE SIGNAL PROCESSING MAGAZINE [66] SEPTEMBER 2014

three-way replication of each computation, so that even if one
machine fails, there are still two backup machines that are carry-
ing out the same task. This way, the user does not have to deal
with the frustrations of machine failures. The original MapReduce
implementation is internal to Google; however, there exists a very
robust and well-tested open source implementation by Apache,
called Hadoop [32]. The two primary programming languages that
can be used with Hadoop are Java and Python.

Signal processing algorithms are generally not realizable as a
single MapReduce task, but it is often possible to break up a given
algorithm in parts, each of which may be written as a MapReduce
computation. In this way, the overall signal processing algorithm
can be implemented as a chain of MapReduce tasks.

The most typical introductory example of a MapReduce task
is the WordCount application [33], where the goal is to esti-
mate the frequency of occurrence of each word in a corpus.
Given that MapReduce was originally developed by Google, a
search engine that relies heavily on indexing large collections of
text to provide fast and accurate search results, the Word-
Count example fits perfectly in the original context. In “Solv-
ing a Toy Problem in Hadoop–MapReduce,” we instead use a
very simple and common signal processing task to illustrate the
way MapReduce works: computing the histogram of a big

speech/audio, image, or video signal. The particular kind of
 signal is not important here, but bear in mind that our motiva-
tion is to be able to handle big data, distributed over the cloud.
To simplify exposition, we assume that the signal of interest is
integer valued.

sketch oF paRacomp iN mapReduce
We now provide a sketch of an implementation of PARACOMP in
MapReduce. As in Figure 2, we break the algorithm down to three
distinct steps: 1) compression, 2) decomposition, and 3) recovery
of factor matrices. Each of the three steps consists of a few MapRe-
duce chain tasks.

COMPRESSION
For the compression step, we first need to create P triplets of ran-
dom compression matrices ,U p ,Vp .W p This may be carried out
simply by a mapper that emits p (the replica index) as key, and the
dimensions of the matrices as the value. Thus, each reducer is
responsible for creating and storing on DFS all three compression
matrices. Depending on how large the compression matrices are,
instead of assigning a single reducer the burden of creating an
entire batch of ,U p ,Vp ,W p we may instead choose to assign each
reducer to create a single row of each of the matrices. Taking a
closer look at Algorithm S1 in “Complexity of Multiway Compres-
sion–Redux,” we can devise a MapReduce task for the compression
step. Let us assume that the tensor is stored in a text file, in multi-
ple lines (as many as the nonzero values in the tensor), in the form

 (), (), (), (),i s j s k s v s

which is appropriate for sparse tensors. Each mapper reads a seg-
ment of that file, processing one line at a time. By inspecting the
core equation of Algorithm S1 in “Complexity of Multiway
Compression–Redux”

 (, ,) (, ,) ((),) ((),) ((),) (),m n m n i s j s m k s n v sY Y U V W, , ,= +

we see that for each mapper, it suffices to hold ((), :),i sU ((), :),j sV
and ((), :)k sW in memory, so that it calculates the contribution of
the current nonzero value of the tensor ()v s to the partial sum
that comprises (, ,) .m nY , Since , ,L M N are considerably
smaller than , , ,I J K we use ()O L M N+ + of memory on each
mapper. Thus, each mapper emits as key the concatenation of
(, ,)m n, and as value ((),) ((),) ((),) () .i s j s m k s n v sU V W, Fi-
nally, each reducer receives all partial values of the sum that builds

(, ,)m nY , up, sums up all incoming values, and emits a pair with
key equal to (, ,)m n, and value equal to (, ,),m nY , which is
eventually written to DFS.

Since we execute multiple repetitions of the compression step,
we may concatenate the repetition number p to the key that is
emitted by the mapper, as well as the key emitted by the reducer.
Thus, at the end, there will be one file containing the nonzero val-
ues for each compressed tensor in the form:

 , , , , (, ,)p m n m nYp, , .

solvIng a Toy problem In Hadoop–mapreduce
Consider a large speech/audio, image, or video signal,
stored as a text file, with each line containing a signal
value. This file is stored in a distributed fashion, in DFS.
To compute its histogram, it suffices to use a single
MapReduce job.

■ Map: Each mapper gets a portion of the file and
reads it line-by-line. For each line-entry, n, the mapper

sets key n= and value ,1= and emits a ,n 1^ h pair.

■ Reduce: As mentioned earlier, each instance of a

reducer receives all such (key,value) pairs that have

the same key. In this particular case, all instances of
number n will be processed by the same reducer, since

the Map function set key .n= As a consequence, each
reducer has all the information needed to calculate the
exact count of appearances of a given number .n Thus,
each reducer simply calculates the total number of

,n 1^ h pairs (denoted by),f and emits a single tuple
, ,n f^ h which contains the number and its correspond-

ing frequency of occurrence.
Finally, when all reducers have terminated, the output of
the above MapReduce task will contain lines in the form:

(number, frequency).
Even though the above example is very simple, the logic

that underlies the transformation of an algorithm into a
series of MapReduce tasks is the same: decompose the

algorithm into self-contained pieces, find a (key, value)
representation for the intermediate data of each piece,

and finally express this computation as a pair of Map and

Reduce functions.

 IEEE SIGNAL PROCESSING MAGAZINE [67] SEPTEMBER 2014

DECOMPOSITION
For the decomposition step, we spawn P parallel processes on dif-
ferent machines, each one fitting the CP decomposition to the re-
spective compressed tensor. To do that in the MapReduce
framework, we may use the Map function to feed the appropriate
data to each reducer. More specifically, each mapper will read por-
tions of the file created by the compression step, and use as a key
the repetition index ,p and as value the rest of the row, i.e.,
(, , , (, ,)) .m n m nYp, , Consequently, P reducers will be spawned,
each receiving all the data of a single compressed tensor. We as-
sume that the compressed tensor fits in the main memory of a sin-
gle machine, therefore each reducer simply stores the incoming
values in a three dimensional array, and proceeds with in-memory
computation of the CP decomposition. In case the reducers are
unable to store the compressed tensor in main memory, there ex-
ist methods that fit the CP decomposition on MapReduce [34].
However, solving each one of the parallel decompositions on Ma-
pReduce would significantly hurt performance, therefore we
should aim for compressed tensors that fit in memory.

RECOVERY OF FACTOR MATRICES
The final step involves the recovery of the factor matrices , ,A B C
from the partial factors as obtained from the parallel decomposi-
tion step. Recovery for each factor matrix is achieved by stacking
the partial results on top of each other, as well as the compression
matrices in a similar fashion, and solving a least squares problem
involving these two matrices. The stacking of both partial factors
and compression matrices can be done through a simple MapRe-
duce task: each mapper will be emitting (,)i f (i.e., the indices of
each matrix coefficient) as key, and the value will be the coeffi-
cient of the matrix at (,)i f (denoted by)v and the index ,p indi-
cating the replica number. Then, each reducer will emit tuples of
the form

 , ,i f vl ,

where il will be the original row index adjusted appropriately
using ,p to account for the stacking.

To solve the least squares step, we may use scalable algorithms
that implement the Moore–Penrose pseudoinverse on MapReduce
[35]. After pseudoinversion, we need to carry out matrix multipli-
cation, a problem that has also been thoroughly studied for
MapReduce [36].

IllusTraTIve numerIcal resulTs
Our theorems ensure that PARACOMP works with ideal low- and
known-rank tensors, but what if there is measurement noise or
other imperfections, or we underestimate the rank? Does the over-
all approach fall apart in this case? From “The Color of Com-
pressed Noise” and “Is Component Ordering Preserved After
Compression?” we have good reasons to believe that this is not the
case, but one cannot be confident without numerical experiments
that corroborate intuition. In this section, we provide indicative
results to illustrate what can be expected from PARACOMP and
the effect of various parameters on estimation performance.

In all cases considered, ,I J K 500= = = the noiseless tensor
has rank ,F 5= and is synthesized by randomly and independ-
ently drawing ,A ,B C each from an i.i.d. zero-mean, unit-vari-
ance Gaussian distribution (randn(500,5) in MATLAB), and
then taking their tensor product; i.e., computing the sum of outer
products of corresponding columns of ,A ,B .C Gaussian i.i.d.
measurement noise is then added to this noiseless tensor to yield
the observed tensor to be analyzed. The nominal setup uses
L M N 50= = = (so that each replica is 0.1% of the original ten-
sor), and P 12= replicas are created for the analysis (so the over-
all cloud storage used for all replicas is 1.2% of the space needed to
store the original tensor). S 3= common anchor rows (instead of

,S 2= which is the minimum possible) are used to fix the permu-
tation and scaling ambiguity. These parameter choices satisfy PAR-
ACOMP identifiability conditions without much additional slack.
The standard deviation of the measurement noise is nominally set
to . .0 01v =

Figure 3 shows the total squared error for estimating ,A i.e.,
,A A 2

2
- t where At denotes the estimate of A obtained using

PARACOMP, as a function of .L M N= = The baseline is the total
squared error attained by directly fitting the uncompressed
500 500 500# # tensor using a mature tensor decomposition
algorithm (COMFAC, available at www.ece.umn.edu/~nikos)—the
size of the uncompressed tensor used here makes such direct fit-
ting possible, for comparison purposes. We see that PARACOMP
yields respectable accuracy with only 1.2% of the full data, and is
just an order of magnitude worse than the baseline algorithm
when ,L M N 150= = = corresponding to 32% of the full data.
This is one way we can tradeoff memory/storage/computation ver-
sus estimation accuracy in the PARACOMP framework: by control-
ling the size of each replica. Another way to tradeoff memory/
storage/computation for accuracy is through .P Figure 4 shows
accuracy as a function of the number of replicas (computation
threads) ,P for fixed .L M N 50= = = Finally, Figure 5 plots
accuracy as a function of measurement noise variance ,2v for
L M N 50= = = and .P 12=

50 100 150

10−3

10−4

10−5

10−6

10−7

L = M = N

||A
 −

 A
ha

t||
F2

I = J = K = 500; F = 5;
Σ= 0.01; P = 12; S = 3

PARACOMP
Direct,
No Compression

32% of
Full Data

1.2% of Full Data (P = 12 Processors,
Each with 0.1% of Full Data)

[FIg3] mse as a function of .L M N= =

 IEEE SIGNAL PROCESSING MAGAZINE [68] SEPTEMBER 2014

summary and Take-Home poInTs

summaRy
We have reviewed the basics of tensors and tensor decomposition,
and presented a novel architecture for parallel and distributed
computation of low-rank tensor decomposition that is especially
well suited for big tensors. It is based on parallel processing of a
set of randomly compressed, reduced-size replicas of the big ten-
sor. We have also provided a friendly introduction to Hadoop–
MapReduce, starting from a toy signal processing problem, and
going up to sketching a Hadoop implementation of tensor decom-
position in the cloud.

motivatioN aNd impact
There is rapidly growing interest in signal processing for big data
analytics, and in porting/translating and developing new signal pro-
cessing algorithms for cloud computing platforms. Tensors are
multidimensional signals that have found numerous applications in
signal processing, machine learning, data mining, and well beyond
(psychology, chemistry, life sciences, etc.), and they are becoming
increasingly important for online marketing, social media, search
engines, and many more applications. Tensors easily grow to be
really big, as their total size is the product of mode sizes, hence
exponential in the number of modes (dimensions in signal process-
ing parlance). Big tensor data will thus be a big part of big data.

take-home poiNts
1) PARACOMP enables massive parallelism with guaranteed
identifiability properties: if the big tensor is indeed of low rank
and the system parameters are appropriately chosen, then the
rank-one factors of the big tensor will indeed be recovered
from the analysis of the reduced-size replicas.
2) PARACOMP affords memory/storage and complexity gains of
order up to /IJ F^ h for a big tensor of size I J K# # of rank .F

10−8 10−6 10−4 10−2 100

100

102

10−2

10−6

10−4

10−8

10−12

10−10

Σ 2

||A
 −

 A
ha

t||
F2

I = J = K = 500; F = 5; L = M = N = 50;
P = 12; S = 3

PARACOMP
Direct,
No Compression

[FIg5] mse as a function of additive white gaussian noise
variance .2v

THe color oF compressed noIse
Consider a noisy tensor ,Y X Z= + where Z denotes zero-
mean additive white noise. In vectorized form, ,y x z= +
with : ,vecy Y= ^ h : ,vecx X= ^ h and : .vecz Z= ^ h After
multiway compression, one obtains the reduced-size tensor

,Yc whose vectorized representation : vecy Yc c= ^ h =
U V W yT T T7 7^ h = U V W xT T T7 7^ h + .U V W zT T T7 7^ h

Let : .z U V W zc
T T T7 7= ^ h Clearly, [] ,E 0zc = and

 E Ez z U V W zz U V Wc c
T T T T T7 7 7 7= ^ ^h h6 6@ @

 EU V W zz U V WT T T T7 7 7 7= ^ ^h h6 @
 U V W U V WT T T2 7 7 7 7v= ^ ^h h

 ,U U V V W WT T T2 7 7v= ^ ^ ^^ h h hh

where we have used two properties of the Kronecker
product: transposition

 ,A B A BT T T7 7=^ h

and the mixed product rule [29]

 .A B C D AC BD7 7 7=^ ^ ^h h h

We see that, if ,U ,V W are orthonormal, then the noise in
the compressed domain is white. Note that, for large I and
U drawn from a zero-mean unit-variance uncorrelated dis-
tribution, U U IT . by the law of large numbers. Further-
more, even if z is not Gaussian, zc will be approximately
Gaussian for large ,IJK by the central limit theorem. From
these, it follows that least-squares fitting is approximately
optimal in the compressed domain, even if it is not so in the
uncompressed domain. Compression thus makes least-
squares fitting universal!

20 30 40 50 60 70 80 90 100 110

10−3

10−4

10−5

10−6

10−7

P

||A
 −

 A
ha

t||
F2

I = J = K = 500; L = M = N = 50;
Σ = 0.01; S = 3

1.2% of The Full Data
in P = 12 Processors,
with 0.1% Each

PARACOMP
Direct,
No Compression

12% of Full Data
P = 120 Processors,
with 0.1% Each

[FIg4] mse as a function of ,p the number of replicas/parallel
threads spawned.

 IEEE SIGNAL PROCESSING MAGAZINE [69] SEPTEMBER 2014

No sparsity is required, although such sparsity can be exploited
to improve memory, storage, and computational savings.
3) We have shown that using white noiselike compression
matrices

 ■ approximately preserves component ordering
 ■ ensures that the compressed noise is approximately white

if the original measurement noise is white
 ■ makes the compressed noise look Gaussian, rendering

classical least-squares CP algorithms well suited for fitting
the reduced-size replicas, even if the measurement noise in
the big tensor is far from Gaussian.

4) Each replica is independently decomposed, and the results
are joined via a master linear equation per tensor mode. The
number of replicas and the size of each replica can be adjusted
to fit the number of computing nodes and the memory avail-
able to each node, and each node can run its own CP software,
depending on its computational capabilities. This flexibility is
why PARACOMP is better classified as a computational archi-
tecture, as opposed to a method or algorithm.

auTHors
Nicholas D. Sidiropoulos (nikos@umn.edu) is a professor in the
Department of Electrical and Computer Engineering at the
University of Minnesota. He has over 15 years of experience in
tensor decomposition and its applications. His research interests
include topics in signal processing, communications, convex
optimization and approximation of NP-hard problems, and cross-
layer resource allocation for wireless networks. His current
research focuses primarily on signal and tensor analytics, with
applications in cognitive radio, big data, and preference measure-
ment. He received the National Science Foundation/CAREER
Award in 1998 and the IEEE Signal Processing Society (SPS) Best
Paper Award in 2001, 2007, and 2011. He served as SPS
Distinguished Lecturer (2008–2009) and as chair of the IEEE
Signal Processing for Communications and Networking
Technical Committee (2007–2008). He was an associate editor for
IEEE Transactions on Signal Processing (2000–2006), IEEE
Signal Processing Letters (2000–2002), and was on the editorial
board of IEEE Signal Processing Magazine (2009–2011). He

Is componenT orderIng preserved aFTer compressIon?
Consider randomly compressing a rank-one tensor ,a b c& &=X
written in vectorized form as x a b c7 7= (recall that the Kro-
necker product 7 and the Khatri–Rao product 9 coincide
when all arguments involved are vectors). The compressed ten-
sor is ,Xu in vectorized form

 x U V W a b cT T T7 7 7 7=u ^ ^h h

 () () (),U a V b W cT T T7 7=

using the mixed product rule [29]. It follows

|| | |x x xT2
2 =u u u

 () () () () () ()a U b V c W U a V b W cT T T T T T7 7 7 7= ^ ^h h

 () () ()a UU a b VV b c WW cT T T T T T7 7=

 | | | | | | | | | | | | ,U a V b W cT T T
2
2

2
2

2
2=

where we have used the transposition and mixed product rules,
and that the Kronecker product of scalars is a plain product.
Notice that for our choice of U (i.i.d. zero-mean Gaussian of

variance 1, i.e., randn(I,L) in Matlab), ,U U IT
L L. # but UUT

is rank-deficient (),L I1 thus far from .I I I# however, consider-
ing one generic element of ,U aT say ,u aT and its magnitude-
square, note that | | ,u a a uu aT T T2 = so

 | | | | | | .E Eu a a uu a a a aT T T T2
2
2= = =8 8B B

Next, it can be shown that

 | | | | | | .2Var u a aT 2
2
4=8 B

So now, looking at || | | ,U aT 2
2

 || | | | | | | ,E LU a aT
2
2

2
2=8 B

and, since the different rows of UT are independent, hence
variance adds up

 || | | | | | | .L2Var U a aT
2
2

2
4=8 B

So || | |U aT 2
2 has mean2/variance (‘SNR’) of (/) .L 2

Turning to || | |x 2
2u = || | | | | | | | | | | ,U a V b W cT T T

2
2

2
2

2
2 it can be

shown that it has mean

 || | | | | | | | | | | | | | | ,E LMNx a b c2
2

2
2

2
2

2
2=u8 B

and mean2/variance (‘SNR’)

|| | |

|| | |
() () ()

.
E

L L M M N N L M N
L M N

2 2 2Var x
x

2
2

2
2 2

2 2 2 2 2 2

2 2 2
=

+ + + -u

u^ h

6
6

@
@

Assuming without loss of generality that ,L M N# # this SNR
is of order (/) .L 2 What this means is that, for moderate , ,L M N
and beyond, the Frobenious norm of a compressed rank-one
tensor component (= Euclidean norm of the corresponding
vectorized representation) is approximately proportional to
the Frobenious norm of the uncompressed rank-one tensor
component of the original tensor. In other words: compression
approximately preserves component ordering. This is import-
ant because it implies that low-rank least-squares approxima-
tion of the compressed tensor approximately corresponds to
low-rank least-squares approximation of the big tensor. The
result also suggests that it may be possible to match the com-
ponent permutations across replicas simply by sorting compo-
nent energies. These are ignored in the permutation-matching
procedure discussed in the main text, due to the normaliza-
tion needed to account for the scaling ambiguity. Including
energy in the matching process will enhance robustness to
noise. It seems intriguing to try rank (principal component)
deflation in this context, but we will pursue this elsewhere
due to space limitations in the article.

 IEEE SIGNAL PROCESSING MAGAZINE [70] SEPTEMBER 2014

 currently serves as an area editor of IEEE Transactions on Signal
Processing (2012–present) and as an associate editor of Signal
Processing. He received the 2010 SPS Meritorious Service Award.

Evangelos E. Papalexakis (epapalex@cs.cmu.edu) is a Ph.D.
student in the Computer Science Department at Carnegie
Mellon University (CMU). He earned a diploma and M.Sc. degree
in electronic and computer engineering at the Technical
University of Crete, Chania, Greece. He has considerable experi-
ence in tensor decomposition and applications, as well as paral-
lel and distributed computations in Hadoop. He has published in
IEEE Transactions on Signal Processing and the International
Conference on Acoustics, Speech, and Signal Processing, as well
as in prime computer science conferences and journals. He is
also the liaison that connects the CMU and UMN groups in a
joint National Science Foundation project on big tensor data
and its applications in automated Web-based language learning
and brain data mining.

Christos Faloutsos (christos@cs.cmu.edu) is a professor at
Carnegie Mellon University. He has received the Presidential
Young Investigator Award by the National Science Foundation
(1989), the Research Contributions Award from the 2006 IEEE
International Conference on Data Mining, the SIGKDD
Innovations Award (2010), 19 Best Paper Awards (including two
“test of time” awards), and four teaching awards. He is an ACM
fellow and has served as a member of the executive committee
of SIGKDD. He has published over 200 refereed articles, 11
book chapters, and one monograph. He holds six patents and
has given over 30 tutorials and over ten invited distinguished
lectures. His research interests include data mining for graphs
and streams, fractals, database performance, and indexing for
multimedia and bioinformatics data. He has a long-term inter-
est in tensor decompositions and their practical applications in
data mining, having published numerous papers in the area.

reFerences
[1] N. Sidiropoulos, E. Papalexakis, and C. Faloutsos, “A parallel algorithm for big ten-
sor decomposition using randomly compressed cubes (PARACOMP),” in Proc. IEEE
ICASSP 2014, May 4–9, Florence, Italy.

[2] D. Nion, K. Mokios, N. Sidiropoulos, and A. Potamianos, “Batch and adaptive
PARAFAC-based blind separation of convolutive speech mixtures,” IEEE Trans. Au-
dio, Speech, Lang. Processing, vol. 18, no. 6, pp. 1193–1207, 2010.

[3] C. Fevotte and A. Ozerov, “Notes on nonnegative tensor factorization of the
spectrogram for audio source separation: Statistical insights and towards self-clus-
tering of the spatial cues,” in Exploring Music Contents, ser. Lecture Notes in
Computer Science, S. Ystad, M. Aramaki, R. Kronland-Martinet, and K. Jensen,
Eds. Berlin: Springer, 2011, vol. 6684, pp. 102–115.

[4] N. Sidiropoulos, G. Giannakis, and R. Bro, “Blind PARAFAC receivers for DS-
CDMA systems,” IEEE Trans. Signal Processing, vol. 48, no. 3, pp. 810–823,
2000.

[5] N. Sidiropoulos, R. Bro, and G. Giannakis, “Parallel factor analysis in sensor
array processing,” IEEE Trans. Signal Processing, vol. 48, no. 8, pp. 2377–2388,
2000.

[6] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube: Sparse paral-
lelizable tensor decompositions.” in ECML/PKDD (1), ser. Lecture Notes in Com-
puter Science, P. A. Flach, T. D. Bie, and N. Cristianini, Eds. Berlin: Springer,
2012, vol. 7523, pp. 521–536.

[7] R. Bro and N. Sidiropoulos, “Least squares regression under unimodality and
non-negativity constraints,” J. Chemomet., vol. 12, no. 4, pp. 223–247, July/Aug.
1998.

[8] A. Cichocki, D. Mandic, C. Caiafa, A.-H. Phan, G. Zhou, Q. Zhao, and L. De
Lathauwer, “Multiway component analysis: Tensor decompositions for signal pro-
cessing applications,” IEEE Signal Processing Mag., to be published.

[9] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with sparse and
factored tensors,” SIAM J. Sci. Comput., vol. 30, no. 1, pp. 205–231, Dec. 2007.

[10] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in Proc. 8th IEEE Int. Conf. Data Mining (ICDM 2008), Dec. 2008,
pp. 363–372.

[11] D. Nion and N. Sidiropoulos, “Adaptive algorithms to track the PARAFAC de-
composition of a third-order tensor,” IEEE Trans. Signal Processing, vol. 57, no. 6,
pp. 2299–2310, 2009.

[12] A. Phan and A. Cichocki, “PARAFAC algorithms for large-scale problems,”
Neurocomputing, vol. 74, no. 11, pp. 1970–1984, 2011.

[13] N. Sidiropoulos and A. Kyrillidis, “Multi-way compressed sensing
for sparse low-rank tensors,” IEEE Signal Processing Lett., vol. 19, no. 11,
pp. 757–760, 2012.

[14] E. Papalexakis, N. Sidiropoulos, and R. Bro, “From k-means to higher-way
co-clustering: Multilinear decomposition with sparse latent factors,” IEEE Trans.
Signal Processing, vol. 61, no. 2, pp. 493–506, 2013.

[15] N. Sidiropoulos, “Low-rank decomposition of multi-way arrays: A signal pro-
cessing perspective,” in Proc. IEEE SAM Workshop, Sitges, Barcelona, Spain,
2004, pp. 52–58.

[16] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM Rev.,
vol. 51, no. 3, pp. 455–500, 2009.

[17] A. Smilde, R. Bro, P. Geladi, and J. Wiley, Multi-Way Analysis with Applica-
tions in the Chemical Sciences. Hoboken, NJ: Wiley, 2004.

[18] P. Kroonenberg, Applied Multiway Data Analysis. Hoboken, NJ: Wiley,
2008.

[19] R. Harshman, “Foundations of the PARAFAC procedure: Models and condi-
tions for an “explanatory” multimodal factor analysis,” UCLA Working Pap. Pho-
net., vol. 16, pp. 1–84, Dec. 1970.

[20] R. Harshman, “Determination and proof of minimum uniqueness conditions
for PARAFAC-1,” UCLA Working Pap. Phonet., vol. 22, pp. 111–117, 1972.

[21] J. Carroll and J. Chang, “Analysis of individual differences in multidimensional
scaling via an n-way generalization of Eckart-Young decomposition,” Psychometri-
ka, vol. 35, no. 3, pp. 283–319, 1970.

[22] J. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decomposi-
tions, with application to arithmetic complexity and statistics,” Linear Algebra
Appl., vol. 18, no. 2, pp. 95–138, 1977.

[23] N. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decomposition
of N-way arrays,” J. Chemomet., vol. 14, no. 3, pp. 229–239, 2000.

[24] T. Jiang and N. Sidiropoulos, “Kruskal’s permutation lemma and the iden-
tification of CANDECOMP/PARAFAC and bilinear models with constant modu-
lus constraints,” IEEE Trans. Signal Processing, vol. 52, no. 9, pp. 2625–2636,
2004.

[25] A. Stegeman and N. Sidiropoulos, “On Kruskal’s uniqueness condition for the
CANDECOMP/PARAFAC decomposition,” Linear Algebra Appl., vol. 420, no. 2–3,
pp. 540–552, 2007.

[26] L. Chiantini and G. Ottaviani, “On generic identifiability of 3-tensors of small
rank,” SIAM. J. Matrix Anal. Appl., vol. 33, no. 3, pp. 1018–1037, 2012.

[27] A. Stegeman, J. ten Berge, and L. De Lathauwer, “Sufficient conditions for
uniqueness in CANDECOMP/PARAFAC and INDSCAL with random component
 matrices,” Psychometrika, vol. 71, no. 2, pp. 219–229, 2006.

[28] R. Bro, N. Sidiropoulos, and G. Giannakis. (1999). A fast least squares al-
gorithm for separating trilinear mixtures, in Proc. ICA99 Int. Workshop on
Independent Component Analysis and Blind Signal Separation, pp. 289–294.
 [Online]. Available: http://www.ece.umn.edu/˜nikos/comfac.m

[29] J. Brewer, “Kronecker products and matrix calculus in system theory,” IEEE
Trans. Circuits Syst., vol. 25, no. 9, pp. 772–781, 1978.

[30] D. Donoho and M. Elad, “Optimally sparse representation in general (non-
orthogonal) dictionaries via minimization,” Proc. Nat. Acad. Sci., vol. 100, no. 5,
pp. 2197–2202, 2003.

[31] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[32] Apache. Hadoop. [Online]. Available: http://hadoop.apache.org/

[33] A. Hadoop. Word count example. [Online]. Available: http://wiki.apache.org/
hadoop/WordCount

[34] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
Scaling tensor analysis up by 100 times-algorithms and discoveries,” in Proc.
18th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2012,
pp. 316–324.

[35] U. Kang, B. Meeder, and C. Faloutsos, “Spectral analysis for billion-scale
graphs: Discoveries and implementation,” in Advances in Knowledge Discovery
and Data Mining. New York: Springer, 2011, pp. 13–25.

[36] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph
mining system implementation and observations,” in Proc. 9th IEEE Int. Conf.
Data Mining 2009 (ICDM’09), pp. 229–238.
 [SP]

