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Abstract—Spectrum sensing for cognitive radio has focused on
detection and estimation of aggregate spectra, without regard for
latent component identification. Unraveling the constituent power
spectra and the locations of ambient transmitters can be viewed as
the next step towards situational awareness, which can facilitate ef-
ficient opportunistic transmission and interference avoidance. This
paper focuses on power spectra separation andmultiple emitter lo-
calization using a network of multi-antenna receivers. A PARAllel
FACtor analysis (PARAFAC)-based framework is proposed, which
offers an array of attractive features, including identifiability guar-
antees, ability to work with asynchronous receivers, and low com-
munication overhead. Dealing with corrupt receiver reports due
to shadowing or jamming can be a practically important concern
in this context, and addressing it requires new theory and algo-
rithms. A robust PARAFAC formulation and a corresponding fac-
torization algorithm are proposed for this purpose, and identifia-
bility of the latent factors is theoretically established for this more
challenging setup. In addition to pertinent simulations, real exper-
iments with a software radio prototype are used to demonstrate the
effectiveness of the proposed approach.
Index Terms—Spectrum estimation, spectra separation, emitter

localization, tensor factorization, nonnegativity, robust estimation,
cognitive radio.

I. INTRODUCTION

C OGNITIVE radio can help resolve the problem of spec-
trum scarcity, by exploring and judiciously exploiting

transmission opportunities in space, time, and frequency.
Spectrum sensing is the first step towards this end, enabling
secondary spectrum reuse while limiting collisions and persis-
tent interference to licensed users [2], [3].
There is rich literature on spectrum sensing viewed as a set

of parallel detection problems, one per frequency bin; see [4]
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for a recent tutorial. Wideband spectrum sensing generally re-
quires high sampling rates, implying expensive analog-to-dig-
ital converters (ADCs) that consume considerable amount of
energy and can hardly fit in portable devices. Exploiting fre-
quency-domain sparsity, compressive spectrum sensing can ob-
tain accurate spectrum estimates at sub-Nyquist sampling rates,
without frequency sweeping [5]. Cooperative spectrum sensing
schemes that use compressive sensing have been considered in
[6], [7], where the spectrum is estimated locally, then consensus
on globally fused sensing outcomes is reached.
Whereas most work on spectrum sensing (e.g., [4]–[7]) has

focused on reconstructing the signal’s Fourier spectrum (i.e.,
the Fourier transform of the signal itself), in cognitive radio
and certain other applications only the power spectrum (PS)
(i.e., the Fourier transform of the signal’s autocorrelation) is
needed—there is no reason to reconstruct or demodulate the
time-domain signal itself [8]–[10]. It was shown in [9] that the
sampling rate requirements can be considerably relaxed by ex-
ploiting a low-order correlation model, without even requiring
spectrum sparsity. The main idea in this line of work is that
power measurements are linear in the autocorrelation function,
hence a finite number of autocorrelation lags can be estimated
by building an over-determined system of linear equations.
This autocorrelation-based parametrization also underpins
recent work in so-called frugal sensing [11]–[13], dealing with
power spectrum estimation from 1-bit measurements.
Since the ambient radio frequency (RF) spectrum varies in

space and with time, spectrum sensing is only the first step to-
wards situational awareness—mapping out the RF environment
to enable highly efficient reuse in space and time by unrav-
eling the transmitted power spectra and locations of active emit-
ters within range, including possibly misbehaving users or jam-
mers. While a lot effort has been invested in spectrum sensing,
including distributed and collaborative detection methods and
their performance analysis, very limited progress has been made
to date towards bringing RF cognition to the next stage. This
paper takes a step in this direction: it tackles the problem of sep-
arating the underlying power spectra and localizing the trans-
mitters from measured power spectra mixtures. Knowing the
individual power spectrum and the location of each transmitter
is useful for a number of reasons. For instance, combining the
power spectra ‘atoms’ with location information allows intel-
ligent beamforming (see Fig. 1 for an example) and more re-
alistic spatial power spectrum interpolation. Transmitter power
spectra and locations are also valuable from a network security
point of view, as this information can be used to authenticate le-
gitimate users and to detect intruders and jammers. Unraveling
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Fig. 1. Motivation for spectra separation and transmitter localization. Primary
user 1 (PU1) is engaged in two-way communication with another node (not
shown) using the same set of frequencies to receive and transmit in time-divi-
sion duplex (TDD) mode. PU2 is likewise communicating with another node
(not shown). (a) Using aggregate spectrum sensing, the cognitive radio units
(CRU) see the band of interest fully occupied. Since PU2 and CR receivers are
co-located, beamforming cannot be used for spatial interference avoidance. (b)
If the individual PU power spectra and node locations can be estimated, on the
other hand, the CR transmitter can modulate its signal in the band occupied by
PU1 and beamform towards the CR receiver/PU2.

the measured spectra into their constituent components is there-
fore well-motivated, but also challenging—primarily because it
falls under the ‘blind’ signal processing and separation regime.
To the best of our knowledge, the only work that has ex-

plicitly considered the problem of separating the transmitted
spectra from multiple received spectral mixtures is [14]; there,
the problem is formulated, and then treated, as non-negative
matrix factorization (NMF) problem. This is an interesting
point of view, however NMF is not unique in general, hence
one cannot guarantee identifiability of the latent spectra this
way—unless they happen to be few, sparse, and ‘random’, and
identification conditions are hard to check. Another difficulty
is that NMF does not admit a simple algebraic solution, even
under relatively ideal conditions. Another related piece of work
is spectrum cartography [15], [16], which aims to predict the
ambient spectrum at any point in space, based on a limited
set of measurements taken at different points in space. The
authors of [15], [16] proposed using suitable basis expansion
and dictionary learning (DL) models to interpolate the entire
space-frequency function from the available measurements.
Presumably, if one interpolates the spectrum at a point where
a transmitter is actually present, one would ideally hope to
recover that transmitter’s spectrum. Such an approach is not
geared for latent spectra identification, however, as the setup is
under-determined. The objective of [15], [16] is to approximate
spectral mixtures at different points in space, using a basis ex-
pansion model and a DL parametrization (which is not unique).
Contributions: The first contribution of this paper lies in
formulating the joint power spectra separation and multiple
emitter localization problem as a PARAllel FACtor analysis
(PARAFAC) problem in the temporal correlation domain,
under the classic autocorrelation-based parametrization of
power spectrum analysis. Through this formulation, the identi-
fiability of both the power spectrum and the direction-of-arrival

(DOA) of each transmitter can be guaranteed, as the loading
factors of the PARAFAC model are unique (up to scaling and
column-permutation ambiguities) under certain fairly mild
conditions. The specific PARAFAC model that is proposed
here involves two real non-negative loading matrices, corre-
sponding to the sought power spectra and path losses, and a
constant-modulus complex one associated with DOAs. This
structure can be exploited in iterative model-fitting algorithms
to improve estimation performance in difficult scenarios.
Moreover, the proposed formulation does not require synchro-
nization among the receivers, which can save considerable
amounts of signaling overhead in practice.
The second major contribution addresses a practically

important concern: handling corrupt receiver reports due to
shadowing, jamming, or sensor failure. Systematically cor-
rupted data represent a serious challenge for any method, and
addressing it in our present context requires new theory and al-
gorithms. A robust PARAFAC formulation and a corresponding
factorization algorithm are proposed for this purpose. The
proposed robust formulation aims at joint latent factor identi-
fication and corrupt receiver (report) detection. Identifiability
of the latent factors is theoretically established for this more
challenging setup. An attractive feature of the proposed robust
factorization algorithm is that it is easily implementable. Judi-
cious simulations as well as real experiments with a software
radio prototype using Universal Software Radio Peripheral
(USRP) radios by Ettus Research (http://www.ettus.com) are
used to demonstrate the effectiveness of the proposed approach.
Both the simulations and the laboratory experiment show that
the proposed approach is promising in dealing with the problem
of interest.
A preliminary version of part of this work was presented at

ICASSP 2014 [1]. The ICASSP 2014 paper only considered a
special case (corresponding to ESPRIT, rather than full-fledged
PARAFAC), and did not include the robust formulation. This
journal version brings in a more general and flexible problem
setup, including the robust formulation and associated identi-
fiability proof and algorithm, extensive simulations, plus lab-
oratory experiments. A related but distinct approach was con-
sidered in [17]. There, we considered latent spectra identifi-
cation for the case of synchronized but spatially uncalibrated
single-antenna receivers, which is different from the setup here
and in [1].
Notation: and denote transpose, Hermitian trans-

pose and conjugate, respectively; denotes the Moore-Penrose
pseudoinverse; , and represent the Kronecker product,
the Khatri-Rao product, and the Hadamard product, respec-
tively; and are the matrix rank and Kruskal
rank, respectively; and represent the -th row
and the -th column of matrix , respectively; de-
notes the submatrix of consisting of the rows indexed
by and denote the vector -norm
and the matrix Frobenius norm, respectively; de-
notes a columnwise zero-norm which counts the number of
non-zero columns of denotes the operator that
concatenates the columns of such that

denotes a diag-
onal matrix with as its diagonal elements;
denotes the range space of .
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II. BASIC SETUP AND SIGNAL MODEL

Consider a scenario where there are primary or secondary
transmitters (or, sources for brevity) in the far field of a network
of cognitive radio receivers (sensors), each equipped with
receive antennas and down-conversion chains. Let ,
for , denote the -th transmitted signal. We assume
that is wide-sense stationary (WSS) for ,
and its bandwidth is relatively narrow compared to its carrier
frequency so that a flat fading channel model can be adopted
(e.g., typically, a signal with less than 20 MHz bandwidth in
the 2–5 GHz band can be considered as narrowband; otherwise
we may apply our approach to sub-bands using a bank of band-
pass filters). We also assume line-of-sight (LOS) propagation,
which is a reasonable model in several scenarios of practical
interest—see [18] for an overview of propagation models in
cognitive radio. Beyond cognitive radio, spectra separation and
emitter localization is of interest in airborne search-and-rescue,
law enforcement, and military operations, where surveillance
receivers are mounted on airplanes or drones with a clear LOS to
the ground. We further assume that the array baselines of the re-
ceivers are aligned, e.g., using a compass, so that the source sig-
nals impinge from the same directions on all receivers. This con-
figuration is illustrated in Fig. 2. We assume that the down-con-
version chains at each receiver have been synchronized—this
can be easily done locally at each receiver. The received signals
at the th receiver can then be expressed as

(1)

where
denotes the vector of transmitted

signals, denotes the
corresponding noise vector, is a
diagonal matrix whose th diagonal element contains
the path loss and phase shift from transmitter to receiver ,
and is a matrix which is generally related to
the geometry of the antenna placement and the DOAs of the
received wavefronts at sensor ; e.g., assuming that a uniform
linear array (ULA) is employed at each receiver,

...
...

...

where is the DOA of
source that is the same at different sensors under the aligned
baselines model, is the wavelength corresponding to the car-
rier frequency, and denotes the distance between neighboring
receive antennas. Notice that by aligning the receiver baselines,

are identical (cf. Fig. 2). Under the signal model
(1), our objective is to estimate and the power
spectra of simultaneously.
In practice, there will be small propagation delay differences

depending on the particular transmitter and receiver considered.
Thus, to be more accurate, should be replaced by

in the above equation. How-
ever, the effect of will disappear when we cross-correlate
the outputs of any given receiver, by virtue of WSS and the fact

Fig. 2. Illustration of the scenario. The sensors are placed in a relatively far
field of the sources such that the DOAs of the sources at different sensors can
be considered identical.

that different transmissions are uncorrelated. We thus suppress
these delays for brevity.

III. PROPOSED APPROACH

To estimate the DOAs and the power spectra of the sources,
we propose to formulate the problem in the temporal correla-
tion domain. Assume that there are two antennas that are lo-
cated at the positions and of the baseline of receiver
, where are integers—e.g., for a ULA, we have

. Let us define , and let
and for be the indices of the

antennas located at and , respectively. Then, by cross-cor-
relating the received signals at these two antennas at receiver ,
we obtain

(2)

where is the index of time lag and
under our signal model.

Since ’s are uncorrelated to each other, and the signal and
the noise components are also uncorrelated, we obtain

where . Assume that the noise
at each antenna of sensor is white Gaussian, both

temporally and spatially, with zero mean and variance , i.e.,
for . Then, we have

(3)

where denotes the Kronecker delta, i.e., when
and otherwise. Thus, we can compactly express
as

(4)
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Now, we apply the discrete-time Fourier transform (DTFT) on
so that we have

(5)

The frequency axis of can be discretized to samples,
and for this purpose let us denote ,
where ; the ’s can be readily obtained
using the discrete Fourier transform (DFT).
Suppose that there are different ’s that result from dif-

ferent combinations of and and are denoted by
in ascending order, i.e., . Given the ob-
tained for , we construct
for such that

(6)

It is readily shown that one can compactly express as

(7)

where such that

denotes the discretized power spectrum of source
holds all the noise variances at dif-

ferent sensors,
, and

denotes a diagonal matrix with the th row of on its diag-
onal. Notice that contains all the DOA information on the
exponents of its row elements, and that contains the desired
power spectra of the sources as its columns. Hence, our problem
amounts to estimating and from .
One should notice that is corrupted by the noise term

when . In practice, there are many ways to (approxi-
mately) cancel the impact of . For instance, can sometimes
be estimated in advance (when the transmitters are silent) and
thus canceled [19]. Another approach can be found in [1], where
we have provided an orthogonal complement projection-based
noise removal method, which is applicable to the case where

. Here, we instead opt for a simple way of estimating ,
which is effective according to our simulations and real experi-
ments. Specifically, we assume that there exists a frequency ,
such that . The above assumption is based on the ob-
servation that the band of interest is usually not fully occupied
by the transmitters—for spectrum sensing, this assumption is
often mild. Consequently, the noise term can be estimated by

where satisfies and

Fig. 3. Illustration of the slice representations of the three-way tensor .

since , which is non-negative and the min-
imum-norm columns correspond to the noise floor. Hence, by
subtracting from , i.e., by letting

we obtain a set of matrices

(8)

In the following, we will assume that the noise has been re-
moved and shall focus on the noiseless model in (8).

IV. PARALLEL FACTOR ANALYSIS IN TEMPORAL
CORRELATION-DOMAIN

One may notice that (8) is a slice/slab representation of a
three-way tensor [20], [21]. Specifically, let us define a tensor

, whose -th element is defined by

The three slice representations of are [20]:

(9a)

(9b)
(9c)

see Fig. 3 for an illustration. Note that sometimes it is conve-
nient to represent a tensor using its matrix unfoldings, which
are defined as

(10a)

(10b)

(10c)
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From (9), (10), and the vectorization property, i.e.,

we obtain the following compact expressions

(11a)
(11b)
(11c)

From the above, we see that the collected data
is identical to the second slice representation in (9b). Hence,
extracting and from the tensor is a rank
decomposition problem commonly known as PARallel FACtor
(PARAFAC) analysis [19], [22]–[24]. A remarkable property
of tensors is that this decomposition is essentially unique, under
rather mild conditions. For example, note that deliberately
picking to be consecutive integers1 induces Vander-
monde structure on , in which case the following theorem
applies:
Theorem 1 [24]: Assume that is a Vandermonde
matrix, and that

(12)

Then, the tensor with elements
admits unique decomposition in

rank-one components, i.e., the loading matrices and
are unique up to scaling and a common column permutation
(or, simply, essentially unique). Specifically, if and
generate , then it must hold that

where is a column permutation matrix, and are
diagonal scaling matrices satisfying

Theorem 1 means that and are identifiable from
—notably, and do not even need to be full-column

rank matrices, which means that we can handle the case of
more transmitters than receivers, for example. Even stronger
almost-sure identifiability results are available—if and
are drawn from a continuous joint distribution, see [25]–[27].

A. Decomposition Algorithms
To identify the loading factors, many PARAFAC algorithms

can be applied, e.g., those in [19], [25], [28], [29]. The so-called
trilinear alternating least squares (TALS) algorithm is particu-
larly appealing in our context, because it can readily incorpo-
rate constraints such as nonnegativity to improve estimation ac-
curacy. In the next section, we will propose a new PARAFAC
algorithm that is robust to corrupt data slabs, which can be con-
sidered as an extension of TALS.
As a special case of the above PARAFAC model, when

and are distinct, the

1As an example, suppose that each sensor uses a ULA with . We
see that and thus can form a set of ’s such that

. For specially-designed non-uniform antenna arrays, a larger
set of consecutive differences can be obtained—see Remark 3.

classic Estimation of Signal Parameters by Rotational Invari-
ance Techniques (ESPRIT) algorithm [30] can be applied to
estimate and . To implement ESPRIT, one may
construct

...
... (13)

and

... (14)

where . The signal model in
(13)–(14) can be handled by ESPRIT, and the desired parame-
ters can be estimated using a single eigen-decomposition; see
[1], [30]. Compared to TALS, the computational burden of
ESPRIT is much lighter, which is a desired property in practice,
particularly for real-time applications. Also, ESPRIT can be
used to initialize TALS, when applicable.

B. Remarks on the Proposed Approach
Before turning to the next section, we would like to make sev-

eral remarks on the proposed PARAFAC-based formulation:
Remark 1: The proposed formulation does not require syn-
chronization among the receivers; only local synchronization of
the down-conversion chains of each individual multi-antenna
receiver is required. To see this, let us assume that sensor
begins to work at time index for , and that

. As the down-conversion chains at sensor
are synchronized, antennas and work with the same
time index . Hence, one can see that the building block of the
proposed formulation, i.e., , is insensitive to the value
of —we have

which is the same as in (6), by virtue of WSS. Notice that
synchronization among the different receivers could entail
considerable communication overhead and extra computations.
Remark 2: Those familiar with array processing and blind
source separation (BSS) may readily think about using BSS
approaches (e.g., multiple invariance sensor array processing
(MI-SAP) [22]) to separate the raw signals, then estimate the
power spectrum of each separated signal. This approach has
several drawbacks relative to the one we propose here. First,
it requires synchronization across the different multi-antenna
receivers; second, it entails much higher communication over-
head to send raw signals (as opposed to locally computed
correlations) to the fusion center. Furthermore, the temporal
correlation parametrization is naturally suited for estimating
power spectra, and it comes with the side-bonus of non-neg-
ative and , properties that can be exploited to enhance
identifiability and separation performance.
By noticing that , it is also tempting to apply

non-negative matrix factorization (NMF) to estimate , i.e.,

(15)
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Fig. 4. A scenario where receiver 2 suffers from local interference and gives
highly corrupted data to the fusion center.

since both and are non-negative. The above NMF formu-
lation is similar to the idea in [14]. Nonetheless, NMF does not
yield a unique solution in general [31], and thus the identifia-
bility of is not guaranteed from the NMF formulation.
Remark 3: So far, we have implicitly focused on using the same
ULA at each receiver. The number of antennas and the array
geometry come into play indirectly, in that they determine the
number of rows of the Vandermonde matrix ; the
higher is, the higher the number of co-channel spectra that
can be successfully separated (cf. Theorem 1). It is important to
stress that is not the number of antennas, , but the number
of distinct spatial correlation lags that can be estimated from the
antenna array outputs, i.e., the number of distinct differences

, where and are associated with the antenna de-
ployment geometry as described before. For example, and
are consecutive integers from 0 to when a ULA is em-
ployed at each receiver, and thus in this case. The
important observation here is that using non-uniform linear ar-
rays, such as two-level nested arrays [32], and can be chosen
from a set of non-consecutive integers with special structure
which yields while preserving the Vandermonde
structure of . Another very interesting possibility is to use a
so-called sparse ruler design [9].

V. JOINT MODEL FITTING AND DETECTION OF CORRUPT DATA

In practice, there are scenarios where it is likely that some
receivers will be reporting highly corrupt data to the fusion
center. This can happen if a receiver is shadowed (in which
case the LOS assumption is grossly violated), or subject to sig-
nificant local (e.g., microwave) interference or no-listen-while-
you-talk limitations—see [33]–[36] for further motivation and
Fig. 4 for an illustration. In such a situation, directly applying
TALS or other generic PARAFAC solvers as proposed in the
last section may yield unexpectedly bad solutions, since corrupt
data are outliers that inflict large deviations from the assumed
PARAFAC model. The goal of this section is to robustify the
formulation proposed in the previous section, and to devise a
robust algorithm that can identify the desired latent variables
and the receivers which are reporting corrupt data (or, outlier
receivers for simplicity) simultaneously.

A. The Proposed Formulation
Let us begin with the slice representations of three-way ten-

sors, i.e., (9a)-(9c). Recall that, under the proposed formulation,

Fig. 5. The shadowed rows on the left constitute the physically corrupted data
contributed by receiver 2. on the right is the corresponding corrupted slice,
comprising the said rows.

are the collected data, and is solely con-
tributed by sensor for . The key observation
here is that form the whole slice . Hence,
if the -th receiver fails to provide reliable data, the whole slice

is a corrupted slice (cf. Fig. 5). This observation will be
exploited in the sequel.
Let denote the index set of the receivers reporting corrupt

data, where and ; we also denote
the complement set as such that . By modeling
outliers using an additive noise term, we have the following
model,

(16)

where is the local interference to receiver such
that

(17)

Under this model, forms a set of slice outlierswhich
do not obey the signal model (9c). Recall that we have

Hence, under the signal model in (16), we have

(18)

where and is a column
sparse matrix. We propose to estimate and by solving the
following fitting problem,

(19)

where is a pre-defined parameter, indicating an upper
bound on the number of outlier receivers—this upper bound can
be rather loose in practice, as we will see. The idea is to use a
column-sparse to cancel the corrupted slices; if the remaining
slices still comprise an identifiable PARAFAC model, then we
can perhaps hope for ‘oracle’ estimation performance from the
proposed strategy. We should remark that is not necessarily
an estimate of —it is an optimization variable that is adopted
to cancel the impact of the corrupted slices. In fact, the formu-
lated criterion in (19) can accommodate different types of inter-
ference, not necessarily restricted to additive interference; e.g.,
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even when the corrupted slices do not have any signal compo-
nent, the formulation in (19) is still applicable.
At this point, we should mention that the idea of modeling

outliers as a column-sparse matrix was previously presented in
[37] for subspace identification as a heuristic. Here, we take one
step further—we prove that (19) is non-heuristic under our for-
mulation from an identifiability perspective:
Theorem 2: Let be an optimal solution to
Problem (19), and and denote the index set of the non-
zero columns of and its complement, respectively. Assume
that , that the elements of are drawn from some ab-
solutely continuous distribution, that

(20)

and that

(21)

Then, under the signal model (16), the following hold with prob-
ability one:
1) The latent variables and are identical
to and up to permutation and scaling am-
biguities, respectively; i.e., we have

, and , where and
are defined as before.

2) The corrupt slices can be detected, i.e., .
The proof of Theorem 2 is relegated to Appendix A. Notice that
the conditions stated in the above theorem are in general mild:
The matrix can be considered following the Chi-squared dis-
tribution in wireless communications as the matrix is usu-
ally modeled as being circularly symmetric Gaussian distributed
[38]; also, random interferences can hardly reside in the range
space of . Hence, by Theorem 2, Problem (19) is a sound
criterion for joint model fitting and outliers detection; that is,
if the number of receivers reporting uncorrupted data is large
enough, the power spectra, the DOAs, and the outlier receivers
can be identified via solving Problem (19).

B. Corrupt Slices-Robust Alternating Least Squares
Problem (19) is a hard optimization problem. To tackle it,

we propose a block coordinate descent (BCD)-based algo-
rithm—we alternate between solving the partial problems w.r.t.
each of while keeping the others fixed. We begin
with the partial minimization w.r.t. :

The above aims at finding the projection of
onto a column sparse set. This problem is non-convex, but a
closed-form solution exists as reported in [37]. To be specific,
denote

Then, the solution is constructed with the
following columns:

(22)

where denotes the index of the th largest value of
. After updating , the problem w.r.t.

is

(23)

Let us define

(24)

Then, Problem (23) can be viewed as a PARAFAC factorization
problem of . Consequently, and can be updated fol-
lowing the rule of TALS; i.e., these three loading factors can be
updated by solving the following three least squares problems:

(25a)

(25b)

(25c)

where and are defined by

(26)

see lines 11–13 of Algorithm 1.
Unlike TALS, which only alternates among and , we

cyclically update the four blocks and using (22) and
(25a)–(25c) until some convergence criterion is satisfied—the
additional step in (22) can be interpreted as an iterative outliers
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Fig. 6. The estimated power spectra by the proposed PARAFAC approach for
100 trials. dB;
sample .

cancellation procedure. The detailed algorithm is presented in
Algorithm 1. As the partial problems w.r.t. and are
all optimally solved, the cost function of Problem (19) can only
decrease or stay the same each time one of , or is
updated. Since the cost is bounded below (by zero), it follows
that the cost sequence will converge.

VI. SIMULATIONS

In this section, we use computer simulations to demonstrate
the effectiveness of the proposed algorithms. In each simulation
trial, the band of interest consists of 12 subchannels. These
subchannels are randomly allocated to several sources, and
each source takes up to four subchannels. In each occupied sub-
channel, the corresponding source signal is generated by
filtering a random signal that follows the i.i.d. zero-mean
unit-variance circularly symmetric Gaussian distribution by a
sinc-shape filter with a random scaling. The channel response

and the noise are also randomly generated in each
simulation trial, both following the i.i.d. zero-mean circularly
symmetric Gaussian distribution, with variances being one and
, respectively. The signal-to-noise ratio (SNR) is defined as

The denoising technique described in Section III is applied. We
assume that ULAs are employed at the receivers, and

. In all the simulations, the band of interest is discretized into
frequency bins. The simulation results are obtained

by averaging 100 trials.
Figs. 6–7 show the estimated source power spectra by the pro-

posed PARAFAC-based formulation and the NMF-based for-
mulation (cf. (15)). There are two sources, and each figure com-
prises two panels (one for each source). For this experiment,
the source power spectra remain fixed for ease of visualiza-

Fig. 7. The estimated power spectra by NMF for 100 trials.
dB; sample .

Fig. 8. The MSEs of the estimated power spectra by the PARAFAC algorithms
under various SNRs. ;
sample size .

tion, while the particular signal realization, the channel and the
noise are all randomly generated for each trial. The estimated
power spectra for all 100 trials are overlaid on top of each other
in each panel, to enable easy visual assessment of estimation
variance, including leakage (‘crosstalk’) from one source to the
other. We apply ESPRIT for solving the proposed PARAFAC
problem formulation, and the fast hierarchical alternating least
squares (HALS) algorithm proposed by Cichocki and Phan [39]
for solving the NMF problem. Notice that HALS was empir-
ically found to outperform many state-of-the-art NMF algo-
rithms—see [40]. We see that PARAFAC-ESPRIT identifies the
power spectra of both sources fairly well for all the trials. How-
ever, NMF fails to yield clearly separated spectra in many trials.
This is not surprising, as the solution to the NMF problem (15)
is not unique in general [31].
Fig. 8 shows the power spectra estimation accuracy of two

PARAFAC-based algorithms, i.e., ESPRIT and TALS, esti-
mated using Monte-Carlo simulation. The mean-square-error
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Fig. 9. The RMSEs of the estimated power spectra by the PARAFAC algo-
rithms under various SNRs.

; sample size .

(MSE) of the estimated power spectra is adopted as the perfor-
mance measure, defined as

where is the set of all permutations of ; and
and are the true power spectrum of source and the corre-
sponding estimate, respectively. The sign variables
are included because we do not enforce nonnegativity of the es-
timated power spectra—although nonnegativity constraints can
be easily incorporated in TALS, and will improve the estimation
performance. There is no easy way to incorporate nonnegativity
in algebraic ESPRIT-type algorithms. Notice that in this simu-
lation we do not fix the shapes of the power spectra as has been
done in the last simulation. We see that both algorithms yield
reasonable estimates of the power spectra, but TALS is natu-
rally more accurate. ESPRIT requires much less execution time
since it is a closed-form solution. TALS requires 0.0289 sec-
onds, while ESPRIT 0.00054 seconds for this setup, on average.
It is also worth noting that the MSEs of TALS and ESPRIT are
essentially not affected by using asynchronous sensors, which
verifies the claim that our formulation needs no synchroniza-
tion among the sensors.
Fig. 9 shows the root-mean-square errors (RMSEs) of the es-

timated DOAs by the temporal correlation-domain TALS and
ESPRIT under the same settings as in Fig. 8; the RMSE is
defined as

where and are the estimated and the true DOAs of source
, respectively. As a baseline for comparison, the results of

spatial correlation-domain TALS are also presented [22]; this

Fig. 10. The MSEs of the estimated power spectra by the temporal and spatial
approaches. For the spatial PARAFAC, the LMMSE approach is applied for
unmixing the raw sources at receiver 1; the estimated source signals are then
used to estimate the power spectra.

; sample .

is the classical multiple invariance sensor array processing
(MI-SAP) approach to direction finding. One can see that the
spatial correlation-domain TALS exhibits superior RMSEs
when synchronized sensors are employed. However, when
there are timing mismatches among the sensors, this approach
completely fails to yield reasonable estimates of the DOAs.
On the other hand, the proposed temporal correlation-domain
PARAFAC algorithms are very robust with respect to receiver
asynchronism.
As mentioned in Remark 2, when the receivers are synchro-

nized, using the estimated DOAs (or more precisely, ) by the
spatial PARAFAC formulation, we may unmix the raw source
signals at any receiver, e.g., by the spatial PARAFAC formu-
lation, we may unmix the raw source signals at any receiver,
e.g., using a linear minimum mean squared error (LMMSE) ap-
proach. Then, these unmixed sources can be used for estimating
the power spectra. There are two drawbacks to this alternate ap-
proach: it entails very high communication overhead, and the
accuracy of the estimated power spectra is not comparable to
the proposed approach (see Fig. 10).
In Tables I–II, some further simulation results are presented.

Specifically, Table I shows the MSEs and RMSEs yielded by
the proposed temporal correlation-domain TALS and ESPRIT
under different sample sizes. One can see that TALS outper-
forms ESPRIT as in the last simulation. Also, both algorithms
prefer larger sample sizes—using larger sample sizes, the tem-
poral correlations can be estimated more accurately and thus
better estimates of the spectra and the DOAs can be expected.
In Table II, we show the simulation results for an under-deter-
mined case, i.e., an case. Notice that ESPRIT is not
applicable under this setting as it requires that .
We see that TALS yields reasonable estimates of both the power
spectra and the DOAs when dB. We also see that the
results given by TALS are almost identical with and without
synchronization among the receivers.



6590 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 24, DECEMBER 15, 2015

TABLE I
MSES (DB) AND RMSES (DEGREE) OF THE ESTIMATED POWER SPECTRA
AND DOAS BY THE ALGORITHMS, RESPECTIVELY.

DB

TABLE II
MSES (DB) AND RMSES (DEGREE) OF THE ESTIMATED POWER SPECTRA
AND DOAS BY THE ALGORITHMS, RESPECTIVELY.

; SAMPLE SIZE

Fig. 11. Histogram of temporal correlation-domain and spatial correlation-do-
main TALS; dB; ; sample ;
the dot lines are the true DOAs.

In Fig. 11, we use a particular case to demonstrate the iden-
tifiability improvement using the proposed temporal correla-
tion-domain PARAFAC formulation, compared to the spatial
domain one as in [22]. In this simulation, we set

and use synchronized sensors. The histograms of the es-
timated DOAs from 100 trials are plotted in this figure. One can
see that the spatial PARAFAC almost fails completely, while the
temporal approach works well in this case. The reason is that
the row dimension of the Vandermonde loading matrix under
our formulation is since . How-
ever, under the MI-SAP formulation, this dimension equals

. By carefully examining the condition in Theorem 1, we
see that using the spatial domain formulation we cannot fulfill
this condition, while using our temporal domain formulation we

Fig. 12. The estimated power spectra by TALS and CSR-ALS respec-
tively. dB; dB;

.

can. This verifies our claim in Remark 3 that the proposed for-
mulation can improve the identifiability.
In the remaining simulations, we evaluate the effectiveness

of CSR-ALS when there are some receivers reporting corrupt
data to the fusion center. To quantify the level of corruption, we
define the signal-to-outlier ratio (SOR) as

The real and imaginary parts of the active columns of are
both generated following the uniform distribution between zero
and one and scaled to satisfy the specified SORs.
Fig. 12 presents an illustrative example using two sources.We

set dB, dB, and . The
proposed CSR-ALS algorithm is initialized using plain TALS.
In this example, we see that TALS fails to give a reasonable
estimate of the second spectrum, while the estimated spectra by
CSR-ALS match the actual spectra very well. The 2-norms of
’s are presented in Fig. 13. As one can see, and

take the largest values, which implies that CSR-ALS correctly
detects the receivers which are reporting corrupt data.
Table III shows the results of aMonte Carlo simulation. Here,

besides TALS, we also provide a PARAFAC algorithm that is
robust to outlying elements [41] as another baseline. This base-
line algorithm employs an fitting criterion as its cost function
and thus is referred to as the PARAFAC algorithm in the se-
quel. We set

, and dB. The outlier receivers are ran-
domly chosen in each trial. We let in this simulation.
One can see that CSR-ALS exhibits much lower MSEs and
RMSEs compared to TALS and PARAFAC under all SORs;
particularly, when the dB and dB, CSR-ALS
still yields reasonable estimates of the DOAs and the power
spectra, which is quite pleasing. On the other hand, the robust
PARAFAC algorithm does not work quite well under the simu-
lated scenario. This might be because PARAFAC is designed
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Fig. 13. The values of . dB; dB;
; sample

.

TABLE III
MSES (DB) AND RMSES (DEGREE) OF THE ESTIMATED POWER

SPECTRA AND DOAS BY THE ALGORITHMS UNDER VARIOUS SORS.

DB; SAMPLE SIZE

TABLE IV
MSES (DB) AND RMSES (DEGREE) OF THE ESTIMATED POWER SPECTRA
AND DOAS BY THE ALGORITHMS UNDER DIFFERENT NUMBER OF OUTLIER
RECEIVERS.

DB; DB; SAMPLE SIZE

for dealing with outliers at the individual element-level—it is
not specialized for handling slice-level outliers.
Table IV summarizes simulation results for different num-

bers of outlier receivers. We set and
, and increase the number of

outliers from one to four. The parameter is set to be in
all cases, irrespective of the true number of outliers. The SOR
and SNR are fixed to be dB and 15dB, respectively. We see
that CSR-ALS is much more robust to different numbers of out-
liers compared to TALS and PARAFAC. Particularly, more
than 10 dB MSE reduction can be observed in these simulation
results.

−65°
50°

sensor 1

sensor 2

source 1 source 2

~ 3-4m
~ 3-4m

~ 0.3m ~ 6cm

Fig. 14. Experimental layout of two transmitter, two receiver network. The two
single-antenna radios inside each dashed box are synchronized with each other
to act as a dual-antenna receiver; the two dashed boxes are not synchronized
with one another.

VII. LABORATORY EXPERIMENT

We have also conducted a laboratory experiment using soft-
ware defined radios, for proof-of-concept. The experiment was
carried out in the communications laboratory of the Department
of Electrical and Computer Engineering at the University of
Minnesota. Universal Software Radio Peripheral (USRP) radios
by Ettus Research were used as both transmitters and receivers.
The experiment comprised transmitters and

receivers, with each receiver equipped with antennas.
In order to model a receiver with two antennas, each receiver
was implemented using two single-antenna USRP radios. The
trick here is to synchronize these two single-antenna radios with
a common clock (to align carrier frequencies and sample time
across these two devices) so that they act as one. Notice that this
is equivalent to synchronizing the two down-conversion chains
for a single dual-antenna receiver, as described in the introduc-
tion. We did not synchronize the two different receiving radio
pairs—see Fig. 14 for an illustration. The two receivers were
separated by 30 cm, and each pair of antennas within each re-
ceiver was separated by a distance of 6 cm (so that will be
fixed to 0.5 if the band of interest is centered at 2.5 GHz). The
primary transmitters were placed approximately 3–4 m away
from the receivers at angles of around and

2 with line-of-sight propagation to each antenna, as shown
in Fig. 14.
All radios were communicating at a carrier frequency of

2.5 GHz, with the sources transmitting random BPSK signals
with a bandwidth of 100 kHz. We discretized the 300 kHz
bandwidth into 1024 frequency bins. Bins 411–614 were allo-
cated to source 1 and bins 205–410 and 615–819 to source 2.
See Fig. 15 for a plot of the power spectrum of the actual signal
received at antenna . Fig. 16 illustrates the separated
spectra that are obtained by applying ESPRIT and TALS,

2We should mention that such measured angles are subject to measuring er-
rors, since the transmitters were not really placed in ‘far field’ due to laboratory
space constraints. Nevertheless, the experiment results are reasonably close to
the measured angles.
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Fig. 15. The measured power spectrum using .

Fig. 16. The separated power spectra by ESPRIT and TALS, respectively.

TABLE V
THE ESTIMATED AVERAGE MRRS AND DOAS BY ESPRIT, TALS, AND NMF

RESPECTIVELY

respectively. We can observe that both algorithms can separate
the power spectra reasonably well. Particularly, TALS yields
visually better estimation of the second power spectrum (ES-
PRIT shows more residual leakage from the first spectrum to
the second).
Table V summarizes the results of multiple laboratory exper-

iments (averaged over 10 measurements), to illustrate the con-
sistency and effectiveness of our proposed framework. In order

to establish a metric for the performance of our power spectra
separation, we define the side-lobe to main-lobe ratio (SMR) as
our performance measurement. Specifically, let and de-
note the frequency index sets occupied by source 1 and source
2, respectively. We define

notice that , and since the power spectra from
source 1 and source 2 do not overlap, and are disjoint,
which is necessary for the SMR metric as defined above to
be meaningful. Note that lower SMRs signify better spectra
separation performance. We observe that the average SMRs of
the ESPRIT and TALS algorithms are reasonably small, while
NMF exhibits approximately double SMR on average. The es-
timated average DOAs are also presented in Table V; one can
see that both ESPRIT and TALS yield similar estimated DOAs.
It should be noted that power spectra separation was consis-
tently achieved over numerous trials with varying geometry of
source-receiver placement; DOA estimates exhibited somewhat
greater variation in accuracy.

VIII. CONCLUSION
The problem of joint power spectra separation and source lo-

calization has been considered in this paper.Working in the tem-
poral correlation domain, this problem has been formulated as
a PARAFAC decomposition problem. This novel formulation
does not require synchronization across the different multi-an-
tenna receivers, and it can exhibit better identifiability than con-
ventional spatial correlation-domain sensor array processing ap-
proaches such as MI-SAP. Robustness issues have also been
considered, and identifiability of the latent factors (and the re-
ceivers reporting corrupted data) was theoretically established
in this more challenging setup. A robust PARAFAC algorithm
has been proposed to deal with this situation, and extensive sim-
ulations have shown that the proposed approaches are effec-
tive. In addition to simulations, real experiments with a software
radio prototype were used to demonstrate the effectiveness of
the proposed approach.

APPENDIX A
PROOF OF THEOREM 2

Let be the objective value of Problem (19). It is evi-
dent . To achieve the lower bound, one needs to find

such that

(27)

where denote the transpose of the th row of for
. We now consider the values of under several

scenarios, classified by the relationship between and .
Case 1: Assume that there is an optimal solution such that

. Denote the complement of by , i.e.,
and . Let can also be

represented as

(28)
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Notice that and . By the
assumption that is randomly drawn from a jointly continuous
distribution, we have

which, combined with (21) and Theorem 1, leads to the conclu-
sion that the representation in (28) is essentially unique. Hence,
to make for all , one must have and

being essentially identical to and , re-
spectively.
On the other hand, for , one can always make (27)

hold by letting

(29)

Hence, solutions that achieve are solutions satisfying
1)-2) under this scenario.
Case 2: Assume that there is an optimal solution

such that . Under this scenario, there are three
different index sets which need to be considered, namely,

and ; note
that .
By noticing that , and

we conclude that for all can be achieved only if
are identical to and up to column permutation and

scaling by the same reason as in the last scenario. Also, as one
can always let satisfy (29), for can be forced to be
zero. However, by (20), can never be zero for any .
Specifically, as and for any

we have

one can never find a for any such that

As conclusion of Case 1–2, optimal solutions have to satisfy
1)–2). This completes the proof.
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