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nyone who has served as a technical pro-
gram committee (TPC) chair for a 

conference (or program man-
ager for a funding agency) 

understands  that paper 
(or proposal panel) review assignment is a 
demanding job that takes a lot of time, 
and reviewers are rarely satisfied 
with the end results. This article 
presents signal processing tools 
for two critical “mass assign-
ment” tasks: assigning papers (or 
proposals) to reviewers in a way that 
matches reviewing expertise to scientific 
content while respecting the reviewers’ 
capacity constraints and splitting accepted 
papers (or submitted proposals) to sessions 
(panels) while adhering to session (panel) 
capacity constraints. The basic idea is to use fea-
ture vectors to represent papers and reviewers. Fea-
tures can be key words or phrases (e.g., optimization or 
sensor networks) or other types of attributes (e.g., time-
liness). This viewpoint enables optimal assignment 
problem formulations that make sense from a scientific 
and practical point of view. While optimal solutions are 
hard to compute for a large number of papers and 
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reviewers, high-quality approximate solutions of moderate com-
plexity are developed here using familiar signal processing and opti-
mization tools. These algorithmic solutions easily outperform days 
of expert manual work as demonstrated in experiments with real 
conference data.

The credibility of our scientific enterprise relies heavily on the 
peer-review system. Whereas many contributions are eventually 
still individually judged (e.g., when submitted for journal publica-
tion), there are at least two important modes of mass peer review 
at the center stage of scientific innovation: proposal review panels 
and conference reviewing. Paper and proposal review assignment 
is a difficult and tedious job that takes a lot of time, and, despite 
good intentions, often results in some awkward assignments. 

A TPC chair’s job includes 1) assigning reviewers to each paper, 
making every effort to match reviewing expertise to paper content 
while respecting the reviewer capacity constraints; 2) reading the 
submitted reviews and making an accept/reject decision for each 
paper, keeping in mind the target acceptance rate and the number 
of papers that can be presented at the conference; and 3) splitting 
the accepted papers into sessions, such that each session has a 

coherent theme, while adhering to session capacity constraints. 
The latter is the paper-to-session assignment problem. A program 
manager’s job likewise includes 1) splitting the list of submitted 
proposals into smaller thematic batches to be assigned to review 
panels while adhering to panel capacity constraints (the proposal-
to-panel assignment problem), 2) selecting reviewers to invite for 
each panel, and 3) assigning panelists to each proposal, trying to 
match reviewing expertise to the proposal content while respecting 
the panelist capacity constraints.

Given the difficulty and effort it takes to effectively solve these 
assignment problems, it is hard to believe that most TPC chairs 
and many program managers still operate without using the appro-
priate algorithmic aids to get the job done faster and better. There 
are two main reasons for this: 1) it is hard for a machine to nail 
down the essence of a submitted research paper or proposal and 
make a scientifically sound call on what is an appropriate set of 
reviewers, and 2) conference- or program-specific constraints 
require custom coding.

Generic computerized assignment algorithms (e.g., Cyberchair) 
are available, but these rely on reviewing “bids” or preference rat-
ings, or a scalar similarity score between the contents of each paper 
and the expertise of each reviewer. Given the similarity (or affinity) 
paper-reviewer matrix, an assignment that maximizes the total 
affinity can be formulated as an integer linear programming prob-
lem. This formulation has been shown to be a totally unimodular 
program, which implies that an optimal solution can be computed 
at a modest complexity [1]; see also [2]. Using reviewer preferences 
for assignment certainly keeps the reviewers happy; however, it has 
two important pitfalls.

1) Each paper or proposal usually requires multiple types of 
expertise for proper review. For example, a paper on cross-layer 
resource allocation in wireless networking requires expertise in 
physical layer wireless communication, optimization, and net-
working. Using an aggregate preference or similarity score per 
reviewer can (and does) result in assignments where no 
reviewer covers a certain aspect of the paper (e.g., networking). 
This is, of course, highly undesirable, as already noted in some 
earlier work on automated review assignment [1], [3], [4].  
A typical situation is depicted in Figure 1, which clearly shows 
the deficiency of total similarity/affinity score-based assign-
ments. [While it is conceptually possible that one might be able 
to judiciously design a paper-reviewer score matrix that prohib-
its such bad assignments when used in conjunction with the 
totally unimodular programming approach in [1] and [2], this 
seems like a daunting task. Entry ( , )p r  of such a matrix should 
not only depend on the feature vectors of paper p  and reviewer 

;r  it should be a function of the feature vectors of potentially all 
papers and all reviewers.] 
2) Reviewers tend to down-weight past experience in favor of 
their current interests when clicking on topical areas to sum-
marize their expertise and generally bid to review papers or pro-
posals that are close to their current interests, “in fashion,” or 
from well-known researchers, without regard to the collective 
reviewing needs of the conference or panel. The TPC chair or 
program manager often has to tap a reviewer’s past expertise to 
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[Fig1] An example of what usually happens when one tries to 
maximize reviewer satisfaction (or similarity score) alone: Both 
green and red assignments have the same affinity score, but only 
the assignment in red ensures a scientifically sound paper review.
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ensure a fair and unbiased assignment to the extent possible. 
These factors are very difficult to capture by reviewing prefer-
ences or aggregate similarity scores.
The first step toward a more pragmatic approach is a multidi-

mensional description of each reviewer and each paper or proposal, 
in a common feature space that captures the essential dimensions 
of expertise for the specific scientific domain. In other words, we 
advocate viewing reviewers and papers/proposals as points in a 
higher-dimensional vector space. The canonical coordinates in this 
vector space are key words or phrases used to represent papers and 
reviewers (e.g., optimization or sensor networks), or other types of 
attributes (e.g., timeliness). This concept is illustrated in Figures 2 
and 3, and it is central to our approach (see also “Visualizing Papers 
and Reviewers”). Note that feature vectors are widely used in the 
machine-learning literature; see, e.g., [5] and [6].

The list of keys for the papers (dimensions of the feature vec-
tor) can be produced as follows:

 ■ The list can be prepared by the TPC chair before submis-
sion, in which case authors can mark the features relevant to 
their paper at the time of submission. This would correspond 
to a refined Editors’ Information Classification Scheme.

 ■ They can be compiled by taking the union of standard plus 
free-text key words provided by the authors at submission 
time, followed by stemming to consolidate synonyms.

 ■ They can be parsed from the list of submitted paper titles. 

This parsing can be done manually by the TPC chair (for up to a 
few hundred papers—a seasoned chair can process about three 
papers per minute), or it can be automated using text retrieval 
[7] and consolidation tools [8]. Natural language processing will 
likely be helpful in this context, but this remains to be seen in 
practice. At any rate, spending a couple of hours producing a 
list of keys and marking papers is far less than what is needed 
for producing a well-rounded technical program from the list of 
accepted papers, let alone producing a scientifically sound 
review assignment.

 ■ Most conferences and workshops recur annually or periodi-
cally; therefore, a prepared list of key words for the previous edi-
tion can serve as an excellent starting point for the next one, 
with the addition of a few key words for emerging topics and 
possible deletion or consolidation of those that are obsolete.
Drawing upon this multidimensional description of papers and 

reviewers, this article aims to present signal processing tools for 
paper-to-reviewer assignment and paper-to-session assignment. We 
examine these two problems in the remainder of this article.

A PRIOR ART

PAPER-TO-REVIEWER ASSIGNMENT
In addition to the key works [1], [9] and related follow-up work, 
such as [2], there are several more references on mass review 

ViSUALiZiNg PAPERS AND REViEWERS
The number of key words/features used to describe papers 
and reviewers will typically be in the order of dozens, mak-
ing it hard to visualize the distribution of papers and 
reviewers in a feature space. One approach is to compute 
the first two or three principal components and project 
those points onto the principal subspace for visualization. 
Another tool that is commonly used for visualization is mul-
tidimensional scaling (MDS). Given a matrix of pairwise dis-
tances between m  objects, MDS computes a map of m  
points in two- dimensional (2-D) [or three- dimensional (3-D)] 
space that approximately preserves the given distances.

Figure S1 shows 2-D MDS maps of points corresponding to 
papers and reviewers from the Signal Processing for 

 Communications and Networking Technical Committee 
(SPCOM TC) track of the International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP) 2009, for which 
Nicholas D.  Sidiropoulos served as TPC chair. The dimension of 
the vector space is N 44= —that is, there are 44 key words, 
and each paper or reviewer is represented by a (sparse) 
44 1#  vector. Figure S1 shows a map of (a) papers, (b) review-
ers, and (c) a joint map of papers and reviewers. Notice how 
papers are clustered in (a), but this is not evident from the 
joint map (c). The reviewers are almost uniformly scattered, 
which speaks for the difficulty of optimal assignment: real 
data do not nicely fall in clusters. This situation is typical in 
our experience.

[FigS1]  (a) An MDS visualization of papers, (b) reviewers, and (c) joint papers and reviewers.
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assignment, e.g., [10] and the references therein. Those that are 
related to our viewpoint are reviewed in this article. Our vector space 
viewpoint of review assignment is implicit in [3], which considered 
representing each reviewer and each proposal with a list of key words 
or terms in a common term space and proposed evaluating review-
ing assignments and making additional reviewer recommendations 
by measuring how the assigned reviewers collectively cover a pro-
posal’s key words; see also later work in [4]. The work of Hettich and 
Pazzani [3] is in fact a lucid and very insightful account of lessons 
learned in designing and implementing an early review aide system 
at the National Science Foundation (NSF) several years ago. What 
is missing from [3] (and [4]) is formulating review assignment 
as a joint optimization problem subject to reviewing capacity 
constraints, addressing complexity issues, and coming up with 
suitable algorithms to solve it. Instead, a simple greedy hill- 
climbing approach to making individual recommendations one 
reviewer at a time is discussed in [3]. Paper-to-session/proposal-
to-panel assignment is not discussed at all in [3] and [4].

Today, several NSF program managers use a tool developed in 
[11] for review assignment. The approach in [11] is based on panelist 
reviewing preferences and uses a generalized assignment formula-
tion with a branch-and-bound solution technique that is complex for 
large problems; however, it is tailored for the NSF panel review and 
complexity is not a major issue for modest panel sizes. On the other 
hand, it does not account for the need to cover all bases in reviewing 
a particular proposal or the bias that is typical in reviewing prefer-
ences. Additional work related to review assignment can be found in 
[12]; see also [13] for a recent overview of assignment problems.

PAPER-TO-SESSION ASSIGNMENT
Fitting the accepted papers into sessions is a clustering problem 
under equality constraints on the number of points per cluster—
because each session has a fixed capacity. In this article, we focus on 
clustering using a centroid model, in which each cluster is repre-
sented by a single mean vector, and we have a given number of data 
points per cluster. In our context, each cluster corresponds to a ses-
sion, and its centroid reflects the key words that are dominant in that 
session, thereby serving as a crude session title (which can be pol-
ished later by the TPC chair). The traditional signal processing and 
computer science literature treats clustering mostly using the well-
known k-means algorithm [14], which cannot be directly applied in 
our context due to the presence of the session capacity constraints. 
Modifications of k-means to account for must-link/cannot-link con-
straints are discussed in [15], distance-type constraints on the cluster 
centers are discussed in [16], and lower-bound constraints on the 
number of points per cluster are discussed in [17]. As an alternative 
to alternating optimization-based k-means, approximation algo-
rithms based on convex (semidefinite) optimization [18] are also 
known; see, e.g., [19] and the references therein.

Our formulation of paper-to-session assignment can be called a 
capacitated k-means problem. Whereas the general literature on 
clustering is immense [20], [21], we did not find any prior work on 
capacitated k-means, likely because there is no motivation to 
specify cluster sizes a priori in most applications of unsupervised 
clustering—where we typically know little about the clusters we 

are trying to find. Imposing a lower bound on cluster size may 
seem reasonable to avoid degeneracy, but an upper bound does 
not make sense in most other applications.

In practice, paper-to-reviewer assignment naturally precedes 
paper-to-session assignment. Paper-to-reviewer assignment is 
more challenging than paper-to-session assignment because there 
are typically many more papers submitted than accepted and many 
more reviewers than sessions in the final program. Furthermore, 
paper-to-reviewer assignment quality is more important from a sci-
entific and ethical point of view. Yet the paper-to-session assign-
ment problem is important and hard in its own right (we will show 
that it is NP-hard, in fact). There is also something special about 
the paper-to-session assignment problem: it is near and dear to our 
signal processing hearts. We will show how to modify k-means to 
account for strict cluster  capacity constraints and produce a very 
practical and efficient low-complexity algorithm. We will also 
develop a more sophisticated one-shot approximation that can be 
used in smaller paper-to- session assignment problem instances. 
For these reasons, and despite the conceptual order of the two 
problems, we will start from the paper-to-session assignment prob-
lem. Before proceeding to the mathematical formulations, we first 
briefly review the mathematical tools that will be used. 

MATHEMATICAL PRELIMINARIES
Assignment problems are optimization problems of a combinato-
rial nature; some have a special structure that enables efficient 
solution, while others are provably hard, even though they may 
not look all that different at first sight. The good news is that some 
of these problems can be well approximated (albeit not optimally 
solved) using convex optimization tools.

One way to deal with an optimization problem that is hard to 
solve is to efficiently obtain an approximate solution through 
convex relaxation. This comprises two steps (if the cost function 
of the original problem is not convex, then an additional transfor-
mation is required). In the first step, one replaces the feasible 
region of the original problem with a convex superset (hence the 
term relaxation); then the resulting problem is solved using con-
vex optimization algorithms. In the second step, one converts the 
solution of the relaxed problem into a good admissible solution 
for the original problem through suitable postprocessing. The 
postprocessing step involves projection of the solution of the 
relaxed problem (and possibly related candidates generated via 
randomization) onto the feasible set of the original problem. 
Obviously, the optimal value of the relaxed problem provides a 
bound on the optimal value of the original problem; one goal is to 
find the tightest such bound (make the relaxation as tight as pos-
sible), as this impacts the quality of the final solution. We now 
illustrate how the idea of convex relaxation applies to both paper-
to-session and review assignment.

RELAXATION OF PAPER-TO-SESSION ASSIGNMENT
The main algorithm is given in the section “Proposed Algorithm 
for Paper-to-Session Assignment” and is based on alternating opti-
mization; see [16] and the references therein. This is an iterative 
procedure for optimizing a cost function by alternating 
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conditional updates of different subsets of variables given the rest 
of the variables. However, we also show in the section “Gauging 
the Optimality Gap: Semidefinite Relaxation” that paper-to-session 
assignment can be equivalently rewritten as a quadratically con-
strained quadratic program (QCQP). This has the form

 
:  ,   , , ,b i n1 1

minimize 

subject to

x Qx

x C x
x

i i

T

T f# = +
 

(1)

with  Q  and C Ri
n n! #  symmetric matrices and bi  scalar quantities.

Casting paper-to-session assignment as a QCQP is interesting since 
there are many tools available in the literature for quadratic 
 optimization and they are well understood. The best convex 
 relaxation bounds for (1) are based on semidefinite relaxation 
(SDR) [22]: one starts by 1) rewriting the quadratic cost in (1) as 

( ) ( )Tr Trx Qx QxxT T=  (and similarly rewriting every quadratic 
constraint), and then 2) lifting the problem in a higher dimen-
sional space using the change of variables .X xxT=  This lifting iso-
lates the nonconvexities of the original QCQP into a single rank-1 
constraint. The rank-1 constraint is subsequently relaxed into a 
convex, positive semidefinite cone constraint [18], or even simply 
dropped, thereby producing a convex (relaxed) problem. This is the 
main idea of SDR—the details of the transformation along with the 
corresponding postprocessing step, which produces the final 
approximate solution, are described in the section “Gauging the 
Optimality Gap: Semidefinite Relaxation.”

PAPER-TO-REVIEWER ASSIGNMENT
As we explain in detail in the section “The Review and Assignment 
Problem,” the associated optimization problem has the following form:

 
 ( )
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where :f R Rn "  is a convex piecewise linear function in the 
variables ,x Rn!  and )  indicates componentwise inequality. 
The set defined by the inequality Ax b)  is convex and is called a 
polyhedron [18]. Note that, even though the cost in (2) is con-
vex, the design variables are Boolean, either zero or one. Bool-
ean constraints are nonconvex constraints; in fact, it is often 
convenient to write them explicitly as quadratic equalities since 

{ , } ( ) .0 1 1 0x x xi i i,! - =

In the first step, we produce the tightest convex relaxation (to be 
concise, the phrase “tightest convex relaxation” should be inter-
preted as “tightest relaxation in the class of Langragian relaxations”; 
see [18]) of (2): it can be shown that this is tantamount to replacing 
the Boolean constraints on the xis with the interval ones 
0 1xi# #  [18, Ch. 5]. We refer to this relaxation as linear pro-
gramming relaxation because the resulting problem can be cast as 
a linear program (LP). Since the relaxed solution is not guaranteed 
to be Boolean, in the second step (the postprocessing), we make use 
of the structure of A  and the nature of b  to efficiently compute the 
Euclidean projection of the relaxed solution onto the feasible set of 
(2). This is the main idea—we defer the details to the section “The 
Review Assignment Problem.”

PAPER-TO-SESSiON ASSigNMENT: A CLOSER LOOK
Recall from Figure 2 that we use feature vectors to represent papers. 
If N is the number of features (key words), then feature vectors 
are nonnegative vectors in .RN  Let pi  be the N 1#  feature vec-
tor for paper , , ,i I1I f! _ " ,  where I  is the total number of 
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[Fig2] Representing a paper as a point (feature vector) in the key word space. in this illustration, the feature vector is Boolean, with 1 if 
the paper possesses the specific key word and 0 otherwise.
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(accepted) papers. Define the N I#  matrix : , , .P p p I1 g= 6 @   
The capacity of session , ,j J1J g! _ " ,  is denoted j ;c  

,Ic
j

J
j1
=

=
/  i.e., the total number of accepted papers.

The design variables are the N J#  matrix of session centers 
: , , ,S s s J1 g= 6 @  where js  is the center (profile, or title) of session 

;j  and the J I#  paper-to-session assignment matrix X . The ele-
ments X ji  of X  must satisfy the following constraints:

 , , , ,i j0 1X I Jji 6! ! !" ,  (3a)

 , ,i1X I
j

J

1
ji 6 !=

=

/  (3b)

 j, .c jX J
i

I

1
ji 6 !=

=

/  (3c)

Here, 1X ji =  means that paper i  is assigned to session .j  The 
constraint 1X

j

J

1 ji ==
/  ensures that paper i  will be assigned to 

the one and only one session, whereas jcX
i

I

1 ji ==
/  enforces the 

capacity constraint for session .j
For brevity, let A  denote the set of matrices X R J I! #  that 

satisfy (3a)–(3c). With these definitions, the paper-to-session (or 
technical program optimization) problem can be posed as follows: 
assign papers to sessions (pick )X  and find the appropriate “ses-
sion titles” (pick )S  to

 ,minimize P SX F
2

,S X
-  (4a)

  .subject to: X A!  (4b)

See “Distance Considerations” for a discussion on the choice of 
distance measure.

A property worth pointing out explicitly is that any matrix fea-
sible for (4) is row-orthogonal. To see this, define the vector of ses-
sion capacities , , ,c c cc T

J1 2 g= 6 @  and the J J#  matrix 
( ),Diag cK =  with the entries of the vector c  on its main diago-

nal and zero elsewhere. Then, we have that

 .X XXA T(! K=  (5)

This observation will be useful on multiple occasions later on, in 
the problem transformations.

REMARk 1
Note that, in principle, one can place inequality constraints on the 
session capacities instead of the equality constraints (3c). Inequality 
constraints on the capacities make sense perhaps for poster sessions, 
but not for oral sessions, where a fixed number of papers should be 
presented. Although using inequalities instead of equalities is possi-
ble, the overall treatment of the problem (in particular, the material 
in the section “Gauging the Optimality Gap: Semidefinite Relax-
ation”) becomes more involved. We choose to work with equality 
constraints to simplify exposition; after all, the TPC chair can explore 
minor reallocations of poster session capacities by running the pro-
posed algorithms a few times if so desired. Also note that collisions 
(an author having to present simultaneously in two parallel sessions) 
are usually handled at the end by permuting the order of the presen-
tation of papers in oral sessions or manual reallocation to a different 
session if a poster presentation is involved. Such scheduling conflicts 
are usually rare and also depend on the metadata, such as who is the 
presenting coauthor, and session time-scheduling, which in turn 
depends on the session content, the number of parallel tracks, room 

DiSTANCE CONSiDERATiONS 
Returning to (4),
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the use of the Euclidean distance can be motivated as follows. 
Assume that the pi ’s are drawn from J  classes, with each class 
represented by a class mean, .js A paper drawn from class j  
follows a multivariate Gaussian distribution .( , )s IN j

2v  Differ-
ent papers are independently distributed, and we know the 
number of papers in each class (the session capacities). Then, 
maximum likelihood joint paper classification and class mean 
estimation reduces to the above formulation, as can be easily 
seen by taking the log-likelihood and invoking independence.

The Gaussian assumption/Euclidean distance can be motivated 
in many ways; a testament to its ubiquity is that classical k
-means uses Euclidean distance. But there are many alternatives 
that might be worth investigating. If clusters appear to be ori-
ented, then a Mahalanobis distance (quadratic form involving 
the inverse cluster covariance matrix) is more appropriate, but 
the cluster covariance(s) should be estimated as well. If the pi ’s 
can be modeled as probability mass functions, then the Kull-
back–Leibler divergence can be well-motivated; see also [40] for 
a  tutorial overview of clustering with Bregman divergences.

In our numerical experiments, we have limited ourselves to 
using binary feature vectors, mainly because this is enough 
to capture the essence of the problems considered. Richer 
alphabets are needed to capture the degree of expertise 
required in each latent dimension—some papers may only 
need common expertise in a particular area, while others 
may demand much deeper understanding. If we stay with 
binary features, however, then a more natural metric is the 
Hamming distance ( , )d p sH i j = .j( ( ) ( ))n n1 p s

n

N
i1
!

=
/  This 

corresponds to saying that the probability of drawing pi  
from class j  is ,( )q q1( , ) ( , )d N dp s p sH i j H i j- -  for some . ,q 0 51  so 
the more likely vectors are those with few bit flips. If we also 
force the estimated js s to be 0-1 binary, the Hamming dis-
tance reduces to 1, -distance, i.e., the sum of absolute values. 
Then, the conditional update of each js  is the elementwise 
median of the vectors in the cluster. Although not shown 
here, in many of these variations, the conditional update of 
X  given S  is also tractable, i.e., it reduces to a totally uni-
modular LP.

The appropriateness of any assumption and engineering 
design is ultimately judged by how well it performs in prac-
tice. Euclidean distance works well enough in our context, 
as illustrated in our experiments with real conference data.
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capacities, etc. While it is possible to incorporate some of these 
aspects in the problem formulation, we prefer to keep the exposition 
simple and address the core problem instead.

COMPLEXITY OF OPTIMAL  
PAPER-TO-SESSION ASSIGNMENT
If we drop the session capacity constraints (3c) from (2), a classic 
k-means problem emerges. k-means is NP-hard; in loose terms, 
this means that we cannot expect to solve an arbitrary instance of 
k-means in time polynomial in the number of papers .I  In the 
signal processing community, k-means is also known as vector 
quantization (VQ), usually dealt with using the celebrated (gener-
alized) Lloyd–Max (GLM) [23], [24] or Linde–Buzo–Gray (LBG) 
algorithm [25], which is an alternating optimization procedure. 
The reason we usually resort to LBG is precisely because the prob-
lem is hard, and the LBG iteration offers an attractive simplicity-
performance- complexity tradeoff. Proof that k-means is NP-hard 
was only recently provided [26], [27].

Here, we are actually dealing with a restriction of the 
VQ/ k-means problem due to the session capacity constraints, 
which will always be active. We show next that, unfortunately, this 
restriction is also an NP-hard problem. Given a feasible ,X  let 

( )I Xj  denote the indices of papers falling in session .j  Then,

 min minminP SX P SXF F
2 2

S,X SX
,,- -$ .

 j
j

.min min
( )

s
j

J

i
i I1

2
2

X Xj!=

p s-/ /

The solution of the inner minimization for js  is clearly the mean 
of those vectors falling in session .j  Setting js  equal to this mean, 
i.e., setting js  equal to

 | ( ) | ,I
1s X p

( )
j

j I Xj

_* ,

,!

/

it can be easily shown by expanding the squares that
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where ·  denotes cardinality. If all session capacities are equal, we 
may thus use the following criterion instead:

 ,min p p
( )( )

i k
k Ii Ij

J

2
2

1X XX jj

-
!!=

///

which is to be optimized over .X A!  This is now what is 
known as the minimum k-clustering sum problem (in our 
context J  plays the role of ),k  which is in the list of NP-hard 
problems [28]; see also [29]—The poor TPC chair souls were 
right all along.

Claim 1
Technical program optimization (paper-to-session assignment, 
capacitated k-means) is NP-hard.

The implication is that we cannot expect to solve an arbitrary 
instance of (2) in complexity polynomial in the number of papers .I  
It has been shown in [29] (see also [28]) that the minimum  
k -clustering sum problem can be approximated within a factor 
of 2—but the algorithm that provides this approximation guarantee 
has exponential complexity in .J  Since J  is not small in our context, 
we will instead explore familiar signal processing tools to obtain con-
ceptually simple and performance-wise satisfactory solutions.

PROPOSED ALGORITHM FOR  
PAPER-TO-SESSION ASSIGNMENT
The GLM/LBG algorithm is typically used for VQ design. 
GLM/LBG alternates between optimizing the codebook S  for a 
given assignment X  and optimizing the assignment X  for a given 
codebook .S  GLM/LBG exploits necessary optimality conditions, 
implying that js  should be the mean of those pi s assigned to ses-
sion ,j  and pi  should be assigned to the closest j ;s  these yield 
simple conditional updates. The GLM/LBG iteration converges in 
terms of fit, but the quality of the final solution depends heavily 
on the initialization.

GLM/LBG cannot be directly applied in our present context 
because of the presence of the session capacity constraints. In the 
following, we propose one possible iteration that explicitly takes 
these constraints into account. 

Given a feasible assignment ,X  the update for S  is simple and, 
in fact, identical to the corresponding update in GLM/LBG. The 
step that requires closer scrutiny is the update of X  given S

  minimize P SX F
2

X
-  (6a)

 :  .subject to X A!  (6b)

Fortunately, it turns out that an optimal point for (6) can be 
 computed easily, without having to search over all feasible assign-
ments .X  To explain how this is possible, note first that the objective 
function in (6a) can be expressed as P SX PF F

2 2= --

,2Tr P SX SX F
2T +^ h  and observe that the quadratic term SX F
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[Fig3] Representing a reviewer as a point (feature vector) in  
the same key word space. The feature vector in this particular 
illustration is Boolean.
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remains constant for any feasible assignment .X  This is because of 
the property in (5), since Tr TrSX X S SX XX S SF

2 T T T T= = =^ ^h h

.Tr S STK^ h  Thus, the conditional update of X  given S  can be done 
by solving the Boolean LP

 maximize  Tr P SXT

X
^ h (7a)

 :  .subject to X A!  (7b)

Problem (7) is the so-called semiassignment problem, and there 
are many efficient algorithms for its solution. For example, the 
shortest augmenting path algorithm from [30] is applicable, 
which computes the solution of (7) at complexity .( )O JI2

Although the shortest augmenting path algorithm from [30] 
is arguably one of the best choices (among the applicable algo-
rithms) for carrying out the X -update, we here also discuss how 
this can be done using linear programming. We believe that this 
discussion offers more insights and demonstrates an interesting 
connection between convex and combinatorial optimization. 
Observe first that the system of equations in (3b)–(3c) is linear 
and, therefore, can be written in the form ,Gx d=  where 

.vecx X_ ^ h  [The operation ( )vec X  stacks the columns of the 
matrix X  into a vector.] Now, the coefficient matrix G  is totally 
unimodular, i.e., every square submatrix has a determinant of 
value , ;0 1!  and d  is a vector of integers. As a result [31],  
the polyhedron

 , ,i j0 1X I Jji 6# # ! !

 , i1X I
j

J

1
ji 6 !=

=

/

 ,c jX J
i

I

j
1

ji 6 !=
=

/

is the convex hull of all assignments .X A!  This result implies 
that the linear programming relaxation

 maximize  Tr P SXT

X
^ h (9a)

  , ,i j0 1subject to: X I Jji 6# # ! !  (9b)

 , i1X I
j

J

1
ji 6 !=

=

/  (9c)

 j,c jX J
i

I

1
ji 6 !=

=

/  (9d)

is always exact [i.e., problems (7) and (9) are equivalent]. The situ-
ation is graphically illustrated in Figure 4, which shows the geom-
etry of (9) in relation to the geometry of (7).

Since (9) is an LP, it follows that either an interior point 
method or the simplex method can be used for solving (7). 
When using an interior point method, one should be mindful 
of cases where there are multiple Boolean solutions with the 
same (optimal) objective value because the interior point algo-
rithm may converge to the center of a polyhedral facet 
(instead of a vertex), yielding a noninteger solution. We actu-
ally need a basic solution of the LP [32], and advanced interior 

point LP solvers include means of identifying such a solution, 
e.g., [33]. These subtleties are avoided altogether if one uses 
the simplex method or, better yet, the shortest augmenting 
path algorithm [30], which has favorable low-order polynomial 
complexity even in the worst case. If only a general interior 
point LP solver is available, then a random perturbation heu-
ristic can be applied, see [2].

The overall algorithm for (4) is now clear: one starts from a 
suitable initialization and iterates between updating S  and updat-
ing X.  For initialization, one can use regular VQ/ k-means to 
come up with an initial S  without regard to capacity constraints. 
The sessions can be ordered according to population, and excess 
papers can be moved to the next session in line to produce an ini-
tial feasible assignment. Updating can start from X  or from ,S  
and continue as long as the cost is reduced. Finally, initialization 
does matter (and VQ/ k-means is itself sensitive with respect to 
 initialization), so the overall algorithm should be initialized from 
different starting points 10–30 times to get close to the best possi-
ble results. The solution with the smallest cost is then chosen as 
the final one. At this point, the reader might rightfully wonder 
how well this algorithm works in practice, compared to expert 
human assignment. To get a sense of the kind of results that can 
be expected, see “How Well Does This Work? The ICASSP 2009/
SPCOM TC Case Study.”

GAUGING THE OPTIMALITY GAP:  
SEMIDEFINITE RELAXATION
Even though the capacitated k-means clustering problem in (4) is 
NP-hard, it is possible to efficiently obtain a nontrivial lower 
bound on its optimal value. Notice that a tight lower bound also 
serves as a nice exploratory tool, e.g., it can be used to evaluate the 
performance of the GLM/LBG-based approximation algorithm. In 
obtaining this lower bound, we first demonstrate that the capaci-
tated k-means clustering problem in (4) can be cast as a QCQP. 
This is an important link because the literature on quadratic opti-
mization is rich and the tools that have been developed in the field 
of quadratic optimization are well understood.

In particular, we show that the capacitated k-means clus-
tering problem in (4) can be cast in a form that closely resem-
bles the (in)famous quadratic assignment problem (QAP) [34], 
[35]. Unlike the classical QAP, however, ours is a semiassign-
ment problem, due to the particular structure of our set of 
admissible assignment matrices .A  Nonetheless, many relax-
ation strategies that have been developed for the QAP can be 
applied in our context as well. The best convex relaxations 
known for QAP are based on SDR. We also apply an SDR 
method [22], [36]–[39] to our problem. It is worth noting that 
a different SDR approach to (unconstrained) k -means cluster-
ing was pursued in [19].

The main reason why the capacitated k-means clustering 
problem (4) can be cast as a QCQP is that the optimal S*  can be 
analytically derived as a function of ;X  that is, the cost function 
can be concentrated with respect to S  for a given .X  There are no 
constraints on ;S  therefore, the minimizer is given by ,S PX=* @  
where X@  denotes the Moore–Penrose pseudoinverse of .X  It 
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follows that the conference program optimization problem in (4) 
can be written equivalently as

    minimize P PX X F
2

X
- @  (10a)

 .subject to:  X A!  (10b)

Since any X A!  is full row rank, the pseudoinverse has the 
form .X X XX 1T T=@

-^ h  Using the property (5), this reduces to 
the simpler form .X XT 1K=@ -  It follows that (10) is equivalent to 
the problem

    minimize P PX X F
2T 1

X
K- -  (11a)

   .subject to: X A!  (11b)

Expanding the squares in the objective of (11), we get 
P PX X F

2T 1K- =-
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where we have used ,Tr( )Y YYF
T2 =  so

 ,Tr( )PX X PX XX XPF
T T2T 1 T 1 1K K K=- - -

and, since in this particular case, ,X XT 1K = @-  

 )Tr(PX X PX XPF
T2T 1 T 1K K=- -

 ) .Tr(PX XP PXT
F
2T 1/2 1/2 T 1/2K K K= =- - -

Hence, the problem in (11) can be expressed equivalently as

 minimize   P PXF F
2 2T 1/2

X
K- -  (12a)

 :   .subject to X A!  (12b)

This is now a quadratic minimization problem subject to Boolean 
constraints, which is intractable [formally, the NP-hardness of 
(12) follows from its equivalence to (4)]. The form (12) closely 
resembles the QAP: The difference is that, in (12), X  is con-
strained to lie in A  instead of the set of permutation matrices, as 
in the classical QAP.

To illustrate how one can apply SDR to the problem above, we 
write it first in a more clear form using simple algebraic manipu-
lations. Problem (12) can be written equivalently as

    )minimize v (ecP P X/
F
2 1 2

2
2

X
7K- -^ h  (13a)

 :   ,subject to X A!  (13b)

where 7  denotes the Kronecker product operation, and vec the 
operator that stacks the columns of a matrix into one vector. Recall 
that the linear system of equations (3b) and (3c) can be written in 
the form ,Gx d=  where vecx X= ^ h and define the matrices

HOW WELL DOES THiS WORK? THE iCASSP 2009/SPCOM TC CASE STUDY
The list of accepted papers from the SPCOM TC track of 
ICASSP 2009 is used for validation. There were 132 papers 
accepted, which were to be split among a total of 14 ses-
sions: six lectures and eight poster sessions, containing six 
and 12 papers each, respectively. The algorithmic results will 
be compared to the final technical program that was manu-
ally produced by Nicholas D. Sidiropoulos, who chaired 
SPCOM TC at the time.

The list of key words (features) was manually produced by 
the authors, parsing the list of paper titles. Each title was 
examined, existing key words were added to the paper as 
appropriate, and new key words were created and added to 
list of key words as needed. The final list contains a total of 
44 key words:

optimization, cross-layer, networking, resource, QCSI, 
game, precoding, DSL, distributed, sensor, sparse, MIMO, 
detection, performance, blind, cognitive, cooperative, 
capacity, network, coding, security, multiuser, beamform-
ing, downlink, relay, uplink, CDMA, OFDM, synchroniza-
tion, turbo, quantization, equalization, interference, 
estimation, training, tracking, localization, consensus, 
diversity, PAR, STBC, FH, scheduling, communications.
The feature vector of each paper is ,44 1#  with ones in 

the positions corresponding to features it possesses, and 
zeros elsewhere. The median number of (nonzero) features 
per paper was three.

The computer-generated conference program (using the 
algorithm in the section “Proposed Algorithm for Paper-to-
Session Assignment”) for ICASSP 2009/SPCOM TC is listed as 
Appendix A (available as supplementary material accompany-
ing this article in IEEE Xplore). Session pseudotitles were pro-
duced by session centroid thresholding. If a key word is 
included in more than 30% of the papers in a session (the cor-
responding centroid element is greater than 0.3), then the key 
word is included in the session pseudotitle. Note that the 
order of key words in the pseudotitles is arbitrary (one could 
list them in order of importance, determined by the magni-
tude of centroid elements). The listed computer-generated 
program attains a (sum-of-squares) cost of 148.1 (after 30 ini-
tializations). The actual technical program that was manually 
produced by Sidiropoulos attains a cost of 187.25, primarily 
because, after two days of manual optimization and with a 
looming deadline ahead, he gave up and used an “umbrella” 
poster session for papers that did not fit elsewhere but other-
wise had little in common. This is avoided in the solution 
listed in the supplementary material (Appendix A) available in 
IEEE Xplore, and in several other suboptimal solutions, which 
typically have a few discrepancies but avoid umbrella sessions. 
Note also that the running time of the algorithm in the sec-
tion “Proposed Algorithm for Paper-to-Session Assignment” 
was less than 1.5 minutes (on a Dell E64000 laptop) for this 
data set, for 30 runs from different initial points.
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With these definitions, (13) can be written equivalently as

    minimize P x Q QxF
2 T T

x
-  (14a)

 ) ,subject to:    diag(xx xT =  (14b)

 .0Gx d 2
2 =-  (14c)

This is now a standard form QCQP, the quadratic constraints in 
(14b) ensuring that all variables xi  are Boolean. Let us illustrate 
how one can apply SDR to the above problem step by step.

TECHNICAL DETAILS OF SDR
Using the fact that Tr( ) Tr( )x Q Qx x Q Qx Q QxxT T T T T T= =  and 
the change of variables

 1
,W

xx
x

x W
W

W
W

T

T
1,1

1,2
T

1,2

2,2
= == =G G  (15)

problem (14) is reformulated in a higher dimensional space as follows:

    minimize TrP W Q QF
2

1,1
T

W
- ^ h (16a)

 ) ,  ,1subject to:   diag(W W W, , ,1 1 1 2 2 2= =  (16b)

 ,0Tr( )LW =  (16c)
 ,  ( ) .10 rankW W* =  (16d)

Here, W ,1 1  denotes the JI JI#  upper-left block, W ,1 2  the JI 1#  
upper-right block, and W ,2 2  the 1 #  1 lower-right block of the 
( ) ( )JI JI1 1#+ +  matrix .W  Problem (16) is equivalent to (14), 
since any rank-1 matrix satisfying (16b) can be factored according 
to the definition in (15), and, hence, the solution of (14) can be 
easily constructed from the solution of (16) and vice versa. The 
only difficult part of (16) is the nonconvex rank-1 constraint on 

.W  Dropping this constraint yields an SDR of (16)

    minimize TrP W Q QF
2

1,1
T

W
- ^ h (17a)

 :   ) , ,1subject to diag(W W  W, , ,1 1 1 2 2 2= =  (17b)

 ,0Tr( )LW =  (17c)
 .0W *  (17d)

In contrast with (16), problem (17) is convex (in fact, a semidefinite 
program), and it can be readily solved in polynomial time using 
efficient interior point methods [18]. If the solution W*  of this 
semidefinite program turns out to have rank 1, then it is a solution 
for (16) as well. However, because of the relaxation, W*  will not 
always be a rank-1 matrix; hence, the optimal value of (17) gener-
ally provides a lower bound on the optimal value of (16) [note that 
(4) and (16) have the same optimal value].

Given ,W*  an approximate solution for the technical program 
optimization problem in (4) can be produced using a procedure 
known as Gaussian randomization [37]. This procedure consists of 
three main steps: 1) draw a random vector , ,v vv 1 1

T
JIg= +6 @  from 

, ,0 WN *^ h  2) form the new vector p  consisting of the first JI  
entries of v  divided by ,v 1JI+  and 3) find the vector that is closest to 
p  and is feasible for (14), i.e., the vector x  that minimizes  x 2

2p -  
subject to (14b)–(14c).

This three-step procedure can be repeated a number of times, 
and the vector that gives the smallest objective value in (14) can be 
eventually chosen as an approximate solution. The intuition behind 
randomization is that it will generate candidate solutions that are 
close to the eigenvector of W*  that corresponds to the largest eigen-
value, but will also take the other eigenvalues into account when 
these are large enough. Randomization has been widely used in the 
quadratic optimization literature, and its merits are well docu-
mented; see [37, Section IV] for an excellent discussion on this issue.

The rounding problem in step 3) seems hard, but it is not. To 
explain this, note that for any x  feasible for (14), we have that 

,Ix x2
2

2
2 Tp p p- = - +  and therefore, rounding corresponds to

 maximize   xT
x

p subject to: (14b)–(14c). (18)

Notice that the constraint in (14c) is equivalent to the convex con-
straint ,Gx d=  and, since G  is a totally unimodular matrix, prob-
lem (18) can be solved efficiently in polynomial time, using, e.g., 
the shortest augmenting path algorithm from [30]. The same dis-
cussion as that for problem (7) applies for (18) as well.

COMPLEXITy CONSIDERATIONS
It is important to recognize that the alternating optimization algo-
rithm in the section “Proposed Algorithm for Paper-to- Session 
Assignment” is much cheaper and faster than the SDR approach in 
the section “Gauging the Optimality Gap: Semidefinite Relaxation.” 
This is similar to classical k-means, and it is the reason why alter-
nating optimization is so popular in applications of k-means clus-
tering. For alternating optimization, the conditional update of S  is 
very simple; the most expensive part in every iteration is the condi-
tional update of .X  The shortest augmenting path algorithm from 
[30] can carry out the X-update in time .( )O JI2  Linear program-
ming (either with an interior point or with a simplex method) can 
be effectively used for the X-update as well. In relation to the alter-
nating optimization algorithm of the section “Proposed Algorithm 

[Fig4] The feasible set of (9), which is a polyhedron, is shaded 
and denoted as .P  The objective P SXTr T^ h is linear, and the 
point X*  is optimal; it is the point in P  as far as possible in the 
direction .P ST  As illustrated in the figure, the polyhedron P  is 
such that its vertices are all points in the set ,A  and thus 
Boolean (see the corresponding definition of A  in the text).

PTS

X*
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for Paper-to-Session Assignment,” the computational disadvantage 
of SDR in the section “Gauging the Optimality Gap: Semidefinite 
Relaxation” stems from the fact that it lifts the problem in a higher 
dimensional space [in (15)–(16)], and this lifting squares the num-
ber of variables. This implies much higher complexity. Two impor-
tant advantages of the SDR approach, on the other hand, are that it 
yields an approximation in one shot (read: with a predictable num-
ber of interior-point iterations for the relaxed convex problem), and 
it also yields a bound on how far any solution is from an optimum 
one. The latter is something that cannot be gauged from alternat-
ing optimization.

VARIATIONS OF THE BASIC FORMULATION
There are several variations of the basic formulation that one can readily 
envision. We now briefly mention a few interesting alternatives.

WEIGHTING
In some cases, the TPC chair may wish to highlight emerging or 
important areas in the technical program. This can be accom-
plished via feature weighting, i.e., optimizing a weighted least 
squares cost of the form

 ,D P SX F
2-^ h

where D  is a full-rank diagonal matrix holding the feature 
weights. Such weighting can be absorbed in P  and ,S  and, since 
the latter is unconstrained, it does not change the essence of the 
proposed solutions. It is clear that the proposed GLM/LBG algo-
rithm can be readily modified to handle this extension. Following 
steps similar to (10)–(12), it is a simple exercise to verify that the 
SDR approach can be extended as well.

ALIGNMENT WITH ORGANIZATIONAL STRUCTURE
Organizations such as the NSF often prefer to form panels that  
reflect their organizational structure. For example, for a large 
cross-disciplinary solicitation that falls under the auspices of multi-
ple divisions (sometimes even across directorates), from a logistics 
point of view, it makes a lot of sense to produce panels that are rea-
sonably well aligned with the constituent programs. This can be 
accomplished by anchoring panel centroids in S  not to deviate too 
far from the constituent organizational unit profiles, stored in ,So  
i.e., by augmenting the cost function in (4) with a penalty term as

 .P SX S SF o F
2 2t- + -

By varying the penalty parameter ,02t  one can trade off between 
alignment and homogeneity. Notice that this augmentation does 
not fundamentally change the nature of our solutions. In fact, the 
optimal session centroid matrix S*  is still given in simple closed 
form as .( ) ( )S PX S Io

1T t tK= + +* -  As a result, both the alter-
nating optimization algorithm and the proposed SDR approach can 
be easily modified to account for this penalty term.

DIVIDE-AND-CONQUER AND TREE-STRUCTURED VQ
For the special case where we are interested in splitting the papers 
into just J 2=  sessions, the conditional update of X =  

x x R I2
1 2

T ! #6 @  given S s s RN
1 2

2!= #6 @  takes a very simple 
form. This simplification can be used to construct a divide-and-
conquer algorithm for paper-to-session assignment, reminiscent 
of hierarchical clustering approaches and tree-structured VQ [20], 
[21]. Consider the conditional paper-to-session assignment prob-
lem for J 2=  sessions only. Using the equivalence shown in (6) 
and (7), the optimization problem is

 ,maximize  Tr [ ] [ ]P s s x x T
,

T
1 2 1 2x x1 2

^ h  (19a)

 ( ) , , ( ) , , ,i i i0 1 0 1subject to:  x x I21 6! ! !" ", ,  (19b)

 ( ) ( ) , ,i i i1x x I1 2 6 !+ =  (19c)

 ( ) , ( ) .i c i c I cx x
i

I

i

I

1
1

1 2
1

2 1= = = -
= =

/ /  (19d)

Using the constraints (19b)–(19d) and the fact that Tr( )AB =
,Tr( )BA  one can eliminate variable x2  from (19), yielding the 

simpler problem

 maximize  ( )x P s s1
T T

1 2x1
-

 ( ) , , ,i i0 1subject to:  x I1 6! !" ,

 ( ) ,i cx
i

I

1
1

1=
=

/

from which it is clear that the optimal solution is to allocate the 
c1  units to the c1  largest elements of .( )P s sT

1 2-  These can be 
found using a sorting operation, at complexity ( ),logO I I  or by 
direct parsing at .( )O Ic1

Now, using the above result for ,J 2=  we can construct a 
potentially appealing divide-and-conquer solution for the paper-to-
session assignment problem for J 22  as follows: We start with 
regular VQ/k-means to produce an initial centroid matrix ,S  the 
columns of which are then ordered according to paper population. 
In the divide step, we first process the columns of S  (e.g., using 
plain 2-means) to produce two new (super)centroids, then use the 
sorting-based algorithm to assign papers to these two centroids in a 
way that respects the session capacity constraints. We then recur-
sively refine and conquer the subproblems in a similar manner. 
Once we produce the final assignment, we update S  and repeat the 
procedure. This algorithm is fast and can be quite effective, mainly 
depending on the quality of the initialization point.

THE REViEW ASSigNMENT PROBLEM
The review assignment stage is even more difficult than put-
ting together the final technical program simply because it 
involves (a lot) more papers and every paper must be reviewed 
by more than one reviewer. Suppose that I  papers are to be 
assigned for review to (at most) J  reviewers. Reviewer j  has a 
fixed vector profile js  representing the reviewer’s expertise 
and reviewing interests, and a prenegotiated reviewing capac-
ity .jr Every paper should be reviewed by, say, three reviewers. 
Our goal here is to minimize the paper-to-reviewer mis-
matches, i.e., a paper should be assigned for review to three 
reviewers whose individual vector profiles cover as much as 
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possible the paper profile .pi  At the same time, and of equal 
importance, is that the reviewer profiles should collectively 
cover the paper profile pi  as much as possible.

One can thus pose the review assignment problem as follows:

 ( )1 1minimize  P SX
{ , }

* *
T

i

I
i i

0 1 1

3

3X J I3
m- -

! = +#
` jc m/
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 { , , },k I0 16 g! -  (21e)

 ( , ) .i j0X COIij 6 !=  (21f)

Here, P  is the matrix of paper profiles, , ,S s s RJ
N J

1 g != #6 @  is 
the matrix of the reviewer profiles, and X* i  denotes the ith  col-
umn of .X  The symbol · +^ h  denotes projection to the non- 
negative orthant, ·^ h denotes the ceiling function, and 1 denotes 
the N 1#  vector of all ones.

Let us now explain the mathematical formulation of the review 
assignment problem in detail. Observe that the cost function in 
(21a) comprises two sums. The first aims to minimize the paper 
key words not covered by the associated reviewers individually, 
while the second (the collective span term) accounts for the paper 
key words that are not covered by the sum of profiles of the associ-
ated reviewers. The two cost factors are weighted using a suitable 
regularization parameter .0 11 1m

The inequality constraints in (21e) protect each paper from 
being assigned to the same reviewer twice, while the constraints 
(21c) and (21d) ensure that each paper P* i  will be assigned for 
review to three reviewers, while respecting the reviewer capacity 
constraints. In particular, columns , ,i i i3 2 3 1 3- -  in  

{ , }0 1X J I3! #  comprise Boolean variables, which select three dif-
ferent reviewers for paper i  [see (21c) and (21e)]. Moreover, the 
ceiling operation /i 3^ h repeats three times the ith  column of P
(paper )i  to calculate its mismatch with each of the three individ-
ual assigned reviewers [see (21a)].

Finally, note that reviewers should not have a conflict of inter-
est (COI) with the papers they are reviewing (e.g., they cannot be 
from the same department as any of the paper’s authors). In case 
there is a COI between a reviewer and specific papers, additional 
COI constraints must be included in the optimization. These are 
taken into account by the constraint in (21f), which enforces the 
pertinent assignment variables to be equal to zero.

The review assignment problem as posed in (21) is combinato-
rial, but it has a convex objective function, and also the constraints 
in (21c)–(21f) are convex constraints. Interestingly, replacing the 
Boolean constraints in (21b) by the convex inequality constraints 
0 1X ji# #  leads to a relaxation problem whose feasible set is a 
polyhedron with Boolean vertices only (we shall call this the 
review assignment polyhedron). This can be seen by noting that 
the coefficient matrix of the set of linear inequalities (21c)–(21f) is 
totally unimodular (see, e.g., [31]). Even so, problem (21) is diffi-
cult to solve due to the collective span term in the objective, which 
is a nonlinear function of .X  One can construct, however, an 
approximate solution through convex relaxation and rounding. 

Before we explain this approach in detail, let us first discuss sev-
eral interesting points that can be gauged from the problem formula-
tion in (21). To simplify exposition and better highlight these points, 
we temporarily confine attention to the case of Boolean matrices P  
and .S  We emphasize, however, that the convex relaxation approach 
that we propose for (21) holds for general matrices P  and .S

REMARk 2: PAPER AND REVIEwER UTILITY FUNCTIONS
One may think of the review assignment problem in terms of util-
ity functions. To see this, it is convenient to introduce some 
mathematical notation first. Suppose that both P  and S  are 
Boolean. Moreover, suppose that assignment X  assigns paper pi  
to the reviewer set ( )XRi (with | ( ) | )3XRi =  and the same 
assignment X  assigns to reviewer j  the paper set N j (with 

.j| )( ) | rXN j#  Let ( )u 1 1X p p s
( )

T T
p
i

i i kk XRi
= - -

! +
` j/  be the 

utility function of paper i  (in case of Boolean P  and S  this is 
paper i ’s collective key word coverage resulting from assignment 

),X  and let j( ) ( )u 1 1X p p s
( )r

j
k kk

T T
XN j

= - -
! +6 @/  be the utility 

function of reviewer j  (in case of Boolean P  and ,S  this is the 
total number of key word matches between the reviewer and all 
papers assigned to the reviewer). Maximizing reviewer satisfac-
tion and paper utility can be conflicting objectives, as illustrated 
in Figure 5 and exemplified in Figure 6. The tradeoff between the 
two is captured in the problem formulation (21) because the 
objective function in (21a) can be written in terms of the 
{ ( )}u Xp

i
i
I

1=  and { ( )} ,u Xr
j

j
J

1=  by regrouping terms accordingly. 
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[Fig5] An illustration of the “dual” nature of the problem in 
terms of utility functions. Each paper has as utility its key word 
coverage (collectively, from all assigned reviewers), and each 
reviewer has as a utility the aggregate amount of key words 
matched from his/her assigned papers.
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REMARk 3
Observe that for Boolean matrices P  and S  the first sum term in 
(21a) can be replaced by a function linear in X  since, for any feasi-
ble assignment X  and Boolean matrices P  and ,S  it holds that 

1 1P SX P P* ( / ) * * ( / ) * ( / )i
I

i i
I

i ii
I

i1
3

3 1
3

3 31
3T T T- = -

= + = =
^ h^ ^ ^h h h/ / / .SX* i  

In other words, this sum attempts to maximize the total affinity 
between papers and reviewers, which is reminiscent of the 
approach followed in [2]. 

Let us now turn the discussion to general P  and ,S  and 
describe explicitly the convex relaxation approach for (21). Let X*  
denote the solution to the relaxation program where the Boolean 
constraints { , }0 1X ji !  are replaced by the interval ones, 

.0 1X ji# #  This relaxation yields a convex problem, which can 
be reformulated as an LP and solved efficiently. To see this, intro-
duce for every individual summand in (21a) an associated slack 
variable ,ti  and note that ( , )max x t x t0 i i,# #  for .t 0i $  
The constraint ( , )max x t0 i#  will always be satisfied with equal-
ity at the optimum, which yields the LP reformulation. 

Unfortunately, however, X*  is not guaranteed to be Boolean 
(the LP emerging after introducing the slack variables is not 
guaranteed to be totally unimodular); therefore, we need a way of 
converting the solution of the relaxed program into a good 
admissible solution for (21). This can be done by finding an 
assignment ,X  which is as close as possible (in a Euclidean 
sense) to ,X*  i.e., by finding an X  that minimizes X X F

2- *  
subject to (21b)–(21f). This rounding problem seems hard, but it 
is not. To explain this, note that for any assignment X  feasible for 
(21), we have that ,I3TrX X X X XF F

2 2 T- = - +* * *^ h  and, 
therefore, rounding corresponds to

 maximize Tr X XT *^ h subject to (21b)–(21f).

The above problem is equivalent to its linear programming relax-
ation (and is therefore easy to solve), since the polyhedron arising 
from the relaxation has only Boolean vertices [which are precisely 
the feasible set (21b)–(21f)]. To appreciate how well the proposed 
review assignment method works, see “How Well Does Auto-
mated Review Assignment Work? A SPAWC 2010 Case Study” and 
“Quantitative Assessment of Review Assignment Quality.”

SOME VARIATIONS OF THE BASIC FORMULATION

ALTERNATIVE COST FUNCTIONS
For simplicity, we use the sum of inconsistencies in the cost of 
our formulation in (21). An interesting alternative would be to 
employ the sum of squares of inconsistencies, essentially putting 
more emphasis (and penalizing more) the bad assignments. Note 
that using the sum of squares of inconsistencies would still lead 
to a convex cost function.

CONTROLLING THE WORST MATCHING
It is possible to design the assignment while explicitly 
 imposing an upper bound T*  on the cost of the worst paper-
reviewer matching

 ,  ,T i1 P S X X X* * * *i i i i3 2 3 1 3
T 6#- + + *

- - +^ h6 @

in addition to (21b)–(21e). This imposes a stricter requirement but 
changes the nature of the feasible set, as for general (even Bool-
ean) P  and ,S  the new polyhedron is not guaranteed to have only 
Boolean vertices.

A more flexible approach to this issue is to consider varying m  
in the cost function of (21) to trade off reviewer satisfaction for 
paper key word coverage. One can easily check the quality of a 
particular assignment after the optimization, by producing statis-
tics, most notably how many key words of each paper have been 
collectively covered by its respective reviewers. If the result is not 
satisfactory, one can resolve the problem by changing m  so as to 
strike a more appropriate tradeoff. In fact, one can associate a dif-
ferent parameter 0i 2m  to each paper ,i  if that is desired.

CONCLUSiONS

WHAT WE LEARNED
By viewing papers as vectors in a suitable feature space, the loosely 
defined tasks of paper-to-session and paper-to-reviewer assignment 
have been formulated as optimization problems that are strikingly 
familiar in many ways. The core problem underlying paper-to-ses-
sion assignment is capacitated k -means, i.e., clustering under 
capacity constraints, and is NP-hard. For paper-to-reviewer assign-
ment, it was shown that ensuring scientifically sound reviews (each 
aspect of each paper covered by at least one assigned reviewer) and 

[Fig6] A green assignment: paper #1 utility = 3 + paper #2 
utility = 3 &  total paper utility = 6; reviewer utilities 2+2+2 (for 
paper #1) + 2+2+2 (for paper #2) &  total reviewer utility = 12.  
Red assignment: paper #1 utility = 4 + paper #2 utility = 3 &  
total paper utility = 7; reviewer utilities 2+2+2 (for paper #1) + 
2+2+1 (for paper #2) &  total reviewer utility = 11. So, the 
green assignment is better in terms of reviewer utility, but the 
red one is better in terms of paper utility. This explains why 
the two objectives can be conflicting.
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maximizing reviewer satisfaction can be (and often are) conflicting 
objectives that must be traded against each other. The resulting 
paper-to-reviewer assignment problem is generally hard (albeit 
reducing it to a known NP-hard problem is not straightforward). 
Still, it was shown that it is possible to generate good suboptimal 
solutions using familiar signal processing tools. While there is cer-
tainly a lot more work to be done (e.g., automatic key word 
retrieval and paper mark-up, exploration of alternative problem for-
mulations), our results indicate that computer- generated technical 
programs outperform expert manual work at a fraction of the time 
and with very limited input by the chair.

WHy IT IS IMPORTANT?
If you are a TPC chair, spend some time to come up with the right 
set of key words that capture what is happening in your area, invite 
enough good reviewers (a margin of 20% more reviewing capacity 

is always helpful, so do secure a few more reviewers; if you do not 
need all that reviewing power, reduce everyone’s quota—they will 
be thankful). We have tested our algorithms with actual conference 
data, producing review and program assignments that TPC chairs 
have found very useful. We will make our algorithms freely available 
to the research community at the time of publication of this article.

As a final note, one can envision many other interesting appli-
cations of clustering under capacity constraints:

 ■ assigning students to classrooms or study groups accord-
ing to educational background, level of accomplishment in 
math/science/language, interests, etc.

 ■ production-line packaging according to product quality 
features (e.g., tolerances)

 ■ design of stock performance indices based on market sec-
tor, segment, capitalization, exposure to commodity price 
fluctuations, etc.

QUANTiTATiVE ASSESSMENT OF REViEW ASSigNMENT QUALiTY
We now discuss various performance metrics and statistics to 
appreciate the quality of the computer-generated solution.

DEFiNiTiON: We define the quality index (QI) of a particular 
reviewer, as the average percentage of key word matches 
between the reviewer’s profile and his/her assigned papers. As 
an example, suppose that a certain reviewer is assigned two 
papers for review, the papers having five and six key words, 
respectively, and let us assume that there are two key word 
matches from the first paper and three matches from the sec-
ond. The reviewer’s QI is then calculated as the average 
(( / / ) / ) % %.2 5 3 6 2 100 45#+ =

The reviewers’ QIs for the SPAWC 2010 case study can be found 
in the supplementary material (Appendix B), together with the 

optimized assignment. One can observe that 39/60 utilized 
reviewers had a QI above 80%, 54/60 reviewers had a QI above 
70%, and all 60 utilized reviewers had a QI above 40%. From the 
collective span point of view, note that 187/203 papers ( %)92.  
were fully covered (collectively) by their respective reviewers; the 
few papers that were not fully covered are marked with an 
asterisk in Appendix B.

As a final measure of the quality of the overall assignment, we 
compute the percentage of the overall key word matches, i.e., 
the total number of paper key words covered collectively by all 
assigned reviews. The percentage ratio (covered key words/total 
key words) was 98.1% for the SPAWC 2010 computerized 
assignment, indicating the high quality of the solution.

HOW WELL DOES AUTOMATED REViEW ASSigNMENT WORK? A SPAWC 2010 CASE STUDY
The submitted paper list and reviewing pool of SPAWC 
2010 was used for validation. There were 203 submitted 
papers, and the reviewing pool comprised 64 reviewers 
(20+2+42 reviewers of capacity 8|15|16 papers, respec-
tively). The list of key words (features) was manually pro-
duced by the authors by updating the previous list for 
ICASSP 2009; the final SPAWC key word list contained a 
total of 50 key words:

beamforming, blind, capacity, CDMA, classification, coding, 
cognitive, consensus, cooperative, cross-layer, detection, dis-
tributed, diversity, downlink, UWB, DSL, equalization, esti-
mation, feedback, FH, game, joint source-channel, 
localization, MIMO, multiuser, network coding, networking, 
OFDM, optimization, par, performance, QCSI, quantization, 
random matrix, relay, resource, RFID, scheduling, security, 
sensor, sparse, speech-image, STBC, synchronization, time-
varying, tracking, training, turbo, underwater, uplink.
The feature vector of each paper and each reviewer is 

,50 1#  with ones in the positions corresponding to features it 
possesses, and zeros elsewhere. Feature vectors for the 

reviewers were created by Nicholas D. Sidiropoulos (acting as 
TPC chair), using his knowledge of their expertise. Feature vec-
tors for the papers were partially entered by the respective 
authors, using a separate key word-clicking system that was set 
up for this purpose; however, not all authors obliged, so fea-
tures for papers were also entered by Sidiropoulos after look-
ing at paper titles. Parameter m  in the algorithm was set to 

. .0 5m =  It is worth mentioning that the ratio between the 
objective value of the linear programming relaxation and that 
of the rounded final solution was 98.7% [hinting that the final 
assignment was (at least) close to the optimal one]. The run-
ning time of the algorithm (relaxation +  rounding) was less 
than two minutes for this data set, on a Dell E64000 laptop. 
The computer-generated review assignment is listed as Appen-
dix B in the supplementary document accompanying this arti-
cle in IEEE Xplore. Perusing this assignment, one can observe 
that four out of 64 reviewers were not assigned any paper at 
all in the final solution. In the cases where we have spare total 
reviewing capacity, we may consider adding a penalty term to 
avoid fully loading some reviewers and idling others. 
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FURTHER INFORMATION
This article has supplementary downloadable material available in 
IEEE Xplore; see http://ieeexplore.ieee.org. The material includes a 
computer-generated conference program and a computer-generated 
review assignment using the methods presented in this article. Con-
tact nicos@umn.edu for further questions regarding this work. In 
addition, a companion Web site is under development, and a link will 
be posted at http://www.ece.umn.edu/~nikos/.
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