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Abstract—The single-group multicast beamforming problem
is NP-hard, and the available approximations do not always
achieve favorable performance-complexity tradeoffs. This paper
introduces a new class of adaptive multicast beamforming algo-
rithms that features guaranteed convergence and state-of-the-art
performance at low complexity. Each update takes a step in the
direction of an inverse signal-to-noise ratio (SNR) weighted linear
combination of the SNR-gradient vectors of all the users. Con-
vergence of this update to a Karush–Kuhn–Tucker (KKT) point
of proportionally fair beamforming is established. Simulations
show that the proposed approach can enable better performance
than the prior state-of-art in terms of multicast rate, at consider-
ably lower complexity. This reveals an interesting link between
max-min-fair and proportionally fair multicast beamforming
formulations. For cases where there is no initial channel state
information at the transmitter, an online algorithm is developed
that simultaneously learns the user channel correlation matrices
and adapts the beamforming vector to maximize the minimum
(long-term average) SNR among the users, using only periodic
binary SNR feedback from each receiver. The online algorithm
uses the analytic center cutting plane method to quickly learn the
user correlation matrices with limited signaling overhead.
Index Terms—Multicasting, beamforming, max-min-fair, pro-

portionally fair, adaptive, online, learning.

I. INTRODUCTION

M ULTICAST beamforming is a part of the Evolved
Multimedia Broadcast Multicast Service (eMBMS) in

the Long-Term Evolution (LTE) standard for efficient audio
and video streaming. Multicast beamforming utilizes mul-
tiple transmit antennas and channel state information at the
transmitter (CSIT) to steer transmitted power towards a group
of subscribers while limiting interference to other users and
systems [1]. In single group multicasting, where all users are
interested in the same information stream from the transmitter
(Tx), the maximum common data rate is determined by the
minimum received signal to noise ratio (SNR). Hence the
objective is to maximize the minimum received SNR subject
to transmit power constraints (max-min-fair multicast beam-
forming). An alternative is to minimize the transmit power
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subject to appropriate quality-of-service (QoS) guarantees
formulated in terms of the minimum SNR for each user (QoS
multicast beamforming). The two formulations are essentially
equivalent from an optimization point of view [1].
All work to date on multicast beamforming has assumed that

some grade of CSIT (instantaneous or statistical, perfect or in-
exact) is available. InpracticeCSIhas to be acquired, and that can
be a serious burden—especiallywhen the number of users and/or
antennas is large. CSIT can be acquired before beamforming op-
timization, but in reality channels change over time and users
may drop in or out of the multicast, so it is appealing to consider
joint online CSIT acquisition and beamformer adaptation. This
is a challenging problem, especially when channel reciprocity
cannot be assumed, and the receiver (Rx) equipment is limited
in terms of computation and communication capabilities.

A. Related Work

Sidiropoulos et al. [1] considered max-min-fair and QoS
multicast beamforming for a multi-antenna Tx serving mul-
tiple users, each with a single antenna Rx. It was shown in
[1] that these two formulations are essentially equivalent
NP-hard optimization problems, which can be expressed as
a non-convex quadratically constrained quadratic program
(QCQP). Semi-definite relaxation (SDR) followed by Gaussian
randomization (SDR-G) was proposed in [1] to obtain an upper
bound on the attainable minimum SNR and a good sub-optimal
solution, respectively.
For a large number of antennas or users, the quality of the ap-

proximation obtained using SDR-G deteriorates considerably.
This prompted a search for better approximations of the mul-
ticast beamforming problem over the past decade. The best ap-
proach so far is the successive linear approximation (SLA) algo-
rithm proposed by Tran et al. for the QoS version of the problem
[2]. The SLA algorithm starts with a feasible vector, say . The
non-convex constraints are linearized about using first-order
Taylor series expansion, and the resulting convex problem is
solved to obtain the next iterate , which is subsequently used
for linearization in the next iteration. It was shown in [2] that the
SLA algorithm converges to a KKT point of the QoS problem
formulation, and performs better than SDR-G in simulations.
SLA has lower worst-case complexity per iteration than SDR-G
( for one SLA iteration vs. overall
for SDR-G, where is the number of antennas at the Tx and

is the number of users). However, the overall complexity of
SLA can be greater than that of SDR-G, because of the outer
linearization iterations required for convergence of the SLA
algorithm.
A different approximation of the max-min-fair formulation

was recently proposed byDemir et al. [3]. In [3], the non-convex
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part of the problem is isolated to a rank-one constraint, which
is replaced with an equivalent non-convex bilinear trace con-
straint. The interesting aspect of Demir’s approach is that the re-
sulting reformulation is naturally amenable to alternating maxi-
mization (AM). Simulations in [3] showed that the AM attained
a higher minimum SNR compared to SDR-G. However, the
computational complexity of the AM algorithm is higher than
SDR-G, since AM involves solving an SDP (of the same size
as SDR-G) at each AM step. Furthermore, our simulations indi-
cate that SLA outperforms AM, and SLA has lower complexity
than AM.
SDR-G, SLA and AM involve solving one or more convex

optimization problems to obtain a good transmit beamforming
vector that attains a high minimum SNR. For large and ,
the computational cost of solving these convex optimization
problems becomes prohibitive, and low-complexity algorithms
are needed. The first low-complexity adaptive algorithm
for (max-min-fair) multicast beamforming was proposed by
Lozano [4]. In every iteration of Lozano’s algorithm, the new
iterate is obtained by updating the previous iterate with a fixed
step along the SNR gradient direction of the user with the least
SNR in the previous iteration. This is followed by a scaling step
to satisfy the transmit power constraint. Simulations showed
that Lozano’s algorithm can achieve a higher minimum SNR
than the SDR-G approach when . The computational
complexity of Lozano’s algorithm is for instantaneous
rank-one CSIT and for long-term higher-rank CSIT,
which is much lower than SDR-G and SLA. Matskani et al. [5]
observed that Lozano’s algorithm can exhibit limit cycle be-
havior, and proposed a variation called (damped) LLI (Lozano
with Lopez Initialization). This employs a diminishing step size
and a more sophisticated initialization using the weight vector
that maximizes average SNR [6]. Simulations showed that the
LLI algorithm obtains a higher minimum SNR than Lozano’s
algorithm at the same complexity.
Abdelkader et al. [7] proposed a low-complexity algorithm

based on channel orthogonalization using QR decomposition,
to approximate the QoS problem when . For every
run of the QR algorithm, a set of out of channel vec-
tors are chosen randomly and stacked into a matrix ,
and the QR decomposition is obtained. The beam-
forming vector is modelled as a weighted linear combination of
the columns of and the corresponding weights are obtained
in closed form [7], followed by a scaling step to satisfy the QoS
constraints. The final beamforming vector is the best obtained
after a number of random draws as above. Simulations showed
that when , the QR algorithm performs better than the
SDR-G approach, at complexity—which is much lower
than SDR-G.
Multicast beamforming in the case of only users was

specially considered in [8], which derived the optimal solution
for this case (note that the NP-hardness proof in [1] does not
apply when ). Motivated by the optimal solution for

, [8] proposed an orthogonalization-based successive
beamforming (SB) algorithm for general . As we will see in
the simulations section, the performance of SB quickly becomes
inferior to SDR-G as increases, so it is not competitive.
When only imperfect CSIT is available, a robust multicast

beamforming formulation (which further includes interference
constraints) has been considered in [9]. The problem is formu-

lated as a non-convex QCQP and two randomization algorithms
are proposed to obtain sub-optimal solutions. Furthermore, a
specific case of the problem was identified for which the op-
timal solution can be obtained in polynomial time via SDR [9].
QR, Lozano, and LLI feature low complexity, but also a rel-

atively large gap to the SDR performance bound. Perhaps more
importantly (since the SDR bound is generally not attainable),
our simulations show that the minimum SNR attained by these
algorithms is still significantly lower than that of SLA. Another
drawback is that QR, Lozano, and LLI require tuning of param-
eters through trial and error.
Summarizing, no algorithm offers state-of-the-art perfor-

mance (SLA) at low-enough complexity (QR/Lozano/LLI).
One of our original goals was to fill this gap; as we will see, our
new algorithms come close to SLA in terms of performance,
at QR/Lozano/LLI complexity. Even better, the proposed algo-
rithms can be used to warm-start a single iteration of SLA, and
this turns out to outperform (iterative) SLA, as we will see.
Our second goal was to come up with a multicast beam-

forming algorithm that gradually learns the required CSI as
it adapts the beamformer weights. Online algorithms for de-
signing transmit beamforming weights for unicast transmission
without initial CSIT have been developed in [10]–[12], using
binary feedback from the Rx. Reference [10] proposed a
variation of the Cyclic Jacobi subspace estimation algorithm
to learn the instantaneous channel/channel correlation matrix

of a Multiple-Input Multiple-Output (MIMO) link.
The 1-bit feedback was assumed to be based on a monotonic
function of the instantaneous/average received signal power. It
was shown that this algorithm asymptotically converges to the
eigen-decomposition of .
An adaptive thresholding algorithm was proposed in [11] to

simultaneously transmit data and learn the optimal long-term
beamforming vector (i.e., the principal eigenvector of ), using
binary feedback from the Rx of a Multiple-Input Single-Output
(MISO) unicast channel link. For every new transmit beam-
forming vector, a ‘1’ or a ‘0’ is fed back by the Rx, based on
whether the measured average SNR is or a pre-determined
threshold. From every feedback bit, a new linear inequality in-
volving is inferred at the Tx, and is updated as the ana-
lytic center of the region formed by the positive semi-definite
(p.s.d.) cone and all the linear inequalities inferred until that
point. The new beamforming vector is designed to create a bal-
ance between gathering new information about and attaining
a high average SNR using the knowledge acquired from all the
feedback bits; while the new threshold is designed in order to
reduce the existing uncertainty regarding . Asymptotic con-
vergence to the maximum SNR attained with perfect CSIT was
established in [11].
A similar algorithm using essentially the same analytic center

cutting plane method (ACCPM) as [11] was independently and
simultaneously proposed in [12] for maximizing the instanta-
neous energy harvested at the Rx of a MIMO link. In [12], the
1-bit Rx feedback at time slot is based on whether the energy
harvested at time is or that at time . Simulations
in [11] and [12] showed the faster convergence rate of the re-
spective algorithms to the optimal value (obtained with perfect
CSIT) in comparison with [10]. The algorithms in [10]–[12] can
be used to learn the user channels in a multicast setup, by con-
sidering every user of the multicast individually.
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B. Contributions
In this paper we consider a single-group multicast cell with
antennas at the Tx serving single antenna users. We con-

sider two scenarios: a) the Tx has perfect CSI for all users,
and b) the Tx has no initial CSI for any user. When perfect
CSIT is available, we propose a new class of adaptive multicast
beamforming algorithms comprising Additive Update (AU),
Multiplicative Update (MU), and Multiplicative Update—Suc-
cessive Linear Approximation (MU-SLA) algorithms, with
guaranteed convergence and state-of-the-art performance at
low complexity. In every iteration of the AU algorithm, the
beamforming vector is updated by taking a step along the
inverse-SNR weighted SNR-gradient direction of all the users,
as computed using the previous iterate. This is followed by
a scaling step to satisfy a transmit power constraint, and the
whole procedure is repeated until the iterates converge. The
fixed point equation of this algorithm is analyzed for a simple
but insightful example, and convergence is established by
interpreting the AU as successive concave approximation of
(or projected gradient update for) proportionally fair beam-
forming. The MU algorithm, which is a limiting case of the
AU algorithm, attains the same minimum SNR as AU, but has
faster convergence and it also eliminates the need for step-size
selection. We currently have proof of convergence only for the
AU—the analysis does not carry over verbatim to the MU for
technical reasons. The MU-SLA algorithm uses the solution
provided by the MU algorithm as an initialization for a single
SLA iteration. Simulations show that MU-SLA outperforms
SLA, while the AU and MU operate close to SLA and outper-
form all the other algorithms, at an order of magnitude lower
complexity. The performance-complexity tradeoff is analyzed
for the proposed algorithms and the previous state-of-art using
relevant simulations.
In the absence of initial CSIT, if the receivers do not have

sufficient computational and energy resources to estimate,
quantize and feed back accurate CSI to the Tx, we propose
an online cognitive multiplicative update (CMU) algorithm for
designing long-term beamforming vectors using binary channel
quality user feedback. In the CMU algorithm, every user only
feeds back a ‘1’ or a ‘0’ in each time slot, depending on
whether its average received SNR is or a pre-determined
threshold. Using the feedback bits from every user, the Tx
learns new linear inequalities about the channel matrices of
the users and updates its estimate using the ACCPM. The new
beamforming vector is designed to gather useful information
about the channel and also use the accumulated knowledge to
attain a high minimum SNR among the users. Two threshold
selection techniques at the Tx, namely i) multiple threshold
selection and ii) common threshold selection, are proposed for
effectively reducing the uncertainty in the channel correlation
matrices of the users in each slot. It is shown that the former
reduces the uncertainty faster and converges to the true channel
correlation matrices at a faster rate than the latter, at the cost of
higher communication overhead. A simple modification is also
proposed to completely eliminate the communication overhead
in ii) by varying the transmit power. Simulations show that the
CMU algorithm using the aforementioned threshold selection
methods converges to the performance achieved with perfect
CSIT.

Relative to the conference version [14], this paper includes
fixed point analysis for the AU and the MU algorithm, and a de-
tailed convergence proof of the AU algorithm. Comprehensive
simulation results are provided to assess the performance of the
proposed algorithms in comparison to the prior state-of-art. The
other novel contribution of this journal version relative to [14]
is the CMU algorithm, which starts from no CSI and gradually
acquires it on the fly, as it also adapts the beampattern, through
a judicious combination of MU, ACCPM, and SNR threshold
selection strategies.

II. PROBLEM FORMULATION

We consider a single-group multicast cell consisting of a
Tx with antennas and single antenna receivers. The Tx
transmits the common data which has zero-mean and unit-
variance, to all the receivers using a unit-norm beamforming
vector . The corresponding received signal at the th Rx is
given by

(1)

where is the channel between the Tx and the th Rx which
is modelled as a zero-mean complex random vector.
is wide-sense stationary additive noise at the th Rx, assumed
independent of and , with zero-mean and variance . The
received SNR at the th Rx is given by ,
where . We can absorb

into , and thereafter work with the scaled channels
(assuming that the th Rx can estimate beforehand

and inform the Tx, or scale before sending it to the Tx). We
will assume that this has already been done, and drop the for
brevity. The objective of the Tx is to design unit norm transmit
beamforming vectors that maximize the minimum SNR among
the users. This can be formulated as follows.

where . is NP-hard, as shown in [1].

III. TX HAS PERFECT CSI ABOUT

When the Tx has perfect CSI, the SLA algorithm [2] is the
state-of-the-art in terms of attaining the highest possible min-
imum SNR/multicast rate. However, it has a relatively high
worst-case complexity. The first low-complexity adaptive al-
gorithm for multicast beamforming was Lozano’s [4]. Lozano’s
algorithm focuses only on the weakest user in each iteration
and ignores all other users. In certain cases [5], this strategy
results in fluctuations in the minimum SNR due to limit cy-
cles, as improving the SNR of one user may reduce the SNR
of another and vice-versa. When there are multiple users expe-
riencing low SNR, it makes intuitive sense that we should take
all the user-channels into account while taking the next step.
Furthermore, users experiencing different SNR ‘grades’ should
be appropriately weighted in the computation of the new di-
rection. This intuition naturally suggests the following Additive
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Update (AU) algorithm, which we first introduce below in the
context of a simplified, two-user scenario.
Example: Consider a scenario with users. The initial

unit norm beamforming vector is chosen randomly and is de-
noted by . At every iteration , the new beamforming
vector iterate is obtained as follows.

(2)

(3)

where is the fixed positive step-size for every iteration. From
(2), is a sum of and a fixed step times a direction
vector, which is an inverse SNR weighted sum of the SNR gra-
dients, evaluated at . Therefore, in the th iteration,

is updated along a direction that favors the user with the
least SNR in the th iteration, but also takes into account, the
other user. More generally, for , using an inverse SNR
weighted sum of the SNR gradients of all users will favor those
experiencing lower SNRs in the th iteration. This should be
contrasted with [4], [5], which only focus on the weakest user.
From (2), it is easy to see that the fixed point equation1 is given
by (4).

(4)

where is a constant introduced to scale the magnitude of
to unity.

Proposition 1: For , the multicast rate attained by a
fixed point of the proposed AU algorithm is

, where

(5)

Proof: See Appendix A.
It is instructive to compare this result to the max-min SNR in

two special cases. The best situation for multicast beamforming
is when , for some , i.e., the two user channel
vectors are collinear. Then ,
which is equal to the optimum max-min SNR. The worst situa-
tion is when the two channel vectors are orthogonal, ,
in which case , while the
optimummax-min SNR can be easily shown to be .
Without loss of generality, assume . Then

, while the optimum max-min SNR is
[8], and satisfies . We

see that the AU fixed point is optimum in the case of balanced
channel norms, and no worse than 3 dB off the optimum even
in the worst (near-far) case. While this is clearly a toy example
(e.g., the NP-hardness proof in [1] does not apply when

1A fixed point of a mapping is any satisfying
.

), it is still satisfying to see that the simple AU iteration
is so close to optimum in these two extreme cases. Motivated
by these preliminary observations, we next consider the AU
algorithm for general .

A. Additive Update Algorithm
In this section, we consider the case when there are

users and the matrices have rank . An
example of higher-rank scenario is when the objective is to
maximize the minimum average SNR (instead of instantaneous
SNR) among the users. In this case, are the channel
correlation matrices, which are full rank with probability one if
the channel vectors are drawn from a continuous distribution.
The motivation to consider average SNR is that instantaneous
channel estimation and feedback requires much higher com-
putation and communication overhead relative to infrequent
channel correlation feedback.
For general , the AU weight vector update is

(6)

where is a positive constant step size, and is a positive con-
stant that is introduced for numerical stability. The AU update
takes all the user channels into consideration, favoring weaker
users more than stronger ones (i.e., those with lower SNR over
those with higher SNR attained by in the previous iteration).
The fixed point equation of the AU algorithm is:

(7)

Whereas the AU update has been intuitively developed and mo-
tivated up to this point, the following proposition reveals that it
can be viewed as an approximation of a problem that is related
to (but different from) the max-min-fair formulation .
Proposition 2: The beamforming vector obtained at the
th iteration of the AU algorithm is the solution of a strongly

concave approximation (cf. (8) and (9)) of the proportionally
fair [13] multicast beamforming problem at .

Proof: It can be shown that is a non-convex optimiza-
tion problem [13] which is difficult to solve in general. Con-
sider a strongly concave approximation of at the point

.

(8)

Denote the right hand side of (8) as . The sum of the
first two terms in is the first order Taylor series ap-
proximation of at . The last term in
is a proximal regularizer which is included to make
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strongly concave . Instead of solving , suppose that
we iteratively solve to obtain from .

From the definition of , it can be seen that the solution
of can be obtained in closed form as shown below.

(9)

It can be seen from (6) and (9) that the th iterate of the
AU algorithm is the solution of . Hence the AU algorithm
obtains a beamforming vector that promotes proportional fair-
ness in terms of SNR among the users.
The natural next question is whether the AU algorithm con-

verges. The following result shows that it does.
Theorem 1: The iterates obtained from the AU algorithm

converge to a KKT point of , provided , where

and is the max-
imum eigenvalue of (when

).
Proof: See Appendix B.

B. Multiplicative Update Algorithm
The proof of Theorem 1 in Appendix B requires the technical

condition , but our experiments indicate that
AU converges even for . This motivates the following
limiting version of the AU algorithm, which we will call the
Multiplicative Update (MU) algorithm. The update step in the

th iteration is given by:

(10)

The new iterate is the unit vector along the inverse SNR
weighted SNR gradient direction of all the users (i.e., only
the direction vector of AU). It can be seen from (6) that the AU
update approaches the MU update as increases. From (7) and
(10) it can also be seen that theMU algorithm has the same fixed
point condition as the AU algorithm. Simulations indicate that
the MU algorithm always converges faster than and to the same
fixed point as AU, without requiring any parameter tuning. The
technical difficulty of using Theorem 1 for proving convergence
of the MU algorithm at this point is that the proof in Theorem
1 places an upper bound on the step-size value of the gradient
update, for the iterates to converge.
To gain more insight about the MU algorithm, consider the

proportionally fair multicast beamforming problem . Since
the objective is non-concave, consider the maximization of its
first order Taylor series about .

where is the objective function in . It is straightforward
to see that the solution of can be obtained in closed form

Fig. 1. Comparison of convergence rate of MU and AU algorithm for
.

and is equal to the update in (10). Therefore the th iterate
of the MU algorithm is the solution of the linear approximation

of at . The difference with the AU is that in
we do not have the proximal regularization term that we

had in .
Fig. 1 compares the minimum SNR obtained from the MU

with that of the AU algorithm for various step-sizes when
and . The plot has been ob-

tained after averaging over 100 Monte-Carlo simulations. It can
be seen that MU and the AU algorithms converge to the same
minimum SNR and the convergence rate of the AU approaches
the MU algorithm as increases from 0.01 to 1.

C. MU-SLA Algorithm
An iterative successive linear approximation (SLA) algo-

rithm has been proposed by Tran et al. [2] to approximately
solve the following NP-hard problem [1].

The SLA algorithm starts with a feasible initialization . The
non-convex SNR constraints for all the users are linearized
around using Taylor series expansion and the resulting
quadratic program is solved to obtain , which is subse-
quently used as the linearization point for the next iteration.
The quadratic program solved in the th SLA iteration is:

where takes the real (imaginary) part of its argu-
ment, and . Note that SLAwas
developed for the QoS rather than themax-min-fair formulation,
but the two are equivalent up to normalization [1].
SLA solves a relatively complex quadratic program in each

iteration, and the final result depends on the initialization.
MU iterations, on the other hand, are very fast; but MU is
geared towards proportional fairness, not max-min fairness, so
the final result of MU can be refined to improve its max-min
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fairness. This naturally motivates a two-step MU-SLA algo-
rithm which can take advantage of the high-quality solutions
obtained quickly via the MU algorithm, and the ability of the
SLA algorithm to perform accurate ‘last mile’ minimum SNR
refinement.
In more detail, the MU-SLA algorithm takes the solution ob-

tained from theMU algorithm, denoted by , scales it by the
inverse square root of the minimum SNR attained using
(to maintain feasibility for ) and then uses this vector to ini-
tialize and solve a single SLA iteration. The resulting vector
determines the transmit beamforming vector direction, which is
then scaled to the desired transmit power. Our experiments (pre-
sented in the simulation results section) indicate that, in terms
of minimum SNR and hence multicast rate, MU-SLA is the new
state-of-art, as it outperforms all other multicast beamforming
algorithms available as of this writing.

IV. TX HAS NO INITIAL CSI ABOUT

Here, we assume that the matrices
are channel correlation matrices and have rank . It is also
assumed that all the receivers have limited computational/en-
ergy resources. As a result, the conventional training method
of channel correlation matrix estimation at every Rx followed
by quantization and feedback to the Tx cannot be used. In this
section, we propose an online transmit beamforming algorithm
for a single group multicast network where the Tx uses binary
feedback from every Rx to simultaneously learn and
design beamforming vectors that attain a highminimum average
SNR.
Time is divided into slots of length seconds, with the du-

ration of each slot long enough for every Rx to perform ac-
curate power estimation. At time , where is an
integer slot index and is ‘fast time’, the channel
from the Tx to the th Rx is modeled as a zero-mean
complex random vector , with a correlation matrix

and . At every time slot , the Tx sends a
zero-mean unit-variance common message times a
unit-norm complex beamforming vector to all the receivers
in the downlink. The received signal at the th Rx is

(11)

, where is the additive noise
at Rx (assumed to be wide-sense stationary) with zero-mean,
variance , and independent of and
and . In the sequel, we assume that the received signal has
been multiplied by and absorb this factor into ,
for convenience. This makes the noise power equal to 1, and
SNR equal to signal power.
In order to decode , every Rx should estimate the

complex scalar . One way to accomplish this
task is to transmit pilot symbols at the start of every time slot to
aid every Rx in this estimation of in the pres-
ence of AWGN [15]. An alternative is to use differential mod-
ulation. During every time slot , the th Rx measures the av-
erage SNR and compares it with a pre-determined
threshold . A ‘1’ or a ‘0’ is fed back by the th Rx when
its average SNR is or . It is assumed that there are

no significant measurement errors (inequality flips) at the Rx or
in the communication of the 1-bit feedback to the Tx. Based on
the 1-bit feedback from the th Rx at time slot , the Tx learns
that

(12)

where and is the 1-bit feedback from
the th Rx at time slot . Here, we extend the ACCPM-based
adaptive beamforming algorithm in [11] from the case of a
single-user MISO link to a multi-user multicast scenario, and
propose an online Cognitive Multiplicative Update (CMU) al-
gorithm. The CMU algorithm appropriately designs a sequence
of that enables the Tx to learn
using binary feedback from all the receivers and attain a high
value for the minimum average SNR among the users.

A. Cognitive Multiplicative Update Algorithm
Exploration-Exploitation Tradeoff: At every time slot, the Tx

has to design the beamforming vector in such a way that it can
not only infer new information about (exploration),
but also use the knowledge accumulated from the feedback bits
in previous time slots, to attain a high value ofminimum average
SNR (exploitation) among all the receivers. Since the Tx does
not have any initial CSI, it is desirable to focus on exploration
initially. As time progresses (number of feedback bits from each
Rx increases), and the Tx is progressively able to accurately
estimate the matrices, preference can be shifted to
exploitation. At the end of time slot , the Tx has learned the
following inequalities about using the feedback bits
from every Rx.

(13)

where
and

.
Channel Correlation Matrix Estimation: We propose to up-

date (the Tx-side estimate of at
time ) as follows.

where and the term has been rewritten
as . is a convex optimization problem which ob-
tains the analytic center of the region formed by the linear in-
equalities till time slot (13) for a particular and the positive
semi-definite cone [16], [17]. It can be solved efficiently using
interior point methods.
Design of Beamforming Vector : Once the Tx updates

, we formulate to design .
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where and
is a non-increasing function of , e.g., , with

. The objective function of comprises two terms.
The first term promotes proportional fairness of SNR among
users (if is close to ) and the second term promotes
the choice of a vector that is least similar to the beamforming
vectors in all the previous time slots (since it minimizes the
norm of the vector whose th entry is ).
It has been shown that the proportional fairness function is non-
concave. We replace the non-concave objective function of
with the first-order Taylor series approximation, resulting in an
optimization problem which is obtained after removing the
constant terms that are irrelevant to the optimization.

The closed form solution of is given by:

(14)

The possibility of obtaining a beamforming vector update in
closed form is the main motivation behind approximating the
objective function of with the first-order Taylor series of
the whole function as opposed to a concave approximation of
the proportional fairness term alone (non-concave part), which
would result in solving an optimization problem, thereby in-
creasing the overall complexity significantly in every step.
The weight in decides the extent of preference given to

the proportional fairness term (exploitation) in comparison with
the diversity promoting term (exploration). We pro-
pose to choose as a non-increasing function of with
(for e.g., ). For small , since , the choice
of weight vector is dictated by , thereby yielding di-
verse weight vectors that explore different directions for gath-
ering information about . For large , the Tx
would have obtained sufficient information to accurately esti-
mate and preference shifts to the proportional fair-
ness term, resulting in weight vectors that attempt to achieve
a high minimum average SNR value among all the receivers.
As , the performance of the CMU algorithm
asymptotically approaches that of the MU algorithm (where Tx
has perfect CSI) if (which
is accomplished by appropriately designing the thresholds).
Design of Thresholds : Once is de-

signed, the Tx has to choose the thresholds for
the K receivers. has to be chosen in such a way
that the subsequent inequality inferred by the Tx from

significantly reduces the uncertainty about
at time slot denoted by the region

. In this
regard, we propose two threshold selection techniques.

Multiple Threshold Selection: Here, the Tx selects a unique
threshold for every Rx at time slot which is given by

(15)

This selection (inspired by the ACCPM in convex optimization)
ensures that the hyperplane corresponding to the inequality in-
ferred about at the Tx from , i.e.,

passes through the analytic
center of i.e., . The analytic
center maximizes the product of distances to the defining
hyperplanes and the p.s.d. cone in and gives the deepest
interior point of . Hence for a given , this choice of

ensure that each of the inequalities inferred by
the Tx from significantly reduces the uncertainty
about . Using the convergence analysis
of ACCPM [18], it can be shown that is confined to a
ball of radius around within
iterations. As and the per-
formance of the CMU algorithm asymptotically approaches that
of the MU algorithm with perfect knowledge of at the
Tx, even though CMU starts with no CSIT. However, the down-
link signaling overhead is very high, because the Tx has to com-
municate to the th Rx, for every
time slot. This overhead increases linearly with .
Common Threshold Selection: Here, the Tx selects a

common threshold for all the users at time slot .

(16)

From (16), it can be seen that the common threshold at each
time slot is selected in a round-robin fashion. From the linear
inequalities inferred by the Tx at time , this selection en-
sures guaranteed reduction in the uncertainty region of user
only. Therefore, the uncertainty region of the channel correla-
tion matrix of every user is certainly reduced at least once every

time slots. The convergence proof of ACCPM [18] can be
used to show that is confined to a ball of radius around

within iterations. In the
worst-case, the convergence rate of common threshold selection
will be times slower than that of multiple threshold selection;
but in practice, inequalities designed to reduce the uncertainty
for one user will also reduce the uncertainty for other users. On
the other hand, the per-slot communication overhead for the
common threshold selection technique remains fixed even as

increases, since a single threshold is communicated to all
users. It should also be noted that the threshold communication
can be avoided completely in this case, by keeping the thresh-
olds at the users-side fixed for all and scaling the transmit
power instead. The set of linear inequalities inferred by the Tx
at time can be modified as shown below.

(17)

where and means that the Tx will
choose the inequality as or based on whether the 1-bit feed-
back is a ‘1’ or a ‘0’ respectively. In order to account for the
variation of transmit power, the power amplifiers should have
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Fig. 2. Comparison of average minimum SNR and computation time versus
for = 20 antennas when the user channels are drawn from an i.i.d. Gaussian
distribution.

Fig. 3. Comparison of average minimum SNR and computation time versus
for = 450 users when the user channels are drawn from an i.i.d. Gaussian

distribution.

a much wider linear operating region to avoid non-linearities in
themeasurement of the received signal power and average SNR.

V. SIMULATION RESULTS

A. Tx Has Perfect CSI
The average minimum SNR of the AU/MU and the MU-SLA

algorithms are compared with the SDR upper bound and other
state-of-the-art algorithms, namely SDR-G [1] ( randomiza-
tions)2, SLA [2], AM [3], LLI [5], QR algorithm [7] and the SB
algorithm [8]. For the AU algorithm, the step-size is selected to
satisfy the Lipschitz continuity condition. For Figs. 2–3 and 6–7,
the channel vectors are drawn from an i.i.d. distri-
bution. The codes are executed using CVX [19] as the mod-
eling language. The plots are obtained after averaging over 100
Monte-Carlo (MC) runs. For each run, the AU and theMU algo-
rithms are executed until or a maximum
of 1000 iterations, whichever comes first.

2We also tried randomizations in several test cases, and this made SDR-G
much slower without noticeably improving its performance. SDR-G does not
seem to work well when is large, something that was also noted in earlier
papers, e.g., [7].

Fig. 2 compares the average minimum SNR and the average
computation time3 (averaged over MC runs) of all the algo-
rithms versus the number of users for a fixed
transmit antennas. Fig. 3 compares the variation of the same
metrics with the number of transmit antennas for .
It can be seen that the MU-SLA algorithm attains the highest
minimum SNR among all the algorithms ( dB above SLA
for ); whereas the minimum SNR attained
by the MU/AU algorithm is close but inferior to the SLA algo-
rithm ( dB below SLA for ). It is also
interesting to note that the minimum SNR of the AU/MU algo-
rithm is slightly lower than the AM algorithm when is small,
but it outperforms the latter when ( dB above AM
for ).
The average computation time of the MU-SLA algorithm is

very close to the AU/MU algorithm ( s for ),
both of which are significantly less than the SLA, the SDR-G
( s) and the AM ( s) algorithms. The MU-SLA
algorithm outperforms the state-of-the-art by attaining the
highest minimum SNR at a computational complexity similar
to or much lower than all the high-performance algorithms. The
gap between the SDR upper bound and the average minimum
SNR achieved by the algorithms increases with ( dB
for to dB for
for the MU-SLA algorithm in Fig. 2 and dB for

to dB for for the
MU-SLA algorithm in Fig. 3). This is in concurrence with the
results on multicast capacity in [20]: it is difficult to attain a
high minimum SNR among the users as increases when the
channels are drawn from an i.i.d. zero-mean complex Gaussian
distribution.
Figs. 4 and 5 compare the average minimum SNR when the

channels are drawn from a Rician distribution for .
This simulation models a practical scenario, where the users
are clustered into multiple spatial groups in a given area (e.g.,
University campus), and the channel vectors of the users in a
group are correlated. For this simulation, the users are clustered
into spatial groups and the channel to every user is modelled
as follows:

, where and
are the line-of-sight channels (common to all

users in a group) from the Tx to the various clusters. If ,
then the common line-of-sight component dominates the chan-
nels of the users in group , thereby making them highly cor-
related. In Fig. 4, and

. Since , the correlation of user-channels in
a group is very high and the whole system can be approximated
as single Tx with antennas serving users (instead of ).
As expected, the variation in the average minimum SNR of

all the algorithms with is rather small, because is fixed.
Also, it can be seen from Fig. 4 that the gap between the average
minimum SNR for all the algorithms and the SDR bound is
much less than that in Fig. 2 (1.3 dB for and
1.5 dB for vs. 9 dB in Fig. 2 for SDR-G at

). For , all the algorithms perform close to optimal

3The computation time depends on software, hardware, coding quality and
other implementation issues. We used standard/author-supplied codes where
possible and carefully coded our implementations to ensure that the results are
fair and indicative of the relative complexity of the different algorithms.
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Fig. 4. Comparison of average minimum SNR versus for = 20 antennas
when channels to all users are drawn from amixture of (left) and
(right) Rician distributions.

Fig. 5. Comparison of average minimum SNR versus for = 20 antennas
when channels to all users are drawn from a mixture of Rician distri-
butions with (left) and (right).

SDR bound because the Tx has more degrees of freedom than
number of groups and the gap increases as increases
to 25 and .
In Fig. 5, the value of is fixed at 25 and .

In Fig. 5, the variation in the minimum SNR with respect to
increases as increases. As increases, the LOS compo-
nent becomes less dominant, the correlation between different
channels to users in a particular group decreases, and the perfor-
mance approaches the case where the channels to all the users
are drawn from an i.i.d. complex Gaussian distribution with zero
mean (in Fig. 2).
Fig. 6 compares the minimum average SNR and the average

computation time when are full-rank channel corre-
lation matrices. For each Monte-Carlo run,

, where the entries of are drawn from
an i.i.d. distribution. The QR algorithm is not used
for comparison because it is not applicable when the matrices

have rank . The SLA algorithm has been modi-
fied appropriately to work in this case (see Appendix D). It can
be seen that the minimum SNR attained by MU-SLA algorithm
is higher than all the other algorithms (0.5 dB above SLA at

Fig. 6. Comparison of average minimum SNR and computation time versus
for antennas, when are full rank.

Fig. 7. Comparison of minimum average SNR and computation time versus
for users, when channels to all users are drawn from an i.i.d. complex
Gaussian distribution.

) and the minimum SNR attained by the AU/MU algo-
rithm is lesser than the SLA algorithm (1.8 dB below SLA),
but still higher than SDR-G (for ) and AM for

. The average computation time for the MU-SLA and
the AU/MU algorithms ( at ) are order(s) of
magnitude lower than SDR-G , SLA and
AM .
In Fig. 7, we explore the SNR performance-computation time

tradeoff for the MU-SLA algorithm. For this simulation, the
MU algorithm is run for 25, 100 and 1000 iterations. The beam-
forming vectors at the end of these iterations are scaled as men-
tioned in Section III.C and used as initialization for one SLA it-
eration. The resultant beamforming vector direction is scaled to
the required transmit power. From Fig. 5, it can be seen that the
minimum SNR of the MU-SLA algorithm improves with more
iterations of the MU algorithm (e.g., at MU it-
erations with 1 SLA iteration attains dB higher minimum
SNR than 25 MU iterations with 1 SLA iteration). This means
that the SLA algorithm is quite sensitive to the quality of the
initialization. On the other hand, the average computation time
required for the MU-SLA algorithm increases with the number
of MU iterations. From the plots, the best tradeoff seems to be
the MU-SLA algorithm with 100 MU iterations and 1 SLA it-
eration, since its performance is dB below the MU-SLA
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Fig. 8. Average minimum SNR of CMU algorithm for .

Fig. 9. Average minimum SNR of CMU algorithm for .

algorithm with 1000 MU iterations and 1 SLA iteration, while
the average computation time is seconds at .

B. Tx has no Initial CSI
Figs. 8 and 9 compare theminimum average SNR of the CMU

algorithmwith that ofMU (perfect CSIT) for ( ),
and ( ) respectively. The value of is chosen
as , i.e., . We tried different values of
ranging from 0.01 to 100, and found that provided a

good tradeoff between exploration and exploitation (i.e., by the
time was very small, the Tx had just about acquired a good
estimate of the user-channels) for the values of and used
for the simulation results in Figs. 8 and 9. We note that should
be an increasing function of and , because the number of
unknowns grows like . For example, we tried and

and found that worked best in that case. For each
MC run, , where the en-
tries of are drawn from an i.i.d. distribution. The
dotted horizontal red line in each of the figures is the minimum
average SNR attained by the MU algorithm with perfect CSIT.
It can be seen from Figs. 8 and 9 that the performance of

the CMU algorithm with both threshold selection methods con-
verges to the performance attained with perfect CSIT. It is evi-
dent that the CMU with multiple threshold selection converges
faster than the common threshold selection ( vs. 450 time
slots when and vs. 4800 time slots
when ).

It is interesting to note that the common threshold method
is only times slower for and times slower
for than the multiple threshold method (the worst-case
scenario is times slower in the first case and

times slower in the second). As alluded to earlier, this is
due to the fact that the common threshold selection not only
reduces the uncertainty in the channel correlation matrix of the
user chosen via round-robin selection, but also decreases the
uncertainty of the other users as well, although not to the extent
accomplished by multiple threshold selection in every time slot.

VI. CONCLUSION
We considered the single group multicast network beam-

forming problem and proposed novel adaptive algorithms of
low complexity, namely the AU, MU and MU-SLA, that obtain
transmit beamforming vectors which attain a high minimum
SNR when the Tx has perfect CSI. The fixed point equation of
AU and MU was studied, and proof of convergence of the AU
algorithm to a KKT point of proportionally fair beamforming
was established. Extensive simulations were used to show
that the MU-SLA algorithm outperforms the prior state-of-art
(SLA) in terms of minimum SNR (and therefore multicast rate),
whereas the AU/MU algorithm attains minimum SNR close to
SLA, at far lower complexity.
When the Tx does not have any initial CSI and the receivers

have limited computational resources, an online CMU algo-
rithm based on ACCPM and appropriate threshold selection
techniques were proposed to enable the Tx to learn the channel
correlation matrices and design long-term transmit beam-
forming vectors simultaneously, using binary feedback from
every Rx. Asymptotic convergence of the CMU algorithm to
perfect-CSIT performance was established by invoking conver-
gence results for the ACCPM from convex optimization, and
verified in pertinent simulations. A variation of the common
threshold selection technique was proposed to eliminate the
threshold communication overhead at the cost of varying the
transmit power (and the associated difficulties this imposes on
power amplifiers). It was interesting to see that the convergence
rate of the common threshold selection technique was much
faster than the worst-case rate, thereby making it a strong
contender for multicasting scenarios with only limited on-line
feedback from the user terminals.
Last but not least, it is interesting to note that the proposed

algorithms appear to be useful in the context of wireless power
transfer—a concept that has gained traction recently, as a means
of charging electrical devices without using power cables [21].
In this regard, the problem of maximizing the total sum-power
harvested at all the receivers of a multi-user MISO system sub-
ject to a transmit power constraint was considered in [21]. The
authors approximated the non-convex optimization problem
using SDR and proved optimality of the SDR solution. Maxi-
mizing the sum-power harvested at all the receivers may lead
to non-uniform power harvesting across different receivers. A
‘fair’ alternative is to maximize the minimum power harvested
at every Rx subject to transmit power constraints. This latter
formulation is exactly same as , where is the transmit
beamforming vector, is the channel correlation matrix of the
th Rx and represents the average power harvested

at the th Rx. Therefore, the proposed algorithms can be used
verbatim for this application as well.
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APPENDIX A

Taking the scalar dot product with on both sides of (4)
and using the fact that , we get . It can be seen
from (4) that is a linear combination of and . Further-
more is also a fixed point of (4), (i.e., the
set of fixed points of (4) is closed under rotation). Consider one
such fixed point.

(18)

Using the closure property of the set of fixed points of (4), we
can also assume that without loss of generality.
Equating the right hand side of (4) and (18) after substituting
for from (18) and using the fact that , we get

(19)

Assuming that and are linearly independent, we can
equate their corresponding coefficients on both sides.

(20)
(21)

In (20), since , it is clear that . Substi-
tuting this value of in (20) and (21) and equating the corre-
sponding terms in the left hand side, we get

(22)

This implies . Using the fact that
and , from (20) and (22), we get

(23)

Now the characterization of the fixed point is complete. We
next compute the SNR at each of the receivers using this
transmit beamforming vector . The SNR at the th Rx is

.

(24)

Similarly

(25)

From (24) and (25), the minimum SNR among the receivers
and the associated multicast rate are given by

(26)

APPENDIX B

The gradient of at is given by

(27)

Now suppose that a projected gradient update algorithm is used
for finding the local maxima of the constrained non-concave
maximization problem , where the update step at iteration

is given by
is the projection of the argument onto

the set and is a positive step size
(same as in (6)). It can be seen that in (9) is the optimal
projection of the gradient update onto the unit ball .
Furthermore, it can be shown that
• is Lipschitz continuous in with a Lipschitz con-
stant ; See Appendix C.

•
; See Appendix C.

Using the convergence results for the projected gradient method
in ([22], Chapter 2, p. 240), it can now be shown that iter-
ates of the AU algorithm in (6) converge to a Karush-Kuhn-
Tucker(KKT) point of if .

APPENDIX C

(28)

where , and we have used that ,
and . From (28), it can
be seen that can be universally bounded over the fea-
sible region. Furthermore it can also be seen that is con-
tinuously differentiable. Hence, is Lipschitz continuous
in . Finally, is a linear combination of two Lip-
schitz continuous functions i.e., and . There-
fore, is also Lipschitz continuous.
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APPENDIX D

When the matrices have rank
, the optimization problem in [2] is given by and the th

SLA iteration is the solution of .
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