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Abstract—Wideband power spectrum sensing is essential
for cognitive radio and many other applications. Aiming to
crowdsource spectrum sensing operations, a novel frugal sensing
framework was recently proposed, employing a network of low
duty-cycle sensors (e.g., running in background mode on con-
sumer devices) reporting randomly filtered broadband power
measurement bits to a fusion center, which in turn estimates the
ambient power spectrum. Frugal sensing is revisited here from a
statistical estimation point of view. Taking into account fading and
insufficient sample averaging considerations, maximum likelihood
(ML) formulations are developed which outperform the original
minimum power and interior point solutions when the soft power
estimates prior to thresholding are noisy. Assuming availability of
a downlink channel that the fusion center can use to send threshold
information, active sensing strategies are developed that quickly
narrow down and track the power spectrum estimate, using
ideas borrowed from cutting plane methods to develop active ML
solutions. Simulations show that satisfactory wideband power
spectrum estimates can be obtained with passive ML sensing
from few bits, and much better performance can be attained
using active sensing. Various other aspects, such as known emitter
spectral shapes and different types of non-negativity constraints,
are also considered.

Index Terms—Cognitive radio, collaborative sensing, spectral
analysis, spectrum sensing.

I. INTRODUCTION

S PECTRUM sensing is the most important component of
cognitive radio as it enables users to discover transmis-

sion opportunities, thus forming the basis for adaptive spec-
trum sharing [3]. Spectrum estimation is also essential in de-
veloping efficient power control schemes for secondary users in
spectrum underlay settings [4]. Collaborative spectrum sensing,
involving many sensors taking relatively sparse measurements
across space, time, and frequency, is crucial to increase relia-
bility and alleviate the harmful effects of fading and the hidden
terminal problem. In addition to cognitive radio, collaborative
sensing plays a fundamental role in various applications such
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as smart agriculture, industrial monitoring, weather forecasting,
military surveillance, disaster response, and health monitoring
applications [5].
Wideband spectrum sensing requires very high sam-

pling rates and thus high power consumption and high-cost
analog-to-digital converters (ADCs) [3]. Exploiting fre-
quency-domain sparsity, compressive spectrum sensing can
obtain accurate spectrum estimates at sub-Nyquist sampling
rates, without frequency sweeping [6], [7]. Cooperative spec-
trum sensing schemes that use compressive sensing have been
considered in [8], [9], where the spectrum is estimated locally,
then consensus on globally fused sensing outcomes is reached.
However, the methods of [8] and [9] require sensors to preform
complex local computations, and entail significant communi-
cation between sensors.
Whereas most work on spectrum sensing (e.g., [3], [5]–[9])

has focused on reconstructing the signal’s Fourier spectrum
(i.e., the Fourier transform of the signal itself), in cognitive radio
and many other applications only the power spectrum (PS) is
needed (i.e., the Fourier transform of the signal’s autocorrela-
tion)—there is no need to reconstruct or demodulate the orig-
inal signal itself [10]. Power spectrum estimation methods have
been developed in [10]–[14], where it is shown that sampling
rate requirements can be considerably relaxed by exploiting a
low-order correlation model, without even requiring spectrum
sparsity. In [15], it is shown that further reduction in sampling
rate is possible by exploiting available prior information on the
spectrum, such as spectral masks and carrier frequencies. The
main idea in this line of work is that power measurements are
linear in the autocorrelation function, hence a finite number of
autocorrelation lags can be estimated by building an over-deter-
mined system of linear equations using sufficient power mea-
surements.
The PS estimation methods considered in [10]–[15] assume

analog amplitude samples (i.e., ignore quantization issues).
In distributed spectrum sensing scenarios, however, sending
analog or finely quantized sample streams to a fusion center
(FC) is a heavy burden in terms of communication overhead
and battery lifetime. This was relaxed in [16], where a network
sensing scenario was considered, with each sensor reporting
a single randomly filtered power measurement bit to the FC,
which estimates the ambient PS from the collected bits. A
Linear Programming (LP) formulation was introduced in [16],
generalizing classical nonparametric PS estimation to the case
where the data is in the form of inequalities, rather than equal-
ities, and exploiting the autocorrelation parametrization and
pertinent non-negativity properties.
Frugal sensing [16]—PS estimation from relatively few

1-bit measurements—seems reminiscent of 1-bit compressed
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sensing (CS) [17]–[20], albeit there are significant differences
between the two. Frugal sensing aims directly for the autocor-
relation; it does not require (although it can exploit) sparsity in
any domain—it instead relies on properties of autocorrelation
sequences. Frugal sensing uses positive (power) thresholds,
which can be intelligently selected to ensure asymptotic consis-
tency, and robustness to bit flips, as we will show in this paper,
whereas errors were not considered in [17]–[20].
Contributions: The underlying assumption which enables

using the LP formulation in [16] is that the power measurement
prior to quantization at each sensor is accurate enough to
avoid flipping the reported power measurement bit. We relax
this assumption here, and show that the distribution of the
error in the soft power estimates (prior to thresholding) due to
frequency-selective fading and insufficient sample averaging
can be approximated by a Gaussian distribution. The Gaussian
distribution of the errors is then exploited in a maximum
likelihood (ML) formulation that optionally includes a spar-
sity-inducing penalty term. Interestingly, with the exception of
the autocorrelation-specific constraints, this ML formulation
turns out being similar to the formulation considered in [21]
for quantized CS measurements, and in [22] for a seemingly
very different problem—consumer preference measurement
using so-called conjoint analysis. Despite these similarities,
the use of autocorrelation-specific constraints differentiates
our work here from [21], [22], and is indeed instrumental in
obtaining meaningful PS estimates with a small number of bits,
as shown in simulations and comparisons to the Cramér-Rao
bound (CRB) that is also derived here. In order to reduce the
number of bits transmitted from the sensors to prolong battery
life and minimize communication overhead, we also propose
a ML/CRB-driven censoring scheme, where only sensors that
provide the most useful information bits are permitted to send,
while other sensors remain silent. We further extend our formu-
lations to the case where the PS is modeled as a weighted sum
of candidate spectral density primitives with unknown weights,
similar to [15] and [23], but for coarsely quantized (1-bit) data.
All approaches discussed up to this point are passive, in the

sense that the FC simply listens to the received bits and forms
a PS estimate—there is no FC-to-sensor communication. As-
suming availability of a ‘downlink’ channel that the FC can use
to send threshold information, we further develop active sensing
strategies that quickly narrow down and track the PS estimate,
using ideas borrowed from cutting plane methods in optimiza-
tion theory. This line of work is the secondmajor contribution of
this paper. Convergence of the proposed algorithms to the true
finite-length autocorrelation, as more sensors report their mea-
surement bits, is shown. It is worth mentioning that a different
adaptive thresholding algorithm has been developed in [24] for
the 1-bit CS setting; however, the Bayesian framework consid-
ered in [24] is computationally intractable and assumes a signal
with separable distribution that is known a-priori, which is not
a valid assumption in general.
Relative to the conference submissions [1] and [2], this

journal version i) covers nonparametric PS estimation in
addition to the case where the PS follows a certain model
(only model-based PS estimation was considered in [1]); ii)
proves that the effect of frequency-selective fading can be
approximated by adding a Gaussian random error variable to
the fading-free soft power measurement prior to quantization;

iii) proposes low-complexity active sensing strategies that
take into account possible bit-flips due to errors in the soft
power measurements before quantization; and iv) fleshes-out
numerical results and comparisons.
The rest of the paper is organized as follows. The network

sensing model and the formulation of [16] are presented in
Section II. TheML formulation for PS estimation with a passive
FC is provided in Section III, followed by the proposed active
sensing algorithms in Section IV. Simulations and discussions
on the various design trade-offs are presented in Section V, and
conclusions are drawn in Section VI. Technical derivations and
proofs are deferred to the Appendices.

II. FORMULATION AND BACKGROUND

We begin by describing the network sensing scenario, the
sensor measurement chain, and the baseline frugal sensing (LP)
formulation considered in [16]. The sensor measurement chain
in this paper is the same as in [16]. Section III uses the same
(passive) network sensing scenario as [16], while a new active
network sensing paradigm is considered in Section IV.

A. Network Sensing Model and Sensor Measurement Chain

Consider a network comprised of scattered sensors that
measure the ambient signal power and report to a FC. In the
presence of frequency-selective fading, the received signal at
sensor , sampled using a Nyquist-rate ADC,
is the convolution of the primary wide-sense stationary (WSS)
signal with the -tap linear finite impulse response (FIR)
fading channel , expressed as

(1)

where models the associated sensor-specific propagation
loss. A very simple sensor measurement chain is considered,
where sensor first uses automatic gain con-
trol (AGC) to adjust the scaling of its received signal such that

, then passes through a wideband
random FIR filter of length- . The length- impulse response
sequence of the FIR filter at sensor , , is pseudo-ran-
domly and independently generated, where each filter coeffi-
cient is uniformly drawn from the set of 4 possible QPSK sym-
bols, i.e.,

otherwise
(2)

where stands for the uniform probability mass function
over the finite set . The filter sequence can be gener-
ated using a pseudo-noise (PN) linear shift register, whose ini-
tial seed is unique for each sensor (e.g., its serial number), and is
known to the FC. Using random PN filters is appealing because
it ensures diversity, and also for its simplicity: convolution re-
quires no multiplication, and there is no need for coordination
between sensors on who-covers-what. PN filters can also be mo-
tivated from a random projections/incoherence point of view,
similar to compressed sensing [6].
The output sequence of the random FIR filter is expressed

as . Let denote the av-
erage power of theWSS signal , i.e., .
Note that the expectation is obtained given a single realization
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of for each sensor. Each sensor estimates by sample
averaging using samples

(3)

Finally, each sensor compares the estimated to a sensor-spe-
cific threshold . If , then sensor sends a bit

to the FC, otherwise it sends . The objective is
to estimate the PS of the signal at the FC from the measure-
ment bits . It is worth noting that the Nyquist-rate sam-
pling requirement can be lifted by using an equivalent analog
processing and integration chain, as shown in [16], and that the
sensors are not required to be synchronized since the PS of the
signal is invariant with respect to timing offsets and phase
shifts.

B. Frugal Sensing LP Formulation [16]

Here we summarize the main technique proposed in [16]
for PS estimation from the measurement bits . De-
fine as the convolution
of the primary signal and the impulse response of the
random FIR filter (i.e., ignoring fading), and define

. Let denote the
autocorrelation sequence of , and define the deterministic
autocorrelation of as

(4)

Hence, it can be shown that

(5)

where

with and denoting the real and imaginary parts,
respectively. In [16], it is assumed that the random fre-
quency-selective fading channels to the different sensors have
the same second-order statistics, and the effect of frequency-se-
lective fading is mitigated by averaging the measurements at
each sensor over a long period of time (many channel fading
states). In this case, the averaged channel effect is common to
all sensors, and can be absorbed in , cf. the Appendix of [16].
In this case, we can take .
A windowed nonparametric estimate of the PS can

be obtained from the -lag autocorrelation as
, . A discrete -point esti-

mate is thus obtained as , where ,

, , is the
(phase-shifted) discrete Fourier transform (DFT) matrix, and

(6)

where is a zeros vector, is the
identity matrix, and is the flipped identity ma-
trix. Thus, without any prior knowledge on the PS, the goal is to
estimate the autocorrelation vector at the FC from the mea-
surement bits received from the sensors.
Properties of the autocorrelation can be exploited to define

an initial bounded feasible region for . First, an upper bound
for the total signal power can be obtained (due to the use

of AGC at the front-end of the sensor processing chain) yielding
the bounds . Another well-known property
that can be exploited is that , for
. These inequalities yield the initial feasible region ,
where the bounded polyhedron

(7)

Note that the choice of determines the trade-off between
the level of smearing in the estimated PS [26] and the level of
under-determinacy (i.e., number of unknowns) in the estimation
problem, as shown in [16].
When the FC receives the few bits , the setup is still

heavily under-determined, and all available structural properties
and prior information should be employed to obtain a mean-
ingful estimate of the PS. For a valid autocorrelation vector
of any order, we know that the autocorrelation matrix

is positive semidefinite. This is an important structural prop-
erty of autocorrelation sequences, which can be exploited to
reduce under-determinacy and improve the estimation of .
In the limit of , this also ensures that ,

, but the windowed estimate that is obtained
by taking the Fourier transform of a truncated -lag autocorre-
lation is not guaranteed to be non-negative at all frequencies.
However, including the non-negativity constraint
in the set of constraints when estimating is essential in de-

creasing the under-determinacy of the estimation problem and
obtaining a good estimate of . Interestingly, it has been shown
in [16] that the semidefinite constraint is already im-
plied by the linear PS non-negativity constraint .
To further decrease the under-determinacy of the setup, the

expected sparsity of the PS can be exploited by minimizing the
sparsity-inducing -norm of . Enforcing implies
that , i.e., minimizing the
total signal power implicitly encourages sparsity in the recon-
structed PS. Assuming that such that implies

and implies , [16] proposed
the following LP formulation

(8)

The LP (8) can be efficiently solved using specialized algo-
rithms.
The underlying assumption which enables using the LP for-

mulation (8) is that the soft power estimate at each sensor is
accurate enough i.e., . Unlike [16], this assumption is
relaxed in this work where we explicitly model the distribution
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Fig. 1. The Gaussian distribution approximation of with different channel
taps .

of the error in the soft power estimates (prior to thresholding)
due to frequency-selective fading and insufficient sample aver-
aging by a Gaussian distribution, and exploit this error model in
a more robust ML formulation. In the next section, we first con-
sider the passive sensing case where the thresholds
are fixed and pre-assigned to sensors, followed by the active
sensing case where are adapted and communicated to
sensors online in Section IV.

III. PASSIVE ML SENSING

Here we relax the assumption that which is used
to derive the LP formulation (8) in [16]. Assume that the taps
of the FIR fading channel are independent and
identically distributed (i.i.d.) complex Gaussian random vari-
ables with zero-mean and variance , and that the channel is
time-invariant for the sensing epoch. Define the error due to the
fading channel at sensor as .
1) Claim 1: As , the errors can be approx-

imated as i.i.d. zero-mean Gaussian random variables.
The proof is sketched in Appendix A, and uses the Lyapunov

central limit theorem [25, pp. 371]. Exhaustive simulations
have indicated that approximating the distribution of with
a Gaussian distribution is a close approximation, even for rel-
atively small . Fig. 1 compares the actual distribution of
obtained via Monte-Carlo simulations and the corresponding
Gaussian distribution approximation, for different channel taps

, and filter length . The figure
shows that the Gaussian distribution is a reasonable approxi-
mation for relatively small , and a very accurate one for
relatively large . The figure also shows the decrease
in the variance of as increases.
The estimation errors due to insufficient sample averaging,

, can also be modeled as i.i.d. Gaussian random
variables with zero-mean and variances , by the cen-
tral limit theorem. This means that can be modeled as

, where is a Gaussian random variable
with zero mean and variance . Thus, the power
measurement bit of each sensor can be expressed as

(9)

where if and otherwise, for .

The assumption that ,
, allows using linear inequality constraints in (8). As the

error variances increase, however, formulation (8)
becomes inaccurate, and the constraints may become inconsis-
tent as the number of flipped bits due to errors increase. In order
to lift this limitation, we propose to exploit the Gaussian dis-
tribution of to derive a more flexible and robust ML
formulation. The nonparametric PS estimation case is first con-
sidered in the next subsection, followed by a parametric PS case.

A. Nonparametric ML Formulation

We may obtain an ML estimate of the -lag autocor-
relation by exploiting the Gaussian distribution of

as follows. Define and
. Since the errors are as-

sumed i.i.d Gaussian random variables with zero-mean and
variance , the probability mass function of the bits

, given the autocorrelation , is

(10)

where is the cumulative distribu-
tion function (CDF) of the Gaussian distribution. The log-like-
lihood function can be written as

(11)

Similar to the LP (8), the non-negativity constraint
is essential in obtaining a good estimate of , and the sparsity
of can be exploited by minimizing . Therefore, an ML
formulation, with a sparsity-inducing penalty term, is given as

(12)

where is a tuning parameter that controls the sparsity of
the PS estimate. Since the Gaussian CDF is log-concave
[27, pp. 104], problem (12) is convex and can be solved effi-
ciently using interior-point algorithms [27]. Note that the max-
imizer of problem (12) always exists since is bounded in
. It is worth mentioning that the autocorrelation-specific con-

straints and considered in (12), which are not
present in the ML formulations in [21], [22], can yield signifi-
cantly better-quality estimates with fewer .
Omitting the inequality constraint and the spar-

sity-inducing penalty in (12), a sufficient condition
for consistency of the ML estimate, i.e., for to converge in
probability to the true as , is that the second-mo-
ment matrix is full-rank [28] (see also [22]).
This condition also ensures statistical identifiability of from
the measurements. Clearly, for i.i.d. PN filter impulse responses

as in (2), the matrix is indeed diagonal and full-
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rank. Whereas including the sparsity-inducing penalty
and the constraint can yield better estimates for (rel-
atively small) finite , this can prevent convergence of to
the true as , if is too large or if the true -lag
autocorrelation does not satisfy .
Cramér-Rao Bound: Assuming that the true -lag autocor-

relation satisfies , and no prior PS sparsity information,
the CRB on the estimated can be derived as follows. First,
we note that inequality constraints do not affect the CRB; only
equality constraints yield a CRB that is lower than the uncon-
strained one [29]. Defining , it can
be shown that [22]

(13)

where the expectation is with respect to . Hence, the
Fisher information matrix (FIM) is computed as

(14)

where and

(15)

is the -th entry of the diagonal matrix . Finally, the CRB on
is obtained as1 .
If an upper bound on the number of nonzero frequency

‘bins’ (FFT points) in the PS is known a-priori, it can be
exploited by adding the cardinality constraint ,
where the -(quasi)norm is the number of nonzero entries
of . Note that this nonconvex -norm constraint can be
relaxed by adding the sparsity-inducing penalty to the
cost function as in (12). Computing the CRB with a cardinality
constraint has been considered in [31] for a linear model and
extended in [22] for a nonlinear model. It is shown in [31]
and [22] that the CRB equals the unconstrained bound if the
parameter to be estimated satisfies the cardinality constraint
with strict inequality; whereas if the cardinality constraint
is satisfied with equality, then the CRB coincides with the
‘clairvoyant’ one for when the nonzero locations are perfectly
known. To compute the CRB if , let the rows of
the matrix correspond to the

rows of the DFT matrix
that satisfy , and let the matrix

satisfy and . Thus, the sparsity-constrained
CRB can be obtained as [31]

(16)

1Assuming that such that the FIM is nonsingular. If is
singular, the pseudo-inverse can be used instead [30], in the sense that it will
yield a valid (albeit generally optimistic) lower bound.

This gives the best achievable mean squared error obtained by
estimators that have perfect knowledge of the support set of the
PS to be estimated.

B. Dictionary Model PS Estimation

Here we assume that the PS of the primary signal can
be expressed (approximated) by the model

(17)

where are known functions and are
unknown positive weights. For example, can
correspond to (overlapping) raised cosine bases which can
model transmit-spectra of multicarrier systems [23]. Using
the model (17), the PS can be reconstructed by estimating the
weight vector . If the center frequencies are
unknown, the linear model (17) can also be used assuming an
overcomplete dictionary of bases functions . Note
that the bandwidths of are allowed be different.
In general, the PS model (17) can be used to model the PS of
primary transmitters, where is the transmit-power of trans-

mitter , and the function characterizes
the spectral mask and the carrier frequency [15]. In this case,
the received signal at sensor , sampled using a
Nyquist-rate ADC, can be expressed as

(18)

where is the discrete-time WSS signal of the -th trans-
mitter (signals are assumed independent across transmitters),
and are time-invariant i.i.d. zero-mean and unit-
variance complex Gaussian random variables that represent the
fading channel. This assumes that the long-term channel coef-
ficient between transmitter and sensor is already known
(e.g., using training sequences), and is removed from the re-
ceived signal.
From (17), the autocorrelation of the primary signal

can be expressed as

(19)

where is the inverse dis-
crete-time Fourier transform (I-DTFT) of (also
the -th lag autocorrelation of ). Defining

, it can be shown that

(20)

(21)

Thus, the measurement error due to the fading channel

(22)
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is a sum of independent random variables, which can be
approximated as a zero-mean Gaussian random variable for
large using the Lyapunov central limit theorem, as shown
in Appendix A. Hence, defining ,
the received power measurement bit (9) can be written in this
case as , where the goal here is to
estimate from .
Note that can be upper bounded by (due to the use

of AGC at the front-end of the sensor processing chain). This
yields the box constraint , where

. With accurate power measurements, the LP (8) can be
modified to estimate as

(23)

Similarly, by exploiting the Gaussian distribution of ,
the ML (12) is modified to

(24)

The CRB on the estimate of can be obtained in a manner
similar to Section III-B, by replacing the matrix with

in the FIM expression (14). If prior information
on the number of nonzero entries of the true is available, i.e.,

, the constrained CRB is obtained using expression
(16), where the matrix in (16) is now defined as the
matrix of feasible directions consisting of the subset of columns
of the identity matrix corresponding to the support set of [22].
Censoring: It is important to reduce the number of bits trans-

mitted from the sensors so as to prolong battery lifetimes and
to minimize the communication overhead [5]. With censoring,
only sensors that provide the most useful information bits are
permitted to send, while other less-informative sensors remain
silent. For the Gaussian CDF, we know that is an in-
creasing function in and that , if .
Hence, the log-likelihood function (11) is almost unaffected by
sensor if the value of is too large. It can also
be shown in (15) that , and that the FIM (14) is al-
most unaffected by sensor , if the value of
is too large. This means that sensor is almost useless in the
estimation problem if is too large. Thus, cen-
soring can be employed such that sensor sends only if

, where is a censoring threshold that
is known at the sensor. More insights on the choice of are
discussed in Section V-A.

IV. ACTIVE SENSING

The choice of is very important for achieving good
estimates in (8) and (12). All approaches discussed in Section III
are passive in the sense that the thresholds are fixed
and pre-assigned to sensors. In [16], a common threshold
, , was chosen for all sensors, and empirically tuned to en-
sure that a certain percentage of sensors generate positive re-
ports. Another appealing option is to use that minimizes the
average CRB across different signals and filter realizations. But
what if the threshold could be actively adapted online, based on
the reports received from a subset of sensors up to a given point
in time? This could yield a significant payoff in terms of sensing

accuracy, provided that there is a way for the FC to communi-
cate threshold information back to the sensors.
Consider a time-slotted bi-directional communication link

between the sensors and the FC, comprising time slots.
At the beginning of each time slot , the FC
sends the threshold to sensor . Sensor then compares
the measured with , and responds with either or

within the same slot.

A. Active Sensing With Accurate Power Measurements

We first consider the case of accurate power measurements,
i.e., . The final feasible region for when the FC
receives all measurement bits is defined by the poly-
hedron

(25)

The volume of the feasible region gives a measure of igno-
rance or uncertainty about ; a small implies that
is localized to within a small neighborhood, whereas a large
means that there is still much uncertainty about . In other

words, a smaller feasible region translates to higher accu-
racy in localizing . Thus, our objective here is to adaptively
select the thresholds to ensure that is as small as
possible.
Before introducing the proposed active sensing algorithm, we

first discuss how to compute the Chebyshev center (CC) of a
bounded polyhedron ,
defined by a set of linear inequalities. The CC is the center of
the maximum ball that can be inscribed inside , and it can be
found by solving the LP [27, Sec. 8.5.1]

(26)

The LP (26) finds the point inside that has the maximum dis-
tance to the closest point on the boundary hyperplanes defining
(i.e., the exterior of ).
Given the initial polyhedron from (7), its CC ,

and , the proposed active sensing algorithm can be
explained as follows

For each time-slot/sensor , do

1) Set the threshold , and send it to sensor
requesting its measurement bit .

2) Upon receiving , update the feasible polyhedron

if
if .

3) Compute the CC of .

The final autocorrelation estimate can be obtained as
, i.e., the CC of .

Note that at the second step of the active sensing algo-
rithm, the half-space is
cut-off from the feasible region. The selection of the threshold

ensures that the CC of is a point in the
trimmed half-space. Ideally, one would want half the volume
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Fig. 2. Illustrative example for the active sensing algorithm.

of the feasible region to be cut-off after each received bit; how-
ever, this is an NP-hard problem, even if the filter of each sensor
is a design parameter [32]. As an approximation, ensuring that
the omitted half-space includes the CC guarantees that a large
portion of is omitted from the feasible region, and that
the new polyhedron is considerably smaller than . It
is worth noting that similar cutting-plane methods have been
used in solving general convex and quasi-convex optimization
problems [33]–[35].
An illustrative example for the active sensing algorithm in
is shown in Fig. 2 for . The grey-shaded region in

the figure represents the union of the 4 planes inside that are
cut-off from the feasible region after the 4 measurement bits are
received, whereas the final feasible region is unshaded. The
figure shows that the unknown vector is localized in a small
region, implying a small error in the estimate .
Claim 2: The CC converges linearly to the true auto-

correlation vector as using the proposed active
sensing algorithm, under certain independence conditions (see
Appendix B) on .
The proof can be found in Appendix B.
Non-Negativity Constraints: As stated in Section III, the win-

dowed estimate of the PS that is obtained by taking the Fourier
transform of a finite -lag autocorrelation is not guaranteed to
be non-negative at all frequencies. Therefore, including
in the set of constraints when estimating may prevent the

convergence of the CC to as . Instead, we con-
sider including a relaxed linear non-negativity constraint. De-
fine the Vandermonde vector .
Any autocorrelation matrix is positive semidefinite. In un-
known autocorrelation vector , is a linear matrix
inequality (LMI) instead of a ‘plain’ linear inequality. LMIs are
convex, but entail higher computational cost than regular linear
inequalities. Note however that

. Defining the diagonal matrix
, it is clear that implies (albeit

is not equivalent to) . Including the relaxed linear
non-negativity constraint to the set of constraints re-
duces the feasible region and ensures convergence ,
unlike the constraint . If the number of sensors is

small, however, it is recommended to include the (more strict)
constraint in order to decrease the under-determinacy
of the estimation problem. The effects of including
or on the performance are further illustrated in
Section V. Whereas the semidefinite constraint can
be included instead of the relaxed constraint , sim-
ulations have shown that the estimation performance using the
linear constraint is almost identical to using the LMI
constraint , at much lower complexity.
Pruning Constraints: The number of linear inequalities

defining increases at each iteration of the algorithm, and
hence the computational effort to compute increases.
For a polyhedron that is defined by linear inequalities, one
approach is to keep only a fixed number of the most
relevant inequality constraints while dropping the other
less relevant or redundant inequalities [33], [34]. With proper
choice of , simulations have shown a negligible
effect on the performance, at a dramatic decrease in the total
computation time of the active sensing algorithm.

B. Low-Complexity Active Sensing Algorithm

Instead of using the CC of the polyhedron in com-
puting , other options include the center of gravity, the center
of the maximum volume inscribed ellipsoid, and the analytic
center [34]. The worst-case complexity of each method can be
captured by the worst-case number of iterations (i.e., ) re-
quired to achieve an -error estimate, , in ad-
dition to the complexity of computing each center at each it-
eration. Using the center of gravity, the volume of the polyhe-
dron is guaranteed to reduce by at least 37% at each iteration of
the algorithm, and the number of iterations required to achieve
an -error estimate is at most . However, com-
puting the center of gravity of a polyhedron described by a set
of linear inequalities is NP-hard [34]. The number of iterations
required using the center of the maximum volume inscribed el-
lipsoid is at most [34], and it can be computed
by solving a convex problem [27], but its computation is pro-
hibitive for large . The analytic center (AC) of a bounded
polyhedron is the point that maximizes the product of distances
to the defining hyperplanes, and is efficiently computed by min-
imizing the convex logarithmic barrier function [27, Sec. 8.5.3],
while at most iterations are required to achieve error

[34]. Whereas no similar worst-case analysis has been de-
veloped for the CC (the CC can be strongly affected by scaling
and affine transformations of coordinates), exhaustive simula-
tions showed that the performance of the active sensing algo-
rithm using the CC is at least as good as that which uses the
AC, on average, with much smaller computation time to solve
the LP (26).
Approximate AC: In order to further decrease the computa-

tional complexity of the proposed active sensing algorithm, we
consider efficiently computing an approximate AC, instead of
solving the LP (26) to compute the CC, at each iteration. The AC
of a bounded polyhedron
is obtained by minimizing the logarithmic barrier function

[27, Sec. 8.5.3], which can
be computed via Newton’s method [27, Sec. 9.5]. In Newton’s
method, multiple damped Newton steps of type

(27)
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are used to find the minimizer of , where

(28)

and is the step-size. The most computationally expen-
sive operation in each Newton step is inverting the

Hessian matrix . Therefore, an approximate
AC can be computed using one (or few) damped Newton step(s)
of type (27). Starting from , which can be any point inside
the initial , the cheap computation of the approximate AC can
replace the CC computation in the third step of the proposed ac-
tive sensing algorithm in Section IV-A. The linear convergence

as using the approximate AC, and the
tradeoff between the complexity and estimation performance as
more Newton steps are used in each iteration, are shown in the
simulations in Section V-B. It is worth mentioning that linear
convergence using approximate ACs, in the context of cutting
plane methods for convex feasibility problems, was proven in
[35] under certain conditions.

C. Active Gaussian ML Sensing

We now develop active ML sensing for Gaussian errors, i.e.,
is a zero-mean Gaussian random variable

with variance . Unlike the situation in the previous scenario,
the feasible region does not decrease after receiving a measure-
ment bit due to the uncertainty induced by measurement errors.
Similar to the error-free case, however, it is still desirable to
select the threshold to be as close as possible to

. Therefore, after the FC receives the bits , it
sets for sensor , where is the
ML estimate of given the first measurement bits, which is
obtained by solving

(29)

and can be chosen any point inside . However, solving
(29) exactly to compute for each sensor is computationally
expensive.
Similar to the low complexity algorithm of Section IV-B, an

approximate solution to (29) can be obtained using Newton’s

method. Defining , it
can be shown that

(30)

(31)

Thus, starting from any point inside the initial , an ap-
proximate ML estimate can be computed for the -th sensor/

time-slot using a single (or few) Newton step(s), similar to (27),
as

(32)
Convergence of as using a single
Newton step approximate ML is shown in the simulations in
Section V-B. Finally, it is worth noting that this low-complexity
(approximate) ML algorithm can be used in the passive sensing
setting by incrementally updating the PS estimate as new
measurement bits are received, without having to wait for all
sensors to report their measurements prior to estimation. This
is particularly important for online sensing applications.

V. NUMERICAL RESULTS

In the next subsection, we first consider the passive sensing
case with fixed thresholds for all , followed by the
active sensing case with adaptive thresholds.

A. Passive Sensing: Fixed Thresholds

We begin with a simulation in Fig. 3 that illustrates what
one can expect from the proposed nonparametric ML estima-
tion using (12) and the model-based ML estimation using (24).
A scenario with sensors was considered and a single
threshold was selected such that for 50 sen-
sors. The error caused the flipping of 10 bits,
i.e., for 10 sensors. The
true PS of the primary signal, which is comprised of 8 equi-
spaced raised-cosine functions with 0.5 roll-off factor and dif-
ferent power coefficients, is plotted with a solid line in Fig. 3(a),
whereas the Fourier transform (FT) of the true truncated
-lag autocorrelation is plotted with a solid line in Fig. 3(b).

The estimated model-based PS obtained using (24) (with
) by exploiting the information of the raised-cosine model is

plotted with a dashed line in Fig. 3(a), whereas the estimated PS
obtained by estimating the -lag autocorrelation non-
parametrically using (24) (with ) is plotted with a dashed
line in Fig. 3(b). The quality of the estimates in Figs. 3(b) and
3(a) is very satisfactory, considering that 10 of the 150 bits that
are used as input data have been flipped. As expected, much
better PS estimates can be obtained by exploiting available in-
formation on the PS model.
In Fig. 4, the mean squared error (MSE) of the estimated

-lag autocorrelation using the LP (8) and the ML
(12) (with ), and the CRB, are plotted versus the number
of sensors . The true primary signal is comprised of 10 eq-
uispaced raised-cosine functions with 0.5 roll-off factor, where
the corresponding power coefficients are randomly chosen
from a uniform distribution, then normalized (i.e., non-sparse
spectrum). A single threshold was selected such that

for 50% of the sensors, and the error variance
was selected such that the measurement bits reported by 17%
of the sensors were flipped on average. The expectation of the
MSE is taken with respect to the random impulse responses
of the FIR filters, the random Gaussian error samples, and the
random raised-cosine power coefficients, obtained via 1000
Monte-Carlo simulation runs. The figure shows the decrease
of the CRB and the MSE of the ML estimate as increases,
as expected, whereas the LP (8) fails to provide a meaningful
estimate, due to the flipped bits. The figure also shows that the
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Fig. 3. ML PS estimation example. (a) Model-Based ML estimation. (b) Non-
parmetric ML estimation.

Fig. 4. Nonparametric PS: MSE of the LP estimate, MSE of the ML estimate,
and the CRB versus .

MSE of the ML estimate is asymptotically converging to the
CRB as grows.
To test the performance of the proposed model-based PS es-

timation techniques in Section III-C, we assume that the pri-
mary signal PS model is the combination of identical
raised cosine functions, each with and

. The corresponding center frequencies are
, implying equispaced and overlap-

ping functions. A sparse vector with 5 uniformly distributed
nonzero entries out of 20 is randomly generated and normalized
by in each simulation run. We use the MSE, defined
as , to measure the performance of the
proposed estimation techniques, where the expectation is taken

Fig. 5. Model-based PS: MSE of the LP estimate, MSE of the ML estimate,
and the (oracle) CRB versus for large SER.

with respect to the random impulse responses of the FIR filters,
the random Gaussian error samples, and the random weights
vector , obtained via 1000 Monte-Carlo simulation runs. Typi-
cally, theMSE should be computed with respect to the estimated
PS; however, the symmetry in the considered PS model allows
using instead. A single threshold and
a filter length were used at all sensors. This is nu-
merically computed as the minimizer of the expected CRB (16)
across different and filter realizations. The sparsity tuning pa-
rameter in (24) was fixed to in the simulations. For the
same error variance, , , we define the signal-to-error
ratio (SER) as . For brevity, we
name the estimate of obtained using (23) as the LP estimate,
whereas the estimate obtained using (24) is named theML esti-
mate. TheMSE of the LP estimate, theMSE of theML estimate,
and the (oracle) CRB computed using (16), are plotted versus
the number of sensors in Figs. 5 and 6, for
and , respectively.
In Fig. 5, where a relatively large SER is considered, the

random errors in this case cause the flipping of 2% of the sensor
measurement bits, on average. In other words,

for sensors, on average. The figure shows
the decrease of the CRB and the MSE of the ML estimate as
increases, as expected. The big gap between the MSE of the ML
estimate and the CRB is justified since the CRB is computed
with perfect knowledge of the support of the true . The figure
also shows that the MSE of the LP estimate is decreasing and
stays close to the MSE of the ML estimate for , then it
increases when increases to 500. The reason is that as in-
creases, the constraints in (23) become more stringent, and the
flipped bits due to errors drive the solution far away from the
true one. The performance of the censoring scheme proposed at
the end of Section III-B is also considered in Fig. 5. The dashed
line in the figure shows the MSE of the ML estimate when the
censoring threshold was selected such that only the best 80 out
of sensors are active in each simulation run (i.e.,
for 80 sensors), on average. As shown in the figure, the perfor-
mance with censoring is very close to the case when all sensors
are reporting. Censoring in this case is very efficient for large
(e.g., performance with 80/500 reporting sensors is almost

the same as with all 500 sensors reporting).
In Fig. 6, where a relatively small SER is considered, the

random errors cause the flipping of 16% of the sensor measure-
ment bits, on average. The figure shows the decrease of the CRB
and the MSE of the ML estimate as increases, albeit at larger
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Fig. 6. Model-based PS: MSE of the LP estimate, MSE of the ML estimate,
and the (oracle) CRB, versus for small SER.

values than their counterparts in Fig. 5, due to the higher number
of flipped bits due to the measurement errors. It is satisfying to
see that good ML estimates can be obtained, despite the flip-
ping of so many measurement bits. We also note that the gap
between the MSE of the ML estimate and the CRB was reduced
as the SER decreased from Fig. 5 to Fig. 6. The performance
of the LP estimate in this figure is severely limited by the rela-
tively large number of flipped bits, which are not accounted for
in (8). The MSE of the ML estimate when employing the same
fixed censoring strategy as in Fig. 5, represented by the dashed
line in Fig. 6, is increasing with . This is because the number
of flipped bits among the 80 measurement bits that are reported
in each simulation run, on average, increases as increases,
which seriously degrades performance. This is because cen-
soring chooses to transmit bits whose measurements are close
to the respective thresholds, as the ‘most informative’ bits, by
design. These are also the bits that are most likely to be flipped
due to measurement errors. As an alternative, we considered an
adaptive censoring scheme, where the censoring threshold is
selected such that 67% of the sensors (i.e., ) are reporting
in each simulation run, on average. TheMSE of theML estimate
with this adaptive censoring scheme is shown with the dotted
line in Fig. 6. Although the adaptive censoring performance is
improving with , we can see that the performance is signif-
icantly worse than the case when all sensors are reporting. We
conclude that when the SER is relatively small, it is better that
all sensors report to combat the increasing number of flipped
measurement bits due to errors, whereas censoring is more effi-
cient when the SER is relatively large.
In Fig. 7, we consider the same signal model and sensor

settings as Figs. 5 and 6, and compare between the ML es-
timate obtained using (24) (with ) and the benchmark
estimate that is obtained by solving the (box-constrained) least
squares: , where .
The benchmark estimate is obtained assuming that each sensor
sends the analog power measurement . The MSE of the ML
and benchmark estimates are plotted for two scenarios: (a) the
case of i.i.d. randomly generated fading channel coefficients

from a zero-mean and unit-variance complex
Gaussian distribution such that ;
and (b) the approximation case where
and is randomly generated from a zero-mean Gaussian dis-
tribution using the same variance of the error in scenario (a).
The average SER across different filter and realizations was

Fig. 7. MSE of the ML estimate and MSE of benchmark estimate for (a) com-
plex Gaussian fading coefficients and (b) Gaussian errors.

found to be 50, and the errors caused the flipping of 31.5% and
33.7% of the measurement bits, on average, for scenario (a) and
scenario (b), respectively. The figure shows that the Gaussian
approximation of the distribution of the errors is a
good one. More interestingly, the figure also shows that the
performance with 1-bit measurements is close to the benchmark
performance with analog (i.e., finely quantized) measurements.
For example, the same performance can be achieved using
200 1-bit-sensors or 150 analog-sensors. Assuming that each
analog signal is quantized to 8 bits, this means that 1200 bits are
required to achieve the same performance that can be obtained
using only 200 bits with 1-bit-sensors.

B. Active Sensing

We now switch to testing the performance of the proposed
active sensing algorithms. To measure the quality of the esti-
mated autocorrelation , we use the normalized mean squared

error (NMSE), defined as ,

where is the estimate of when the FC receives the -th
bit, . The expectation is taken with respect to the
random signals and the random impulse responses of the FIR
filters, obtained via more than 100 Monte-Carlo simulations.
The primary signal is assumed to be a combination of 10
equispaced raised-cosine functions with .
The power coefficients of three raised-cosine functions were
set to zero, while the remaining seven were drawn from a
uniform distribution between 0.2 and 1 in each simulation run.
A filter length was used at all sensors. Active sensing
algorithms for the case of accurate power measurements (i.e.,

) are considered in Fig. 8,
whereas active Gaussian ML sensing algorithms are considered
in Fig. 9.
In Fig. 8, the NMSE is plotted as a function of the number

of received bits for the active sensing algorithm using
the CC, the AC, and the approximate AC with 1, 5, and 10
Newton step(s). The figure shows that (i.e.,

) as increases for all considered algorithms, when
using the relaxed linear non-negativity constraint ,
and confirms the linear rate of convergence. The figure also
shows that the NMSE obtained when using the CC is better than
using the AC, at much lower computation time. As expected,
increasing the number of Newton steps of the low-complexity
algorithm of Section IV-B (from 1 to 5 to 10 Newton steps
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Fig. 8. Active sensing with accurate power measurements.

Fig. 9. Active sensing with Gaussian errors.

for each center computation) yields a better approximation
to the AC and better performance, but the computational
complexity is also increasing. When the (strict) non-negativity
constraint was included, the NMSE of the active
sensing algorithm was better than that obtained with the relaxed
non-negativity constraint for . But as
more bits are received, the NMSE with the strict non-negativity
constraint saturates at 0.0047, whereas with or even without
the relaxed non-negativity constraint the NMSE continues
decreasing to zero. This is because the strict constraint
is not valid in general (the FT of a truncated autocorrelation
sequence is not necessarily non-negative), underscoring that
including this strong constaint is only advisable for up to
moderate ; for higher it should be omitted to enable
convergence.
In Fig. 9, the NMSE is plotted as a function of for the

active sensing algorithm with the exact ML estimate (29), the
active sensing algorithm with the approximate ML estimate ob-
tained using the single-step Newton (32), and the case of passive
sensing with a single threshold for all sensors selected
such that 50% of the sensors are reporting . The gen-
erated Gaussian errors caused the flipping of 68 bits from the
total 300 received bits, on average. The figure shows the much
faster convergence of active sensing using the exact and approx-
imate ML estimates as opposed to the passive sensing case. The
figure also shows that the performance with the exact ML is

slightly better than the single-step Newton approximation; how-
ever, there is a huge complexity and computation-time reduction
when the approximate ML is used instead.

VI. CONCLUSIONS

Frugal sensing was revisited from a statistical estimation
point of view, taking into account the effects of fading and
insufficient sample averaging on the soft power measurements
prior to quantization. We showed that the distribution of the
corresponding error is approximately Gaussian, and exploited
this result by formulating ML estimation as a convex optimiza-
tion problem that yields consistent estimates, and optionally
includes a sparsity-inducing penalty term and non-negativity
constraints for better estimation performance in the small
sample-size regime. Simulations have shown that satisfactory
PS estimates can be obtained with passive ML sensing from
few bits, even when relatively many bits are flipped due to
fading-induced measurement errors. Assuming availability of
a ‘downlink’ channel that the FC can use to send threshold
information, we developed active sensing strategies that adap-
tively select the thresholds online, yielding significantly faster
convergence to the true finite-length autocorrelation compared
to passive sensing.
Our methods can be extended to handle the case where each

sensor sends multiple bits to the fusion center. One way to do
this is to take different pieces of the sensor’s PN sequence to
create multiple measurement filter impulse responses taking un-
correlated measurements. This way, each multi-bit sensor will
do the job of multiple single-bit sensors. Alternatively, multi-bit
quantization of the output of a single PN filter can be used, but
note that our experiments in Fig. 7 suggest that for moderately
large the gap between 1-bit and analog measurements is rel-
atively small.

APPENDIX

A. Sensor Measurement Error due to Fading

Here we show that for large number of channel taps
, the errors due to the fading channel can be
approximated as i.i.d. zero-mean Gaussian random vari-
ables. Let denote the PS of the WSS signal ,

denote the frequency re-
sponse of the channel, and
denote the frequency response of the filter, such that

. Thus

(33)
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where and correspond to the -point DFT of
and , respectively, and . Note

that the expectation used to compute in (33) is obtained
given a single realization of and , i.e., the expec-
tation is taken with respect to the random primary signal
only. The approximation is accurate for large , for
large (implying slowly varying with ), and
for large number of samples. Similarly, it is easy to see that

(34)

Therefore, the sensor measurement error due to fading is ap-
proximated as

(35)

where and
. Since are assumed i.i.d. Gaussian

random variables with zero-mean and variance , then
the -point DFT, , are i.i.d. Gaussian random
variables with zero-mean and unit-variance. The random
variable corresponds to a sum of squares of 2
independent zero-mean and -variance Gaussian random
variables, which yields a unit-mean and unit-variance ex-
ponentially distributed random variable (i.e., distribution
parameter ). Thus, the error in (35) is approximated
as a (weighted) sum of independent random variables

. Hence and
, which

implies that and
. Since the integral is indepen-

dent of , this means that (and is independent
of ).
Lyapunov Central Limit Theorem: Define

and
. The Lyapunov central limit theorem

[25, pp. 371], states that if is a sequence
of independent random variables, each with zero-mean
and finite variance, and if for some , the Lyapunov
condition is satisfied,

then . To verify that the Lyapunov
condition is satisfied in our case, set . It is easy to see
that and . Without loss of
generality, we assume , (ignoring zero values).
Define and .

Hence, it is easy to see that .

Since , then we have shown that the
Lyapunov condition is satisfied. Therefore, according to the

Lyapunov central limit theorem,

converges in distribution to a zero-mean and unit-variance
Gaussian distribution as increases.

B. Proof of Claim 2

Let denote the radius of the largest ball centered at
that lies inside , which is the solution to the LP (26). The con-
vergence of the sequence to zero has been estab-
lished by Theorem 1 in [33]; we sketch the proof here to relate
associated non-degeneracy conditions to our context. It is easy
to see that and , . It is also easy to
see that , . Since is
a bounded monotone sequence, then .
Since any sequence in a compact set has a subse-
quence that converges to a point in the set, and every conver-
gent sequence is a Cauchy sequence, this means that for every

, there exists , , and , such that
, for . Now, suppose . This means that

, and for , there does
not exist such that for , which
contradicts that must have a Cauchy subsequence.
Therefore, . It is also shown in [33], Theorem 7, that the
sequence has a linear rate of convergence. The re-
maining issue is to show that the convergence of to zero
as implies that converges to the single point .
Consider the set of linear inequalities defining the bounded

polyhedron ,
where , , and
(ignoring the initial without loss of generality). An inequality

is redundant if it can be omitted without changing
, whereas if changes by removing an inequality

, then we denote this inequality as active. Define the
set as the set of indices that correspond to active inequal-
ities defining , such that implies that
is active, and . Note that

, since an -dimensional polyhedron
is bounded by the intersection of at least half-spaces.
Assuming that any vectors from the set are lin-
early independent, then is non-degenerate, i.e., cannot
be contained in a single -dimensional (or ) hyperplane.
This means that at the limit , converges to a
single point, and the inequality constraints become equalities

, for . Since the set of constraints are con-
sistent, any vectors of are linearly independent,

, and , then the unique solution to
, for , is . The linear independence

condition for is guaranteed with high probability
if the random vectors are drawn from a discrete
distribution with large (probability increases with ), and
with probability one if are drawn from a continuous
distribution.
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