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Abstract—One-dimensional (1-D) and two-dimensional (2-D)
frequency estimation for a single complex sinusoid in white
Gaussian noise is a classic signal processing problem with nu-
merous applications. It is revisited here through a new unitary
principal-singular-vector utilization modal analysis (PUMA)
approach, which is realized in terms of real-valued computations.
The 2-D unitary PUMA is first formulated as an iteratively
weighted least squares optimization problem. Recognizing that
only one iteration is sufficient when 2-D unitary PUMA is initial-
ized using least squares, a computationally attractive closed-form
solution is then obtained. A variant of 2-D unitary PUMA is also
developed for the 1-D case. Due to the real-valued computations
and closed-form expression for the frequency estimate, the uni-
tary PUMA is more computationally efficient than a number of
state-of-the-art methods. Furthermore, the asymptotic variances
of 1-D and 2-D unitary PUMA estimators are theoretically de-
rived, and numerical results are included to demonstrate the
effectiveness of the proposed methods.

Index Terms—Complex sinusoid, frequency estimation, sub-
space method, weighted least squares.

I. INTRODUCTION

F REQUENCY estimation for a single complex sinusoid
in additive white Gaussian noise is a fundamental and

well-studied problem in science and engineering. In many ap-
plications, such as wireless communications [1], synthetic aper-
ture radar imaging [2], [3], source localization in radar and sonar
systems [4]–[6], and software radio receivers [7], fast and accu-
rate frequency estimation is crucial for proper system operation.
Numerous methods have been developed for single-tone fre-

quency estimation, attaining different trade-offs between esti-
mation accuracy and computational complexity. Among them,
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maximum likelihood (ML) methods [8]–[10] are best (at least in
theory) from an accuracy point of view, since their mean square
error (MSE) performance attains the Cramér-Rao bound (CRB)
under certain conditions, i.e., for a wide signal-to-noise ratio
(SNR) range. The main drawback of theML approach is its high
computational complexity, as it entails solving a nonlinear and
nonconvex optimization problem. To overcome this issue, sub-
optimal algorithms such as the iterative quadratic ML (IQML)
[11], linear prediction (LP) [12], [13] and Pisarenko harmonic
decomposer (PHD) based methods [14]–[17] were proposed to
reduce the complexity. Since the IQML requires an iterative op-
timization procedure while the LP based methods usually yield
closed-form formulas for frequency estimation, the former is
much more computationally intensive than the latter. The PHD
algorithm for single-tone frequency estimation [14] can be de-
rived in a simpler manner using the sample autocorrelation at
lags 1 and 2 [18]. However, the PHD is statistically inefficient,
as its MSE departs from the CRB especially for large sample
sizes [19]. Improved PHD based estimators [15]–[17] have been
proposed to alleviate this inefficiency, but these require addi-
tional computations. In [20], a Markov estimator (ME) that uti-
lizes a sample correlation sequence with length to estimate the
frequency has been proposed. However, it relies on the assump-
tion of known SNR, which is often not available in practice.
Furthermore, a large is needed for high estimation accuracy,
but this also implies higher computational complexity.
Recently, an accurate and low-complexity algorithm

called principal-singular-vector utilization for modal analysis
(PUMA) has been proposed for one-dimensional (1-D) and
two-dimensional (2-D) frequency estimation of a single-tone
[21], [22]. The main idea of the PUMA algorithm is to use
the rank-1 property of the noisy data matrix, and then em-
ploy the LP and weighted least squares (WLS) techniques to
perform parameter estimation. For 1-D frequency estimation,
the PUMA scheme first rearranges the data samples into a
suitable matrix, and then uses a similar procedure
as the 2-D PUMA method [22] to find the frequency. How-
ever, the PUMA algorithm estimates the signal parameters
in an iterative manner. Furthermore, it is realized in terms of
complex-valued operations. Iterations and complex-valued
processing increase the computational complexity, especially
for hardware implementation. To alleviate the computational
load, we propose a version referred to as unitary PUMA, which
is more computationally attractive since only real-valued cal-
culations are involved and only one iteration is required. As a
bonus, unitary PUMA improves the threshold performance of
frequency estimation, as we will see.

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



QIAN et al.: UNITARY PUMA ALGORITHM FOR ESTIMATING THE FREQUENCY OF A COMPLEX SINUSOID 5359

The rest of this paper is organized as follows. We introduce
the signal model for 2-D complex sinusoidal frequency estima-
tion in Section II, and derive the new 2-D unitary PUMA algo-
rithm in Section III. The main idea is to exploit the centro-sym-
metric property of the data model. We first construct a centro-
Hermitian data matrix and then utilize a unitary transforma-
tion to convert the complex data matrix into real-valued form.
Thus, all the calculations including the singular value decom-
position (SVD) of the 2-D unitary PUMA scheme only involve
real-valued operations. As a result, its computational burden can
be reduced. We then employ the WLS technique to estimate the
frequencies. In Section IV, we analyze the theoretical perfor-
mance of the 2-D unitary PUMAmethod and derive its MSE ex-
pressions. In Section V, we explain how the 2-D unitary PUMA
method can be exploited for 1-D frequency estimation. The re-
sulting 1-D unitary PUMA algorithm is also accompanied by
theoretical performance analysis. In Section VI, we present sim-
ulation results to assess the performance of 2-D and 1-D unitary
PUMA, and validate our theoretical performance analysis. We
summarize our findings and conclusions in Section VII.

Notation
Throughout the paper, we use boldface lowercase letters for

vectors and boldface uppercase letters for matrices. Superscripts
, , , and represent transpose, complex

conjugate, Hermitian transpose, matrix inverse and pseudo in-
verse, respectively. The denotes an estimate of , is the
expectation operator and is the diagonal matrix oper-
ator. The is the entry of , is the 1 zero
vector, is the 1 vector of all ones, is the iden-
tity matrix, and is the exchange matrix with ones on
its anti-diagonal and zeros elsewhere.

II. PROBLEM FORMULATION

A. Data Model
The observed 2-D data model is

(1)

where denotes the noise matrix and
denotes the signal component with elements:

(2)

We assume that is white Gaussian noise with mean zero
and variance , is the complex amplitude, and
and are the frequency parameters. Varying from
1 to and from 1 to yields the matrix form of as

(3)

where

(4)
(5)

Let the SVD of be

(6)

where with ,
and . Due to the

rank-1 property of , it can be expressed using its SVD as

(7)

and approximated by taking the SVD of as

(8)

where is the largest singular value of , and and
are the corresponding left and right singular vectors, respec-
tively. Note that, in the noiseless case, it is shown in [22] that

, and
where and are unknown parameters.

B. Unitary Transformation
Let us introduce the definition of a centro-Hermitian matrix

[27]:
Definition 1: An complex matrix is called centro-

Hermitian if .
It is shown in [27]–[30] that for an arbitrary matrix

, is always centro-Hermitian. Thus, we
can transform the complex matrix into its real-valued coun-
terpart by using

(9)

where , denotes the unitary transforma-
tion, and

.
(10)

III. 2-D UNITARY PUMA
The conventional 2-D PUMA algorithm [22] exploits the

WLS to estimate using an iterative procedure. This typically
requires at least three iterations to converge, and all calculations
are complex-valued. As a result, the 2-D PUMA algorithm
can still be computationally intensive, especially when and

are large. To overcome these shortcomings, we propose a
2-D unitary variant which is realized in terms of real-valued
operations. Moreover, by properly choosing an initial value, the
suggested approach is able to avoid the iterative optimization
and provide a closed-form solution.
Let and decompose using SVD as

(11)

where , contains the singular values and

(12)
(13)

Define two selection matrices as

(14)
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(15)

Employing the shift invariance property and assuming that the
noise perturbation is small relative to the signal power, we have

(16)

It is easy to verify that

(17)

Let and be the real and imaginary parts of
, respectively. Then, (16) can be rewritten as

(18)

After some straightforward manipulations, we obtain

(19)

where , and
.

Adopting the WLS approach, (19) leads to

(20)

where is the optimal weightingmatrix that is defined through
the Gauss-Markov theorem [20], [22], [28], [29]:

(21)

with

(22)

The solution to this unconstrained optimization problem is

(23)

Substituting into (21) yields

(24)

It is shown in [22], [31], [32] that1

(25)

where is the largest singular value of . Substituting
(25) into (24), using and ignoring the con-
stant term , we have

(26)

1Equation (25) is directly computed from Lemma 1 of [32], albeit it looks a
bit different from that in [32] because is the singular value of which
is actually a forward-backward averaging matrix. It is easy to follow [32] to
verify that the singular values of are the same as those of ,
whereas the singular values of are times the eigenvalues in
. Using these tips, the reader can obtain (25).

TABLE I
2-D UNITARY PUMA ALGORITHM.

Since is unknown, we can perform the estimation in a re-
laxation manner. It follows from (19) that we can use the least
squares (LS) estimate of as an initial estimate, i.e.,

(27)

where for sufficiently high SNR (See
Appendix A). Substituting (27) into (26) leads to

(28)

where

(29)

Recalling that , the estimate of is then com-
puted as

(30)

The next step is to estimate . Let and its SVD
be

(31)

where holds the singular values and

(32)
(33)

Applying the same idea for estimating and according to
(20)–(30), it is easy to obtain the closed-form expression of :

(34)

where

(35)
(36)
(37)
(38)

Here, where and
, and are the real and imaginary parts of

, respectively, and . The
steps for the 2-D unitary PUMA algorithm are summarized in
Table I.
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Remark 1: Note that following [22], can be refined via an
iterative step, i.e.,

i) Initialize using in (27);
ii) Construct using (26);
iii) Calculate via (23);
iv) Compute by substituting into (22);
v) Repeat ii) to iv) until a stopping criterion is reached.

However, simulation results in Section VI demonstrate that
when compared to the unitary PUMA scheme with one iteration,
there is almost no performance improvement for the unitary
PUMA with additional iterations. Moreover, we have shown
in Appendix A that converges to the true with SNR
approaching infinity, which in turn indicates that the initial
estimate of is sufficiently accurate to reach the point of
diminishing returns in the WLS estimate of in one iteration.
As a result, only one iteration is enough for the unitary PUMA
to achieve a significant performance improvement in terms of
estimation accuracy, such that the closed-form expressions in
(30) and (34) can be used for frequency estimation.
Remark 2: The implementation of the 2-D unitary PUMA

algorithm requires two major steps:
i) SVD of and ;
ii) Calculation of and .

The total flops to calculate the SVD of and
are approximately where a flop is de-
fined as a real floating-point multiplication. The computations
of and take about flops.
Therefore, the 2-D unitary PUMA scheme requires about

where the computations
needed in the remaining steps are negligible2.

IV. PERFORMANCE ANALYSIS

In this section, we study the statistical properties of the pro-
posed 2-D unitary PUMA method for large SNR regime. First,
it is not difficult to obtain the following result on the consistency
of the 2-D unitary PUMA estimates.
Lemma 1: As SNR tends to infinity, the frequency estimate
obtained by (30) approaches the true parameter w.p. 1.
Proof: This lemma can be proved in a similar manner as

[25] and [26]. The cost function in (20) achieves the minimum
if and only if is the true parameter, and thus approaches the
true value of w.p. 1 as .
The asymptotic variance of the proposed method is given in

the following proposition.
Proposition 1: The asymptotic variance of as

is given by

(39)

and the asymptotic variance of is likewise given by

(40)

Proof: See Appendix B.

2Since the unitary PUMA algorithm only needs the principal eigenvectors of
the data matrix in both 1-D and 2-D cases, its computational complexity can be
further reduced if we employ the power method [35] to calculate the principal
eigenvectors. That is, the complexity order is .

It is often interesting to compare the variance of an estimator
with the CRB. It is shown in Appendix C that (39) and (40) are
equivalent to the following simplified expressions

(41)

(42)

which are identical to the CRB [11], [22].

V. REFORMULATION OF 2-D UNITARY PUMA FOR 1-D CASE

A. Data Model
The 1-D signal model is

(43)

where

(44)

with being the complex amplitude and being the frequency,
is the additive white Gaussian noise with mean zero and vari-

ance , and is the number of samples.

B. 1-D Unitary PUMA Algorithm
Let us choose the first samples from the

data sequence and arrange them into an data matrix:

...
...

...

(45)

where and share the same structure as and are con-
structed by and , respectively. Indeed, can be expressed
as the product of two Vandermonde vectors, i.e.,

(46)

with and

(47)
(48)

From shift invariance, we have

(49)

where and .
From (46), is a rank-1 matrix, in the high SNR regime, it
can be approximated as

(50)

where is the largest singular value of while and
are the corresponding left and right singular vectors, re-

spectively. It follows from (49) that

(51)
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Therefore, we can employ Step 1 to Step 3 in Table I to deter-
mine an estimate of (in place of ). However, is not
necessarily a reliable estimate, especially in low SNR scenarios,
since the information in the row space of , i.e., , has
not been utilized. To address this issue, we first find from the
row space of and then compute another frequency estimate

from . Finally, combining and leads to the final es-
timate of .
To reduce the computational complexity and improve accu-

racy, we use the unitary transformation to generate a unitary
matrix counterpart of , i.e., . According to
(20)–(29), by solving a similar WLS problem as (20) and uti-
lizing the initialization in (27), we obtain the estimate of as

(52)

where ,
with being the eigenvector corresponding to the largest
eigenvalue of , and has the same
definition as . Moreover, and are the real and
imaginary parts of , respectively, and

(53)

After obtaining , we cannot simply estimate via , be-
cause where . In other
words, there are possible candidates for . We
first calculate these candidates for using

(54)

Then, we compute the absolute error between and and
choose , where index is obtained from [21]

(55)

and

(56)

The two estimates and are finally combined to form the
final estimate , as explained next.

C. Performance Analysis of 1-D Unitary PUMA Algorithm

According to Appendix C, the asymptotic variances of
and are

(57)

(58)

Therefore, the final estimate of is calculated as [21]

(59)

The asymptotic variance of is

(60)

D. Determining and

It worth noting that the CRB for is [8]

(61)

Comparing (60) and (61), we find that when , the
asymptotic variance of is the same as the CRB. However, if

, (60) is larger than the CRB. Meanwhile, we should
point out that the computational complexity of the 1-D unitary
PUMA algorithm is flops, so
different combinations of and entail different flop counts.
Thus, how to determine appropriate values for and be-
comes an interesting problem, as computational complexity in-
evitably comes into play in practical applications.
Let where . The computational complexity of

1-D unitary PUMA scheme is almost the same as that of the 2-D
unitary PUMA. Substituting into

leads to

(62)

It is not difficult to find that the minimum of is achieved
if and only if , which indicates that among all the combi-
nations, is the best choice to achieve optimal
performance with the lowest computational burden. This choice
is also helpful from an accuracy point of view, as will be verified
in our simulations – note that whereas asymptotic variance (in
the high SNR regime) only depends on the product of and
and SNR, in the low SNR regime we want large and large
for higher accuracy.
In some cases, and might not satisfy . If

is a prime number, then and yields
which maximizes the usage of samples. Al-

though this combination has the smallest variance, it is not ap-
propriate for real applications because it is the most computa-
tionally demanding one. From our simulations, we also find that

has the worst threshold performance
due to the fact that the degree of freedom for is only one. As
a result, it is more appropriate to delete more samples to enable
using , so that a better trade-off between estimation ac-
curacy and complexity can be attained.

VI. NUMERICAL RESULTS

Numerical experiments have been carried out to evaluate the
performance of the unitary PUMA algorithm in the presence of
additive white Gaussian noise. All results provided are averages
over 500 independent runs using a computer with 2.6 GHz dual-
core Intel i5 processor and 8 GB RAM.
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Fig. 1. MSE of versus SNR. ( , and ).

Fig. 2. MSE of versus SNR. ( , and ).

A. 2-D Frequency Estimation
The 2-D unitary PUMA algorithm is compared with the

IQML [11], 2-D PUMA [22], ESPRIT [24], multi-dimensional
folding algorithm (MDF) [33], 2-D rank reduction estimator
(2-D RARE) [34], and the CRB [11]. For the ESPRIT al-
gorithm, we use a Hankel
block-Hankel matrix constructed from the data matrix
for parameter estimation (the best possible setting for ESPRIT
[24]). The theoretical asymptotic variance of the proposed
estimator is also included to validate our performance analysis.
In the first example, we consider a complex tone where the

signal parameters are , ,
and . To demonstrate the effectiveness of the uni-
tary PUMA with closed-form expressions, we include a three
iterations based unitary PUMA for comparison. The MSEs
of and as a function of SNR are shown in Figs. 1 and 2,
respectively. We observe that the proposed method is clearly
advantageous compared to its counterparts. With increasing
SNR, all MSEs of the 2-D unitary PUMA, 2-D PUMA, IQML

Fig. 3. MSE of versus SNR. ( , and ).

Fig. 4. MSE of versus SNR. ( , and ).

and 2-D RARE algorithms attain the CRB, while the ESPRIT
and MDF methods (which are designed to handle multiple
tones) are always suboptimal throughout the whole SNR range.
This is mainly because both ESPRIT and MDF utilize the
LS method to solve a rotational invariance equation (RIE).
However, both sides of the RIE contain noise which is highly
correlated, and this makes LS inappropriate. Furthermore,
the computation times of 2-D unitary PUMA, 2-D unitary
PUMA with 3 iterations, 2-D PUMA, ESPRIT, IQML, MDF
and 2-D RARE algorithms are 6.57 , 1.05 ,
2.14 , 7.59 , 2.52 , 7.27 and
7.45 , respectively. Note that the unitary PUMA with
three iterations has no performance improvement compared to
the unitary PUMA with one iteration while the computational
time of the former is about 1.6 times larger than the latter.
Figs. 3 and 4 provide a comparison for small data size, i.e.,

, while the other parameters are the same as those in
the first example. In this situation, it is seen that the proposed
method has the highest estimation accuracy and outperforms
the 2-D PUMA scheme when . This is due to the
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Fig. 5. MSE of versus SNR. ( , and ).

forward-backward averaging technique used to construct
and . The theoretical MSEs of the proposed method align
well with the CRB.

B. 1-D Frequency Estimation

We now evaluate the performance of the 1-D unitary PUMA
algorithm. TheMSEs of theML [8], generalized weighted linear
predictor (GWLP) [13], ME [20], 1-D PUMA [21] and phase-
based ML (PHASEML) [23] schemes as well as the CRB [8]
are included for comparison. Here, we consider a complex ex-
ponential with and . The number of samples is

. We choose for the 1-D PUMA and 1-D
unitary PUMA algorithms. For theME, we assume that the SNR
is known and the sample sequence length is . It is ob-
served in Fig. 5 that the proposed method has the smallest MSE
in extremely low SNR regime, i.e., . However,
as SNR increases, the ML scheme outperforms the 1-D unitary
PUMA and achieves the best threshold performance. On the
other hand, the PHASEMLmethod is suboptimal and it does not
attain the CRB until because errors can be accu-
mulated in the phase unwrapping step if SNR is not large enough
[23]. Besides comparing MSE performance, we note that the
computation times of the 1-D unitary PUMA, ML, GWLP, ME,
1-D PUMA and PHASEML estimators are 5.96 , 1.49

, 9.29 ,, 1.18 , 1.13 and 7.53
, respectively. It is obvious that the 1-D unitary PUMA

scheme is the fastest, while 1-D PUMA and ML require twice
the time or more in this case.
Next, let us examine the performance of the 1-D unitary

PUMA algorithm for different combinations of and . We
vary from 2 to 32 such that the corresponding is changed
from 512 to 32. All combinations satisfy and
the other parameters are the same as those in Fig. 5, except that

. We observe from Fig. 6 that the threshold perfor-
mance is significantly affected by the choice of and , but
asymptotic performance is not, as expected from our analysis.
The combination yields the best threshold
performance, while result in

Fig. 6. MSE of versus SNR. ( , and ).

TABLE II
CPU TIME OF 1-D UNITARY PUMA FOR .

Fig. 7. MSE of versus SNR. ( , and ).

the worst performance. Together with the CPU times shown in
Table II, we can observe that corresponds to
the smallest computation time and best threshold performance.
This in turn verifies the correctness of our theoretical analysis
in Section V-D.
Fig. 7 demonstrates the effectiveness of the 1-D PUMA

method for some special cases where we cannot find and
satisfying . In this test, we set such that is
now a prime number and there does not exist .
Therefore, we need to delete some samples and choose .
We consider four different settings of and for comparison,
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TABLE III
CPU TIME OF 1-D UNITARY PUMA FOR .

i.e., .
For , we only delete one
sample while for the other three combinations, we delete
seven samples. It is noticeable that the MSEs of all the com-
binations are larger than the CRB because they do not utilize
the whole data. It is seen in Fig. 7 that the performance of

is inferior to the other three
combinations when . This is because the estimate
of is not reliable in this case, which may lead us to pick a
bad . We conclude that if the difference between and
is not too large, the 1-D unitary PUMA estimator can provide
better threshold performance. Among all the combinations, we
conclude that is the best choice since it has
a good threshold performance but also the lowest complexity,
as shown in Table III.

VII. CONCLUSION

Unitary versions of 2-D and 1-D PUMA frequency estima-
tors have been devised here, along with asymptotic performance
analysis leading to closed-form MSE expressions in the high
SNR regime. Unitary PUMA techniques provide the same esti-
mation accuracy as their conventional counterparts in the high
SNR regime, but the threshold performance of unitary PUMA is
significantly better. Furthermore, unitary PUMA entails lower
complexity, requiring only real-valued computations. Computer
simulations confirm our theoretical derivations, indicating that
unitary PUMA approach outperforms many other single-tone
frequency estimators in the 2-D case. In the 1-D case, ML fre-
quency estimation features better threshold performance, but the
1-D unitary PUMA can be computationally simpler, and it ap-
pears to have an edge in the very low SNR regime – where there
is no guarantee that ML will work well.

APPENDIX A
PROOF OF

Expressing , and
, it follows from (19) that

(63)

Since , by neglecting , (63) is simpli-
fied as

(64)

Thus, we obtain

(65)

According to [31], [32] that, for sufficiently high SNR, is
jointly Gaussian distributed with mean ero, namely,

(66)

Taking the expectation at both sides of (65) and using (66) yield

(67)

which implies that at high SNR,

(68)

APPENDIX B
PROOF OF PROPOSITION 1

As the quantity of interest is , we take the first-order deriva-
tive of as

(69)

Thus, the variance of becomes

(70)

It is seen in (70) that to calculate the variance of , we first need
to determine the variance of .
The is obtained by minimizing

(71)

It is shown in Lemma 1 that is an unbiased estimate. Thus, for
sufficiently high SNR, we are able to approximate the derivative
of using the first- and second-order terms in its Taylor
series expansion about the true value as

(72)

The first- and second-order derivatives of with respect
to can be simplified as

(73)

(74)

From (72) to (74), the variance of becomes [36]

(75)

where

(76)
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Substituting (25) into (75) and using again,
(75) is reduced to

(77)

Substituting (77) into (70) results in the variance of , i.e.,

(78)

After a similar derivation, it is easy to obtain the variance of
as

(79)

This completes the proof of Proposition 1.

APPENDIX C
PROOFS OF (41) AND (42)

Since and are the real and imaginary parts of
, according to (17), they can be rewritten as

(80)

(81)

Substituting (80) and (81) into (22), we obtain

(82)

Using

(83)

Expression (82) can be written as

(84)

We then have

(85)

In order to proceed, we set
which can be further expressed as

(86)

where with its inverse being

(87)

By using (87), the inverse of becomes

(88)

Let us now determine . To begin with,
and its transpose are calculated as

(89)

(90)

Combining (88)–(90) yields

(91)

where and . It should be
noted that

(92)

(93)

As a result, (91) is simplified as

(94)

We are now in position to calculate , which is used to fur-
ther simplify (95). After some matrix operations, we obtain

...
...

...
...

(95)
which indicates that is a symmetric matrix and its
entry is defined as

.
(96)

Since is symmetric, to determine the value of
, we just need to calculate the trace and sum

of the entries in the lower triangular part of . First, the sum
of the entries in its lower triangular part can be computed as

(97)
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Then the trace of is

(98)

Now (94) becomes

(99)

Substituting (99) into (78) leads to

(100)

which is the CRB [11]. It is worth mentioning that in the last
equality of (100) we use ,

, and . Equation (42) fol-
lows in the same way, or by simply appealing to symmetry.
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