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Channel Tracking and Transmit Beamforming
With Frugal Feedback
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Abstract—Channel state feedback is a serious burden that
limits deployment of transmit beamforming systems with many
antennas in frequency-division duplex (FDD) mode. Transmit
beamforming with limited feedback systems estimate the channel
at the receiver and send quantized channel state or beamformer
information to the transmitter. A different approach that exploits
the spatio-temporal correlation of the channel is proposed here.
The transmitter periodically sends a beamformed pilot signal in the
downlink, while the receiver quantizes the corresponding received
signal and feeds back the bits to the transmitter. Assuming an au-
toregressive (AR) channel model, Kalman filtering (KF) based on
the sign of innovations (SOI) is proposed for channel tracking, and
closed-form expressions for the channel estimation mean-squared
error (MSE) are derived under certain conditions. For more gen-
eral channel models, a novel tracking approach is proposed that
exploits the quantization bits in a maximum a posteriori (MAP)
formulation. Simulations show that close to optimum performance
can be attained with only 2 bits per channel dwell time block, even
for systems with many transmit antennas. This clears a hurdle for
transmit beamforming with many antennas in FDD mode—which
was almost impossible with the prior state-of-art.

Index Terms—Beamforming, estimation, Kalman filtering, lim-
ited-rate feedback, quantization, time-varying channels.

I. INTRODUCTION

T RANSMIT beamforming can enhance the performance of
multiple-input multiple-output (MIMO) systems by ex-

ploiting channel state information (CSI) at the transmitter. In
the frequency-division duplex (FDD) mode, where the down-
link and uplink channels are not reciprocal, the receiver must
feedback information about the downlink channel to the trans-
mitter. In systems with many transmit antennas, the feedback
overhead can be overwhelming; and the challenge is to limit the
feedback to only a few bits that still provide sufficient informa-
tion about the channel.
Almost all work on transmit beamforming with limited feed-

back addresses this challenge by designing efficient beamformer

Manuscript received March 11, 2014; revised July 31, 2014; accepted
September 15, 2014. Date of publication October 28, 2014; date of current
version November 12, 2014. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Ana Perez-Neira.
Supported in part by NSF ECCS-1231504, NSF AST-1247885. Conference
version of part of the results will appear in Proc. 48th Asilomar Conference on
Signals, Systems and Computers, November 2–5, 2014 [1].
The authors are with the Department of Electrical and Computer Engineering,

University of Minnesota, Minneapolis, MN 55455 USA (e-mail: meha0006;
nikos@umn.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2014.2365762

weight vector quantization algorithms at the receiver. The focus
is on designing a common beamformer codebook (known at the
transmitter and receiver). At runtime, the receiver estimates the
downlink channel, finds the best-matching beamforming vector
in the codebook, and feeds back its index to the transmitter
[2]. Codebook design can be based on maximizing the average
signal-to-noise ratio (SNR) [3], maximizing the average mutual
information [4], or minimizing the outage probability [5], and it
can be viewed as a vector quantization problem, where the gen-
eralized Lloyd algorithm (GLA) can be used to construct the
codebook [6]. This codebook-based framework assumes accu-
rate CSI at the receiver, which in turn implies significant down-
link pilot overhead. For large codebooks, which are necessary
when the number of transmit-antennas is large, the feedback
overhead can be significant, and the computational complexity
of searching the codebook for the best beamformer can be pro-
hibitive.
Another important issue is that most prior work assumes a

Rayleigh block-fading model, according to which the channel
remains constant over a block of symbols and changes inde-
pendently across different blocks. The block-fading assumption
overlooks the channel temporal correlation, which can be ex-
ploited to decrease the feedback rate [7], [8]. In [7] and [8], the
temporal correlation of the channel is exploited by modeling the
quantized CSI at the receiver as a finite-state Markov chain, and
computing the transition probability of every codebook entry
given the previous (one or more) codebook entries. In [7], vari-
able-length Huffman source coding is applied to the transition
probabilities of the Markov chain to compress the CSI feed-
back. This approach is not suitable for practical communication
systems with limited feedback, which provision a fixed number
of feedback bits per CSI slot, as in e.g., LTE [9]. Considering
this issue, a different fixed-length but lossy CSI compression al-
gorithm is proposed in [8], where low-probability transitions
between the Markov chain states are truncated. For large-size
codebooks, computing the transition probabilities accurately for
a large number of Markov states is an elusive task that requires
very long training periods. Moreover, the transition probabili-
ties are dependent on the specific channel model—new compu-
tations are necessary whenever the model varies significantly.
This paper proposes a different approach for beamforming

with limited feedback, that exploits the spatio-temporal channel
correlation, and avoids the limitations of codebook-based feed-
back andMarkov chain modeling. The transmitter is assumed to
periodically transmit a beamformed pilot signal in the downlink,
while the receiver quantizes the corresponding received signal
(2-bit quantization is considered in this paper), and sends the
quantization bits to the transmitter through the uplink feedback
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channel. Therefore, instead of estimating the channel at the re-
ceiver and sending the quantized CSI to the transmitter as in
codebook-based beamforming, the receiver feeds back a quan-
tized (noisy) linear measurement of the channel. The challenge
here is whether the transmitter can accurately estimate and track
the channel using such few (periodic) feedback bits.
Assuming that the channel can be modeled by an autore-

gressive (AR) model [10], and that the receiver feeds back the
analog-amplitude (un-quantized or finely-quantized) received
signal to the transmitter, Kalman filtering (KF) [11] is used in
[12] to track the channel at the transmitter. However, sending
the analog or finely-quantized received signal back to the trans-
mitter is problematic in terms of uplink rate and transmit power.
In this paper, we consider a 2-bit quantization scheme that is
based on the sign of innovation (SOI), and demonstrate how
the SOI-KF framework of [13] can be extended and used for
transmit beamforming with limited feedback if the channel fol-
lows an AR model. Moreover, we derive closed-form expres-
sions for the channel estimation mean-squared error (MSE), and
very tight closed-form approximations for the achievable av-
erage SNR, under certain conditions. Furthermore, for general
(non-AR or even unknown) channel models, a novel channel
tracking approach is proposed that exploits the quantization bits
in a maximum a posteriori (MAP) estimation formulation. Sim-
ulations confirm that by exploiting the high temporal and/or spa-
tial correlation of the channel, and with very limited feedback
rate (i.e., 2-bits per block), the performance achieved using the
proposed approaches is close to that attainable with perfect CSI
at the transmitter. The performance degrades, however, when
the channel correlation is weak. Simulations also show that very
large-size codebooks are required for codebook-based beam-
forming to achieve the same performance as the proposed ap-
proaches. Our results advocate for using transmit beamforming
for massive MIMO in FDD mode, whereas the focus of mas-
sive MIMO has so far been on time-division duplex (TDD) op-
eration, because of the huge feedback overhead associated with
CSI feedback [14].
A conference version of part of the results in this paper will

appear in [1]. This journal version includes full derivations and
proofs, a fleshed-out exposition, and comprehensive simula-
tions and comparisons to the state-of-art.
The rest of the paper is organized as follows. The limited

feedback beamforming system model is presented in Section II.
Channel estimation approaches with analog-amplitude feed-
back are provided in Section III, whereas the estimation
approaches with the quantized 2-bit feedback are given in
Section IV. Performance analysis and closed form results are
presented in Section V. Simulations and discussions on the
various trade-offs are presented in Section VI, and conclusions
are drawn in Section VII. Technical derivations and proofs are
deferred to the Appendix.
Notation: Boldface uppercase letters denote matrices,

whereas boldface lowercase letters denote column vectors;
and denote transpose and Hermitian (conjugate)

transpose operators, respectively; , , ,
and denote the trace, the Euclidean norm, the absolute
value, the real, and the imaginary operators, respectively;
Matlab notations and denote the diagonal

matrix and the Toeplitz matrix that are formed with vector ,
respectively; returns the modulus after division of
by ; the operator denotes the Hadamard (elementwise)

product of two matrices; denotes the ensemble average;
denotes the complex Gaussian distribution with

mean and covariance matrix ; denotes the identity ma-
trix; the function if and 1 otherwise;
and is the standard Gaussian tail
integral.

II. SYSTEM MODEL

Consider a downlink transmit beamforming setting com-
prising a transmitter with antennas and a receiver with a
single receive antenna. Extensions to account for multiple
receive antennas and multiple receivers are discussed at the
end of Section V. We consider a time-slotted downlink frame
structure, where the duration of each slot is seconds. We
assume that at the beginning of each time slot , the transmitter
sends a unit-power pilot symbol that is known at the
receiver (i.e., downlink pilot rate is symbols/s), followed
by data transmission for the remainder of the slot duration.
The pilot symbol is beamformed with a unit-norm
beamforming vector (i.e., the weights applied to the
transmit-antenna elements when transmitting are the

conjugate entries of ), whereas the data symbols are
beamformed with a different unit-norm beamforming
vector .
We assume that the complex vector that models the

frequency-flat channel between the transmit-antennas and
the receive antenna at time slot , denoted by , is com-
plex Gaussian distributed with zero mean and covariance ma-
trix , i.e., , for all . The covariance
describes the spatial correlation of the channel, and is assumed
to be known at the transmitter and the receiver. The channel
vector is assumed to be fixed within time slot , and the
random process is assumed to be stationary, ergodic,
and temporally correlated.1 A simple model for , which
allows specifying the temporal correlation of the channel, is the
first-order AR model:

(1)

where , is statistically independent
of for all , and controls the degree of temporal cor-
relation of the channel, . The AR
model (1) has been widely considered in the literature to model
the temporal progression of the channel (see, for example, [15],
[16], [12]). Extending (1) to higher orders is straightforward [11,
Ch. 13]. The channel is not restricted to the model (1) in this
work, but (1) is considered for its analytical tractability. Note
that unlike the common assumption in the literature on limited
feedback (cf. [2] and references therein), we do not assume that
the channel is perfectly known at the receiver.

1The fixed per-slot channel assumption is mainly intended to simplify the
analytical derivations and for simulation purposes; relaxing this assumption has
no impact on the proposed channel tracking algorithms.
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Fig. 1. Downlink frame structure and limited feedback beamforming system model.

The received signal that corresponds to the transmitted pilot
can be expressed as

(2)

where the random variable models the ad-
ditive white Gaussian noise (AWGN), and are indepen-
dent and identically distributed (i.i.d.). Multiplying the received
signal by (i.e., de-scrambling) at the receiver yields

(3)

where and are i.i.d.
The receiver then passes through a quantizer, and the

output quantization bits are sent to the transmitter through an up-
link feedback channel. The challenge at the transmitter is to esti-
mate and track the channel using such few (periodic) feed-
back bits. The transmitter then uses the channel estimate to
design the beamforming vector that is used for data transmission

in time slot as . Assuming that the data sym-
bols are temporally white with zero-mean and unit-variance, and
that the AWGN is zero-mean and unit-variance, the average re-
ceive-SNR can be expressed as2 . Sev-
eral design approaches for the pilot beamforming vector
are discussed in Section V, and compared in Section VI. The
time-slotted downlink frame structure and the proposed limited
feedback beamforming system are illustrated in Fig. 1.
In Section III, we first consider the case where the receiver

feeds back the complex analog-amplitude (or finely-quantized)
signal to the transmitter at each time slot, yielding a bound
on the performance with quantization. The more practical case
with very limited feedback, where the receiver feeds back only
2 bits to the transmitter at each time slot, is then considered in
Section IV.

III. ANALOG-AMPLITUDE FEEDBACK

Here we assume that the receiver will send the complex
analog-amplitude (or finely-quantized) signal to the trans-

2Feedback delay is not considered in this work. The effect of feedback delay
on the throughput has been considered in [8].

mitter through an uplink feedback channel. Assuming an AR
channel model, we first consider a KF approach for estimating
and tracking , followed by a minimum mean-square error
(MMSE) approach that can be applied for any channel model.

A. KF Approach

Assuming an AR channel evolution model as (1), in addition
to the linear observation model of as (3), the transmitter
can apply the KF iterations to estimate and track from

[11, Ch. 13]. KF has been considered for tracking
a time-correlated channel in [12], [15], [16].
Define the vector of observations

and the innovation

(4)

where is the predicted channel vector,
which equals for the considered AR model. Ex-
ploiting that the posterior distribution is Gaussian
for the linear Gaussian state and observation models consid-
ered, the MMSE estimate of can be recursively obtained
by the KF equations [11, Ch. 13]:

(5)

where the prediction error covariance matrix (ECM) is

(6)

and the estimation ECM is

(7)
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For a general (non-AR) channel model, one approach is to
approximate the actual channel evolution by the AR model
(1), using that gives the best performance (e.g., that min-
imizes the average estimation error or maximizes the average
achieved SNR). The performance of this approach is illustrated
in Section VI. We next consider a different channel tracking
approach that does not require a specific channel evolution
model.
B. MMSE Approach

Here we consider a simple and general approach that
does not assume a model for . When estimating
using the current and prior observations , more
weight should be given to recent observations, while older
observations should be given less weight. Motivated by the
exponentially-weighted recursive least-squares (RLS) algo-
rithm [17, Ch. 30], we consider approximating the set of
observations with the set

, where .

The role of the forgetting factor is to (exponentially) increase
the noise variance of the older observations, implying more un-
certainty in the approximate equality of the linear measurement

as increases.
Define the beamforming matrix

and the diagonal noise covariance matrix
. Hence, the MMSE es-

timate of , assuming the linear Gaussian observations
, can be obtained

as [11, Ch. 12]

(8)

The matrix can be pre-com-
puted for each in order to reduce the run-time computational
complexity. Note that, because of the exponential decay,
only finite-size matrices and are needed to compute

using (8), as . The main challenge in this
MMSE approach is to find the value of that gives the best
performance for each channel model. Performance compar-
isons between the KF approach and the MMSE approach are
considered in Section VI for different channel models.
It is worth mentioning that if is assumed deterministic

instead of random, the exponentially-weighted RLS algorithm
can be applied to estimate and track from [17,
Ch. 30]. It is also worth mentioning that if second order statis-
tics are available, i.e., for all , then Wiener
filtering (WF) can be applied [11, Ch. 12]. Assuming, for ex-
ample, that (where and
is known for ), the WF channel estimate can be obtained
as:

(9)

where ,
and .

IV. 2-BIT QUANTIZED FEEDBACK

Sending the complex analog-amplitude (or finely-quantized)
signal via the uplink feedback channel entails a large over-
head in terms of the uplink resources (rate, transmit-power). In-

stead, consider the following 2-bit quantization scheme at the
receiver. It is easy to see that the KF channel tracking approach
in (5) depends on the innovation defined in (4), i.e., the dif-
ference between the current observation and the predicted ob-
servation based on past observations. Thus, we consider one-bit
quantization for the real part of , and one-bit quantization
for the imaginary part . This can be expressed as

(10)

(11)

where , ,
and is the predicted channel given the past observations. In
order to compute and that are required to perform
the 2-bit quantization in (10) and (11), the receiver has to know
the pilot beamforming vector , and must compute in
the same way as the transmitter, as will be discussed later.
After the quantization, the receiver sends the two bits

and to the transmitter via the uplink feedback channel. The
feedback channel is assumed free of errors, which is a typical
assumption in the literature on limited feedback [2]. We use the
term ‘frugal feedback’ to describe this feedback process, where
the term ‘frugal’ carries a double implication: low on resources
(bits here) but judiciously allocated. It is the fact that we quan-
tize that enables the good performance, which is not ten-
able with ‘any two’ bits.
Note that with such 2-bit quantization, the downlink pilot rate

is only symbols/s, and the uplink feedback rate is only
bits/s. The challenge here is whether the transmitter can accu-
rately estimate and track the complex -dimensional channel

, using only the periodically received pairs of feedback bits
and . To address this challenge, we first consider a

SOI-KF approach (based on [13]) that is suitable for the AR
channel model, followed by a novel MAP approach that is ap-
plicable for general channel models.

A. SOI-KF Approach

Here we assume the AR channel model in (1), and the bi-
nary observation model given by (10) and (11), where

for the AR model. To estimate and track at
the transmitter using and , we extend
the SOI-KF framework from the real vector space considered
in [13] to the complex vector space. To facilitate operating in
the more convenient real domain, consider the following defi-
nitions:

such that and
.

The distribution is not necessarily Gaussian
because the binary observation model is not linear, and
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hence the exact MMSE estimator, i.e., , re-
quires multiple nested numerical integrations to compute
the posterior distribution [13]. Assuming that

, and utilizing the re-
sults of [13], the MMSE estimate
can be obtained using the following KF-like recursive equations
(cf. [13]):

(12)

where

(13)

(14)

(15)

There are two underlying assumptions in the SOI-KF ap-
proach: (1) the actual channel model follows an AR model; and
(2) the distribution is Gaussian. Relaxing both
assumptions, we next develop a MAP estimation and tracking
approach that does not assume a specific channel evolution
model, and which can yield superior performance relative to
the SOI-KF approach, as we will show in the simulations.

B. 2-Bit MAP Approach

We consider the same exponential weighting idea that
is used in Section III-B, where the set of measurements

is approximated and re-

placed with the set

for . Using this assumption, we formulate a MAP
estimation problem for , given the measurement bits

and [11, Ch. 11]. Note that without
assuming a specific channel model, the predicted channel
can be taken to be the same as its most recent estimate, i.e.,

.
The probability that (and similarly for the proba-

bility that ) at time slot given can be expressed
in terms of the -function as

(16)

where . Since the noise samples
are independent, the probability mass function

(PMF) of , given , is given as

(17)

Now the MAP estimate can be obtained as

(18)

Since the -function is log-concave [18, pp. 104], problem (18)
is convex and can be solved efficiently using Newton’s method
[18, Sec. 9.5].
In Newton’smethod, defining the function as the nega-

tive of the objective function in (18) (defined explicitly in (20)),
and starting from a feasible initial point , multiple damped
Newton steps of type

(19)

are used to find the minimizer of the convex function
(where is the step-size). Closed form expressions for the
gradient vector and the Hessian matrix are
derived in (21) and (22), respectively.

(20)

(21)
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(22)

In order to reduce the complexity of solving (18) exactly, we
consider applying only a single iteration of Newton’s method
(with unit-step ) to obtain , using as the
initial point. The proposed low-complexity approximate MAP
(AMAP) estimate can be expressed as

(23)

Intuitively, when the channel is tracked well, the actual
channel at time is very close to the estimated channel

at time , hence a single Newton step is
sufficient to obtain a close approximation of the exact MAP
estimate (18). For the rest of this paper, references to the 2-bit
MAP approach will mean the AMAP in (23), not the exact
MAP in (18).
The complexity of computing using (23) is deter-

mined by computing and inverting the Hessian ma-
trix . Note that because of the exponen-
tial increase of as increases, the number of mea-
surement bits that are required to compute

and (and the corresponding terms
in the summation), as , are finite. The 2-bit MAP ap-
proach is computationally more complex than the SOI-KF ap-
proach; however, the performance of the 2-bit MAP approach
can be better than that of the SOI-KF approach, as shown in
Section VI. It is also worth mentioning that, in terms of ap-
plications, the proposed 2-bit MAP approach is not restricted
to channel tracking—it can be used for general estimation and
tracking problems with (very) limited feedback.

V. PERFORMANCE ANALYSIS

It is clear that the performance of the considered channel
tracking schemes depends on the actual channel model and the
choice of pilot beamforming vectors . In this section we

restrict attention to the analytically tractable AR channel model
(1).
A greedy beamforming design strategy for the KF ap-

proach is to use the beamforming vector that minimizes
at time . This has been considered in [19].

From (7), the optimization problem can be expressed as

(24)

The objective function in (24) can be expressed as a Rayleigh
quotient as

where and . The optimal
that maximizes the Rayleigh quotient , where

, is the eigenvector that corre-
sponds to the maximum eigenvalue of , denoted . Then
the optimal beamforming vector solution to (24) is obtained as

.
Note that there are no guarantees that this greedy beam-

forming approach yields the best overall estimation/tracking
performance for more than one time slot. In fact, we show
in the next section via simulations that a different simple
beamforming scheme can outperform this greedy beamforming
approach, when the channel is spatially correlated (i.e.,
is not a diagonal matrix). If , and the initial ECM

, , it is easy to see that the greedy opti-
mization (24) selects a single antenna for each , with different
antennas selected in a round-robin fashion, i.e., the -th entry of

is 1 if and 0 otherwise. In the sequel,
we will refer to this beamforming scheme as single-antenna
beamforming.
The following proposition gives a closed-form expression

for the channel estimation MSE with the KF and SOI-KF ap-
proaches (for sufficiently large ), using single-antenna beam-
forming, and assuming .
Proposition 1: Consider the AR channel model (1), the

linear observation model (3), the single-antenna beamforming
scheme, and assume that (and that the distribution

is Gaussian for the SOI-KF approach). Then,

(25)

(26)
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where

Proof: See Appendix A.
Remark 1: Note that analogous closed-form results are not

available for general KF or SOI-KF; what allows these results
here is our specific choice of pilot beamforming strategy (single-
antenna beamforming), which, as we will show in the simula-
tions, also happens to be the best among several alternatives that
we tried.
Using the same assumptions as Proposition 1, and the

relations , where ,
,

(orthogonality principle), and
, a lower bound on the av-

erage achieved SNR with the KF approach for large can be
obtained as

(27)

since . Denoting the -th entry

of as for brevity,

(28)

where the last approximation step in (28) is obtained assuming
that and are independent (they are uncorrelated
but not necessarily independent). Hence can be closely ap-
proximated as

(29)

Similarly, a lower bound on the average achieved SNR with the
SOI-KF approach at large can be obtained as

(30)

and a close approximation is obtained as

(31)

The approximations (29) and (31), are evaluated in Section VI.
It is easy to verify in Proposition 1 that if (i.e.,

the channel is time-invariant), then and
. In other words if the channel is time-in-

variant, then the estimation error will go to zero, and the average
SNR will reach the case with perfect CSI at the transmitter, as

. It is also easy to check that and are in-
creasing functions in , , and . An empirical observation
made in our simulations is worth mentioning: we noticed that

converges to the limit in (25) for ,
while converges to the limit in (26) for

.
A generalization to single-antenna beamforming is the case

where the beamforming vector is selected as one of the
columns of a unitary matrix in a round-robin fashion,
i.e., is the -th column of if .
We will refer to this scheme as unitary beamforming, and note
that single-antenna beamforming is a special case of unitary
beamforming with . Based on extensive numerical tests,
we conjecture that the closed-form expressions for and

in (25) and (26), respectively, are also applicable for
the general case of unitary beamforming, using any unitary ma-
trix . Moreover, we conjecture the optimality of the unitary
beamforming scheme in terms of minimizing and
(and maximizing and ), if .
Intuitively, the beamforming vectors that are used for

learning/tracking the channel should provide complementary
views of the entire channel vector . For example, the

matrix should be
full-rank if . Thus, the beamforming vectors
that are used for pilots for channel tracking should be
different than the beamforming vectors that are used

for data transmission. Choosing ,
which is the case considered in [12], yields poor performance.
This point is further elaborated in Section VI.

A. Comparing With Codebook-Based Beamforming

As mentioned earlier, the state-of-the-art in transmit beam-
forming with limited feedback is focused on designing a
common beamformer codebook (known at the transmitter and
the receiver). The setup assumes that the receiver will accu-
rately estimate the downlink channel, search the codebook, and
feed back the index of the best beamformer in the codebook to
the transmitter [2]. In [6], it is stated that for beamforming over
i.i.d. Rayleigh fading channels with beamformer codebook of
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Fig. 2. Comparison between with and
with as increases.

size designed by the GLA, the achieved average SNR
can be closely approximated as

(32)

Note that expression (32) is obtained ignoring the temporal cor-
relation of the channel and assuming perfect CSI at the receiver
(unlike the case for ).
Fig. 2 plots the lower bound on from (30) and

from (32) as increases, assuming , ,
, and . The figure shows

the increase of as increases and as increases (i.e.,
channel becomes more correlated across time). The figure also
shows that a large number of feedback bits (i.e., large code-
book) is required for codebook-based beamforming to achieve
the same performance as the SOI-KF approach, which is ob-
tained using only 2 feedback bits per channel dwell time block
of length . The number of bits required for to achieve

increases as or increases. For example, the figure
shows that (with ) outperforms with

feedback bits for , and outperforms with
feedback bits for .

Exploiting the channel temporal correlation to reduce the
feedback rate, [7] and [8] propose modeling the quantized CSI
at the receiver using a finite-state Markov chain. As shown in
Fig. 2, at least are needed to achieve the same
SNR performance that is achieved with only 2 feedback bits
using the SOI-KF approach when and , for
example. This means that at least Markov states need to
modeled and transition probabilities must be computed in
order to apply the compression techniques in [8] and [7], which
is clearly computationally prohibitive.
Before moving to the numerical results, two practice-oriented

remarks are in order.
• Variable-length quantization. To further decrease the feed-
back rate to 1 bit per , the receiver can send only the bits
that correspond to the real measurements, , in even
time slots, while the bits that correspond to the imaginary
measurements, , are sent in odd time slots (or vice
versa). On the other hand, the estimation performance can

Fig. 3. Performance comparison for the considered beamforming approaches
with transmit-antennas, and using Jake’s channel model with

.

be improved by increasing the feedback quantization bits
(at the cost of higher feedback rate) using the iteratively
quantized Kalman filter approach introduced in [20], where
the quantization bits are iteratively formed using the sign
of the difference between the observation and its es-
timate based on past observations along with previous bits
of the current observation.

• Multiple receive antennas. Extending this work to a set-
ting with more than one receive antennas (or multiple re-
ceivers) is straightforward if the receive antennas are un-
correlated. A separate estimation/tracking problem can be
set up for the channel vector that corresponds to each re-
ceive antenna.

VI. NUMERICAL RESULTS

To test the performance of the proposed beamforming and
feedback techniques, we consider the widely used Jake’s
channel model [21] in Figs. 3, 4, 5, and 6. According to
Jake’s model, the spatio-temporal correlation matrix can be
expressed as , for , where

, is the 0-th-order Bessel function,
and denotes the Doppler frequency. The unitary beam-
forming scheme that is described in Section V is used for all
figures. The SNR loss, defined as the ratio of the average SNR
achieved with perfect CSI at the transmitter (i.e., )
to the average SNR achieved with the estimated channel (i.e.,

), is used to measure and compare the perfor-
mance of the proposed techniques.
The setup for Fig. 3 considers a transmitter with an-

tennas, Doppler frequency , time slot duration
(same performance for any values of and that sat-

isfy ), spatial correlation matrix Toeplitz
, where , and observation noise

variance . The figure illustrates the trade-off be-
tween the SNR loss of the KF and SOI-KF approaches and
, the trade-off between the SNR loss of the MMSE and 2-bit
MAP approaches and the forgetting factor , and the SNR loss
using the WF (9) (which requires additional knowledge of
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Fig. 4. Performance comparison for the considered beamforming approaches
with transmit-antennas, and using Jake’s channel model with

.

Fig. 5. SNR loss as the Doppler frequency increases in Jakes channel model
with .

Fig. 6. Average SNR increase as increases in Jakes channel model with
.

for all ) as a baseline. The SNR loss plots are ob-
tained via 1000 Monte-Carlo simulation runs, where each run
includes 400 time slots.

TABLE I
SNR LOSS COMPARISON OF DIFFERENT BEAMFORMING TECHNIQUES

Interestingly, Fig. 3 shows that the difference between the av-
erage receive-SNR achieved using the proposed 2-bit MAP ap-
proach with only 2 feedback bits every seconds (at the op-
timal ), and the Genie receive-SNR achieved with
perfect CSI at the transmitter, is less than 1 dB. The figure also
shows that the average receive-SNR achieved using the pro-
posed 2-bit MAP approach (at ) is 0.2 dB larger than
that achieved using the SOI-KF approach (at ), and is
only 0.6 dB less than that achieved usingWF (9). In other words,
the cost of quantizing the received signal into 2 feedback
bits, as compared to the analog-amplitude feedback, is less
than 0.6 dB. Note that in the case of analog-amplitude feedback,
it is assumed that is perfectly known at the transmitter
(in addition to the knowledge of ); accounting for addi-
tional uplink (or quantization) errors in the analog feedback case
will further decrease the 0.6 dB difference. Another observation
from the figure is that the MMSE approach (at ) and
the KF approach (at ) are very close in performance.
It is worth mentioning that in practice, the optimal values of
or for a range of channel models can be pre-computed of-

fline and stored in a lookup table. At runtime, using the current
channel statistics or estimated channel parameters (e.g., Doppler
frequency), a suitable value of or can be retrieved from
the lookup table and applied in the channel tracking algorithm,
without performing any expensive computations.
Table I uses the same setup as Fig. 3, and reports the SNR

loss (in dB) with different beamforming schemes at
and . The considered beamforming schemes, which
correspond to the columns of the table, are (in order): (i)
the unitary beamforming scheme described in Section V;
(ii) the single-antenna beamforming scheme described in
Section V; (iii) a random beamforming scheme where
is a normalized Gaussian random vector for each ; (iv) the
greedy beamforming scheme where is obtained by
solving (24); and (v) the case where corresponds to
the most recent channel estimate using the KF approach (i.e.,

). The table shows that
the performance of the unitary beamforming is almost identical
to that of the single-antenna beamforming (small difference
within the sample averaging error), which is superior to other
considered beamforming schemes. The table also verifies that
the greedy beamforming scheme using (24) is not optimal, and
that using yields poor
performance, as discussed in Section V.
In Fig. 4, a large system with antennas is con-

sidered, with Doppler frequency , spatial correla-
tion matrix Toeplitz , where

, and observation noise variance . Similar
to Fig. 3, Fig. 4 illustrates the trade-off between the SNR loss
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and the parameters and , and confirms that the proposed 2-bit
MAP approach with only 2 feedback bits every seconds is ap-
plicable even with large . At the optimal , the SNR
achieved with 2-bit MAP approach is 1.7 dB less than the case
with perfect CSI at the transmitter, 0.6 dB less than WF with
analog-signal feedback, and 0.2 dB higher than the SOI-KF ap-
proach (at the optimal ). The results shown in this
figure help pave the way for using massive MIMO systems in
FDDmode [14], by exploiting the high spatio-temporal channel
correlation.
Fig. 5 considers the same setup and network parameters as

Fig. 3. The SNR loss that corresponds to the different considered
estimation/tracking techniques is plotted versus the Doppler fre-
quency, using the numerically optimized and . The SNR loss
is increasing with as expected. The figure shows that the SNR
loss due to the 2-bit quantization (i.e., 2-bit MAP and SOI-KF
approaches), as compared to the case with analog-signal feed-
back (i.e., KF, MMSE, and WF approaches), is small for small
, and increases as increases. The figure also shows that the

2-bit MAP approach outperforms the SOI-KF approach for the
considered range, and that theMMSE and KF approaches are
very close in performance.
In Fig. 6, the average achieved SNR using the numerically

optimized and is plotted as a function of , considering a
setup with , , , and .
The figure shows that the average SNR is increasing with as
expected, and that the gap between the average SNR achieved
with 2-bit quantization (using the 2-bit MAP and SOI-KF ap-
proaches) and the average SNR achieved with analog-signal
feedback (using the KF, MMSE, and WF approaches), is in-
creasing as increases. The figure also shows that the 2-bit
MAP approach outperforms the SOI-KF approach for the con-
sidered range of , and that the MMSE and KF approaches are
very close in performance. Using the average SNR expression
(32) achieved using GLA for the codebook-based beamforming
framework (assuming perfect CSI at the receiver), it can be
shown that at least are required to achieve the same
performance as the 2-bit MAP approach when (1.33
dB), and at least are required when (3.33
dB). Computing the transition probabilities for the finite-state
Markov chain model, as considered in [7] and [8], is clearly pro-
hibitive in these cases.
Fig. 7 considers the AR channel model (1), with ,

, , and . The SNR loss for the
considered techniques is plotted versus , where the numeri-
cally optimized is used for the MMSE and 2-bit MAP ap-
proaches. The figure also plots the analytical approximations
for the KF and SOI-KF approaches using (29) and (31), respec-
tively. Note that for the AR model (1), the performance of the
KF (5) and the WF (9) are identical for large [11]. The figure
shows the decrease of the SNR loss as increases as expected.
The figure also shows that the SOI-KF approach outperforms
the 2-bit MAP approach for the considered AR channel model,
and that the performances of the MMSE and KF approaches are
very close. Moreover, the figure shows that the approximations
derived in (29) and (31) are very tight, particularly for large
. Considering the average SNR achieved using GLA for the
codebook-based beamforming, it can be shown using (32) that

Fig. 7. Average SNR increase as increases using the AR model (1) with
.

at least and are required to achieve
the same performance of the SOI-KF approach when
and , respectively.

VII. CONCLUSIONS

We proposed a new approach for channel tracking and
transmit beamforming with (very) limited feedback. Instead of
putting the burden of channel estimation and codebook search
on the receiver, we shift the bulk of the work to the transmitter.
Using separate beamforming weight vectors for pilot and pay-
load transmission, the transmitter sends a single pilot symbol
per channel dwell time block, while the receiver simply sends
back a coarsely quantized 2-bit version of the received pilot
signal (or the corresponding innovation, in the case of AR
modeling). For channel tracking, we proposed a novel 2-bit
MAP algorithm, as a ‘universal’ complement to an extended
version of the SOI-KF framework, which we advocate when
the channel can be modeled as an AR process. In the AR case,
we derived closed-form expressions for the resulting channel
MSE, and very tight approximations for the corresponding
SNR, assuming circular single-antenna beamforming for the
pilots. Careful simulations confirmed that by exploiting the
spatio-temporal correlation of the channel, the performance
achieved using the proposed frugal feedback approaches is
close to that attainable with perfect CSI at the transmitter.
Simulations also showed that very large-size codebooks are
required for codebook-based beamforming to achieve the same
performance as the proposed approaches. Our results help pave
the way for using transmit beamforming for massive MIMO in
FDD instead of TDD mode.

APPENDIX

A. Proof of Proposition 1

We first focus on the KF approach. It is easy to see from
(6) and (7) that and are diagonal matrices
for sufficiently large when single-antenna beamforming is
used. Let denote the sorted (ascend-
ingly) diagonal entries of , and
denote the sorted (ascendingly) diagonal entries of , for
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large . Since the channel entries are i.i.d. , it
is easy to see that the values of (and

) are the same for any sufficiently large
(i.e., ) because the KF estimator will be based on

present and infinite past observations—only the location of
(and ) in the diagonal of (resp. ) differs for
different .
From (6), we have the relation , for

. Assume that antenna is used to send
at time (i.e., the -th entry of equals 1). Prior to time
, antenna was last accessed at time with the single-
antenna beamforming, and thus the -th diagonal entry of
is the largest entry . From (7), only the -th diagonal entry
of is affected by the recursion in (7), yielding the smallest
diagonal entry of , whereas the rest of the diagonal
entries of are duplicated in . These relations can
be expressed as

(33)

for , whereas from (7),

(34)

From (33)

(35)

Substituting with from (35) in (34), we obtain the
quadratic equation in :

(36)
The only positive solution for (36) is ,
where and are defined in Proposition 1. Finally, using (33),

(37)

which proves (25).
The proof of (26) for the SOI-KF approach follows along

the same lines. Note that the matrix
is diagonal for sufficiently large , where the upper-left
sub-matrix (which corresponds to the real part) is identical

to the lower-right sub-matrix (which corresponds to
the imaginary part). Focusing only on the upper-left sub-ma-
trix, and defining and
as the sorted diagonal entries of the upper-left sub-matrix of

and , respectively, an expression for in
this case can be obtained from (15) as

(38)

Substituting with in (38), we
obtain a quadratic equation in , which is solved to obtain the

only positive solution , where , and
are defined in Proposition 1. Then,

(39)

which proves (26).

REFERENCES

[1] O. Mehanna and N. D. Sidiropoulos, “Frugal channel tracking for
transmit beamforming,” presented at the 48th Asilomar Conf. Signals,
Syst., Comput., Pacific Grove, CA, Nov. 2–5, 2014.

[2] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and
M. Andrews, “An overview of limited feedback in wireless commu-
nication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp.
1341–1365, Oct. 2008.

[3] D. J. Love, R. W. Heath, and T. Strohmer, “Grassmannian beam-
forming for multiple-input multiple-output wireless systems,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.

[4] V. K. N. Lau, Y. Liu, and T.-A. Chen, “On the design of MIMO block-
fading channels with feedback-link capacity constraint,” IEEE Trans.
Commun., vol. 52, no. 1, pp. 62–70, Jan. 2004.

[5] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. A. Aazhang, “On beam-
forming with finite rate feedback in multiple antenna systems,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2562–2579, Oct. 2003.

[6] P. Xia and G. B. Giannakis, “Design and analysis of transmit-beam-
forming based on limited-rate feedback,” IEEE Trans. Signal Process.,
vol. 54, no. 5, pp. 1853–1863, May 2006.

[7] C. Simon and G. Leus, “Feedback reduction for spatial multiplexing
with linear precoding,” in Proc. 32nd Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Apr. 2007, vol. 3, pp. III-33–III-36.

[8] K. Huang, R. W. Heath, Jr., and J. G. Andrews, “Limited feedback
beamforming over temporally-correlated channels,” IEEE Trans.
Signal Process., vol. 57, no. 5, pp. 1959–1975, May 2009.

[9] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer
Procedures, 3GPP TS 36.213 V9.2.0 LTE, Jun. 2010.

[10] K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for
fading channel simulation,” IEEE Trans. Wireless Commun., vol. 4,
no. 4, pp. 1650–1662, Jul. 2005.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing. Engle-
wood Cliffs, NJ, USA: Prentice-Hall, 1993, vol. I, Estimation Theory.

[12] M. Sadek, A. Tarighat, and A. H. Sayed, “Exploiting spatio-temporal
correlation for rate-efficient transmit beamforming,” in Proc. 38th
Asilomar Conf. Signals, Syst., Comput., Nov. 2004, pp. 2027–2031.

[13] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, “SOI-KF: Dis-
tributed Kalman filtering with low-cost communications using the
sign of innovations,” IEEE Trans. Signal Process., vol. 54, no. 12, pp.
4782–4795, Dec. 2006.

[14] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, 2014.

[15] Z. Liu, X. Ma, and G. B. Giannakis, “Spacetime coding and Kalman
filtering for time-selective fading channels,” IEEE Trans. Commun.,
vol. 50, no. 2, pp. 183–186, Feb. 2012.

[16] R. Bosisio, M. Nicoli, and U. Spagnolini, “Kalman filter of channel
modes in time-varying wireless systems,” in Proc. 30th Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Mar. 2005, vol. 3, pp.
III-785–III-788.

[17] A. H. Sayed, Fundamentals of Adaptive Filtering. New York, NY,
USA: Wiley, 2003.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[19] F. Jiang, J. Chen, and A. Swindlehurst, “Linearly reconfigurable
Kalman filtering for a vector process,” presented at the 38th Int. Conf.
Acoustics, Speech, Signal Process. (ICASSP), Vancouver, Canada,
May 26–31, 2013.

[20] E. J. Msechu, S. I. Roumeliotis, A. Ribeiro, and G. B. Giannakis, “De-
centralized quantized Kalman filtering with scalable communication
cost,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3727–3741, Aug.
2008.



MEHANNA AND SIDIROPOULOS: CHANNEL TRACKING AND TRANSMIT BEAMFORMING WITH FRUGAL FEEDBACK 6413

[21] W. C. Jakes, Microwave Mobile Communications. New York, NY,
USA: Wiley, 1974.

Omar Mehanna (S’05) received the B.Sc. degree in
Electrical Engineering from Alexandria University,
Egypt, in 2006, the M.Sc. degree in Electrical Engi-
neering from Nile University, Egypt, in 2009, and the
Ph.D. degree in Electrical Engineering from Univer-
sity of Minnesota in 2014. He is currently a Senior
Systems Engineer at Qualcomm Technologies, Inc.
His current research interests are in cognitive radio
and coordinated multi-point communications.

Nicholas D. Sidiropoulos (F’09) received the
Diploma in Electrical Engineering from the Aris-
totelian University of Thessaloniki, Greece, and
M.S. and Ph.D. degrees in Electrical Engineering
from the University of Maryland—College Park,
in 1988, 1990 and 1992, respectively. He served
as Assistant Professor at the University of Virginia
(1997–1999); Associate Professor at the University
of Minnesota—Minneapolis (2000–2002); Pro-
fessor at the Technical University of Crete, Greece
(2002–2011); and Professor at the University of

Minnesota—Minneapolis (2011–). His current research focuses primarily on
signal and tensor analytics, with applications in cognitive radio, big data,
and preference measurement. He received the NSF/CAREER award (1998),
the IEEE Signal Processing Society (SPS) Best Paper Award (2001, 2007,
2011), and the IEEE SPS Meritorious Service Award (2010). He has served
as IEEE SPS Distinguished Lecturer (2008–2009), and Chair of the IEEE
Signal Processing for Communications and Networking Technical Committee
(2007–2008). He received the Distinguished Alumni Award of the Department
of Electrical and Computer Engineering, University of Maryland, College Park
(2013).


