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Abstract—The PARAFAC decomposition of a higher-order
tensor is a powerful multilinear algebra tool that becomes more
and more popular in a number of disciplines. Existing PARAFAC
algorithms are computationally demanding and operate in batch
mode—both serious drawbacks for on-line applications. When the
data are serially acquired, or the underlying model changes with
time, adaptive PARAFAC algorithms that can track the sought
decomposition at low complexity would be highly desirable. This
is a challenging task that has not been addressed in the literature,
and the topic of this paper. Given an estimate of the PARAFAC
decomposition of a tensor at instant ¢, we propose two adaptive
algorithms to update the decomposition at instant ¢ 4+ 1, the new
tensor being obtained from the old one after appending a new
slice in the ’time’ dimension. The proposed algorithms can yield
estimation performance that is very close to that obtained via
repeated application of state-of-art batch algorithms, at orders of
magnitude lower complexity. The effectiveness of the proposed al-
gorithms is illustrated using a MIMO radar application (tracking
of directions of arrival and directions of departure) as an example.

Index Terms—Adaptive algorithms, DOA/DOD tracking,
higher-order tensor, MIMO radar, PARAllel FACtor (PARAFAC).

1. INTRODUCTION

N signal processing, subspace-based methods are key to
many applications such as direction finding (ESPRIT [1],
MUSIC [2]), blind beamforming [3], blind channel identifica-
tion [4], and speech dereverberation [5]. These methods exploit
the orthogonality between the signal and noise subspaces of
the observed matrix. If these subspaces are varying with time,
they have to be tracked. However, the computation of a full sin-
gular value decomposition (SVD) at every sampling instant is
not suitable in real-time applications, for complexity reasons.
In this context, the development of SVD tracking algorithms has
been—and still is—under intensive research (see, e.g., [6]-[9],
and references therein).
In an increasing number of applications, the observed data
have a multiway structure, i.e., the samples are indexed by
three or more independent indices, giving rise to a higher-order
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tensor or multiway array, rather than a matrix (two-way array).
Exploitation of this structure requires the use of signal pro-
cessing tools based on multilinear algebra rather than standard
linear algebra [10]. The Tucker decomposition/higher-order
singular value decomposition (HOSVD) [11]-[13] is a possible
generalization of the matrix SVD to higher-order tensors, which
has recently found important applications in face recognition
[14] and image texture analysis [15]. The PARAIllel FACtor
(PARAFAC) decomposition [16], [17] is another possible
generalization of the matrix SVD to higher-order tensors.
PARAFAC is tied to the concept of tensor rank and low-rank
decomposition, and its distinguishing characteristic is its
uniqueness properties. The decomposition of a tensor in a sum
of rank-one tensors has a long history going back to Hitchock
in 1927 [18], [19]; but uniqueness was touched upon by Cattell
in 1944 [20] and fleshed out by Harshman in 1970 [16]. Unlike
the matrix case, low-rank PARAFAC decomposition can be
unique for rank higher than one, and this is a key strength of
PARAFAC. Since 1970, PARAFAC has slowly found its way in
various disciplines such as Chemometrics and food technology
[21], exploratory data analysis [22], wireless communica-
tions and array processing [23], [24], blind source separation
[25]-[27]. In these applications, the PARAFAC decomposition
is always computed via off-line optimization algorithms [28],
which are computationally demanding. In many cases, however,
the data are serially acquired, or the underlying data-generating
process varies with time, and thus cannot be globally modeled
by a low-rank PARAFAC model. While in both cases one can
run a batch algorithm repeatedly to account for new data or
model variation, and in fact the previous estimated model can
be used to initialize the next run of the batch algorithm, this is
still computationally costly. The reason is that existing batch
PARAFAC algorithms are relatively complex and iterative
in nature, requiring many steps to convergence, even if well
initialized. It is, therefore, of great practical interest to develop
adaptive algorithms that track the PARAFAC decomposition.
To our knowledge, this problem has not been addressed in the
literature before.

In this paper, we consider the problem of tracking the
PARAFAC decomposition of a third-order tensor of which one
dimension is “time.” The observed tensor at time ¢ + 1 is ob-
tained from that at time ¢ after appending a new slice in the time
dimension. To solve this problem, we propose two different
adaptive algorithms. The first algorithm, called Simultaneous
Diagonalization Tracking (PARAFAC-SDT), is the adaptive
version of the batch algorithm based on simultaneous diagonal-
ization (SD) proposed in [29]. The second algorithm is based
on the recursive minimization of a weighted least-squares
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criterion and is called PARAFAC-Recursive Least Squares
Tracking (RLST). These algorithms can be used either with a
sliding or an exponential window. Moreover, their respective
complexity is very low compared to their batch counterpart
and in this sense, they can be considered as a first step towards
real-time PARAFAC-based applications. Finally, the good
tracking capabilities of these novel algorithms are illustrated
through the application of tracking the direction of arrival
(DOA) and direction of departure (DOD) of multiple targets in
a multiple-input multiple-output (MIMO) radar system.

This paper is organized as follows. Some multilinear algebra
prerequisites are introduced in Section II, and the core problem
considered is set up in Section III. Section IV outlines the basic
idea upon which both adaptive algorithms will be subsequently
built. Section V explains how the observed data are windowed
before being processed. Sections VI and VII flesh out the pro-
posed PARAFAC-SDT and PARAFAC-RLST algorithms, re-
spectively. Section VIII is a brief note on initialization of these
algorithms, and Section IX provides simulation results for the
MIMO radar tracking application. Finally, Section X summa-
rizes conclusions.

Notation: A third-order tensor of size I x J x K is denoted
by a calligraphic letter X', and its elements are denoted by z;;,
i1=1,....1,7=1,...,Jand k = 1,..., K. A bold-face cap-
ital letter X denotes a matrix and a bold-face lower-case letter
x a vector. The transpose, complex conjugate, complex conju-
gate transpose and pseudo-inverse are denoted by X', X*, X |
and X7, respectively. ||X]| is the Frobenius norm of X. vec(X)
is a vector built by stacking the columns of X one above each
other. diag(x) is a diagonal matrix that holds x on its diag-
onal. The Kronecker product is denoted by ®. The Khatri-Rao
product (or column-wise Kronecker product) is denoted by ®,
i.e., [al,. .. ,aI] O) [bl,. .. 7b[] = [a1 ®b1,. . .,a1®b1].The
P x P identity matrix is denoted by Ip. We will also use a
Matlab-type notation for matrix subblocks, i.e., [X];.m n:p rep-
resents the matrix built after selection of . — [ + 1 rows of X,
from the /th to the mth, and p — n + 1 columns of X, from the
nth to the pth. [X]. .., is used to denote selection of all rows
and [X];.,,,,. to denote selection of all columns.

II. MULTILINEAR ALGEBRA PREREQUISITES

A. Definitions

A Nth order tensor is an N-way array, i.e., its elements are
addressed by N indices. In this paper, third-order tensors only
will be used. Before introducing PARAFAC, we need the fol-
lowing definitions.

Definition 1. (Outer Product): The outer product (ao b o c)
of three vectors a € CI*1, b € C/*! and ¢ € CEX1 js
a third-order tensor X € CI*/*XK with elements defined by
Zi5k = aibjcy, for all values of the indices.

Definition 2. (Rank-1 Tensor): A third-order tensor is rank-1
if it can be written as the outer-product of three vectors.

Definition 3. (Tensor Rank): The rank of X is defined as the
minimum number of rank-1 tensors whose sum yields &'.

Definition 4. (Matrix Representations of a Tensor): The
three standard matrix representations of a third-order tensor
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X € C**K denoted by X(V) € CTExJ X&) ¢ /XK
and X®) e CEIXI are defined by [X(l)](i_l)K_Hﬁ,j = Tjjk,
[(X®]j—iyr4is = ijr and [ X®)_1y 745 = @ijk,, respec-
tively.

B. PARAFAC Decomposition

We now have enough material to define the PARAFAC de-
composition.

Definition 5. (PARAFAC in Tensor Format): The Parallel
Factor Decomposition [16] of a tensor X € CI*7*K g a
decomposition of X as a sum of a minimal number of rank-1
tensors

R
X:Zarobrocr 1)
r=1

where a,., b,., ¢, are the rth columns of the so-called “loading
matrices” A € CI*B B € C/*E and C € CK*E  respec-
tively.

The PARAFAC decomposition can also be written in matrix
format.

Definition 6. (PARAFAC in Matrix Format): The three ma-
trix representations of a tensor X € CT*7*X that follows the
PARAFAC decomposition (1), are linked to the loading matrices
A, B, and C as follows:

XM = (Ao C)BT
X® =(BoA)CT
X®) = (CoB)AT.

A key feature of PARAFAC is its uniqueness property under
mild conditions. The PARAFAC decomposition of X is said to
be essentially unique if any matrix triplet (A, ]3, C‘) that also
fits the model is related to (A, B, C) via

A =AlIA; B=BIA, C=CIA; )
with A;, Ay, Aj arbitrary diagonal matrices satisfying
A1AsA3; = 1Ig, and II an arbitrary permutation matrix.
PARAFAC uniqueness is studied in [29], [30]-[32]. A spe-
cific case is where two loading matrices are full column rank
and the third does not contain colinear columns. In this case,
PARAFAC is unique up to its trivial indeterminacies [33]. In
[29], a uniqueness bound was derived for the case where one
matrix is full column rank and the others are full rank. This
result is summarized in the following theorem.

Theorem 1: Assume A € CI*E and C € CEXE are
drawn from a jointly continuous distribution with respect to
the Lebesgue measure in C/XE+EXE and B € C7*F is full
column rank. If

R>2 and I(I-1)K(K—-1)>2R(R-1) 3)

then the PARAFAC decomposition of X is essentially unique,
almost surely.

Note that for R = 1, the PARAFAC decomposition is (triv-
ially) always unique.
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time

Jo+1

Fig. 1. Acquisition of a new slice in the tensor of observations.

III. PROBLEM STATEMENT

Let us consider an estimate of the PARAFAC decomposition
of a third-order tensor X (t) € CI*7MXK 'at time ¢

XM (1) ~ H(t)BT (1) 4)
where H(t) def A(t) ® C(t) has dimensions K x R, B(t) €
C/ (WX has a dimension growing with time and X1 (#) is the
IK x J(t) matrix representation of X (t).

In practice, one possible interpretation of this model is the
following: B(¢) holds J(t) successive data-vectors of interest
(e.g., samples of R transmitted signals), H(t) is a time-varying
unknown transformation of these vectors (e.g., a time-varying
channel) and X (V) (t) holds the successive observed vectors.

Let X(t + 1) € C*/(t+1)XK be obtained from X (t) after
appending a new observed slice in the second dimension, as
illustrated by Fig. 1, such that J(¢t+1) = J(¢) + 1. An estimate
of the PARAFAC decomposition of X' (¢ + 1) is

XMt +1) ~H(t+ DB (t+1) 5)

where H(t + 1) = A(t 4+ 1) ©® C(¢ + 1). In order to estimate
the new loading matrices A(t+ 1), B(t+ 1) and C(¢+ 1), one
can optimally fit a PARAFAC model on X (¢4 1) by resorting to
batch algorithms [28]. However, though initialization of such al-
gorithms with the old estimates A (t), B(¢) and C(t¢) may speed
up convergence, the computation of a whole new PARAFAC de-
composition at each sampling instant is not suitable for online
applications. For instance, one cycle of the batch Alternating
Least Squares (ALS) algorithm [17], [23] requires the compu-
tation of three pseudo-inverses, and convergence often requires
many cycles, even if the algorithm is well-initialized. The devel-
opment of adaptive algorithms to track the PARAFAC decom-
position is thus a key step towards real-time PARAFAC-based
applications. Following these considerations, the core problem
we propose to solve in this paper can be summarized as follows.

Problem: Given estimates A(t), B(t) and C(¢) for the
PARAFAC decomposition in R terms of the [ x J(t) x K
tensor X (¢), find recursive updates for A(¢t + 1), B(t + 1)
and C(t + 1), which stand for estimates of the PARAFAC
decomposition in R terms of the I x J(¢t + 1) x K
tensor X' (¢t + 1), the latter being obtained from X (¢) after

appending a new slice in the second dimension.
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We will work under the following assumptions:

Al) All entries of A and C may change between ¢ and ¢ +
1, according to an unknown, but slowly time-varying
model.

The conditions in Theorem 1 are satisfied V¢, i.e.,
uniqueness can be assumed at each sampling instant.

R is known or has been estimated and does not vary with
time. Under the conditions of Theorem 1, R can be deter-
mined from the rank of matrix X (1) (t), but the tracking
problem is seriously compounded if rank changes with
time, even in the matrix SVD case. We therefore leave
this issue for future work.

A2)

A3)

IV. SKETCH OF THE BASIC IDEA

In this section, we propose a first approach towards adap-
tive computation of the PARAFAC decomposition of X' (¢ + 1),
given that of X (¢). Though formulated in terms of time-con-
suming operations (mainly pseudoinverse and SVD), the fol-
lowing steps allow to draw the skeleton of the fully adaptive
algorithms to be derived next.

Let x(¢ + 1) be the TK x 1 vectorized representation of the
new slice appended to X (t), such that

XDt +1) = [XD(8),x(t + 1)]. (6)

Let us consider a smooth variation of H between ¢ and ¢ + 1,
i.e., H(t) ~ H(t + 1). From (4), (5) and (6), we get

BT(t+1) =~ [B"(t),b"(t +1)] @)
which means that B has approximately a time-shift structure.
An initial estimate of b(¢ + 1) is thus given in the least-squares
sense by

bT(t+1) = HI (t)x(t + 1) ®)

after which the time shift-structure in (7) is exploited to build
B(t+1). The least-squares update of H(¢ + 1) is then given by

H(t+1) =X+ )BTt + 1) )

Given H(¢+ 1), one can then re-update b(¢+ 1) by substituting
H(t) by H(¢ + 1) in (8). Finally, since H(# + 1) is an estimate
for A(t + 1) ® C(t + 1), it provides estimates for A (¢t + 1)
and C(t + 1), up to the trivial indeterminacies inherent to the
PARAFAC model. In fact, the rth column of A (¢+1)©C(t+1)
isa.(t+1)®c.(t+1) = vec(e.(t + al(t + 1)), so it
corresponds to the vectorized representation of a rank-1 matrix.
Consequently, ¢, (¢ + 1) can be estimated as the principal left
singular vector multiplied by the corresponding singular value
of unvec(a,(t+1)®c,-(t+1)), while a,.(t+1) can be estimated
as the conjugate principal right singular vector. This procedure
is repeated for the R columns.

It is important to note that the least-squares update of H(¢+1)
in (9) ignores the Khatri-Rao product structure. As a result, the
overall procedure (even if iterated) is not equivalent to ALS
PARAFAC model fitting. This implies that estimation perfor-
mance will be worse than that of the batch ALS algorithm, how-
ever this is to be expected in return for a far simpler adaptive
algorithm, and we will see in our simulations in Section IX that
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TABLE 1
FIRST APPROACH TO TRACK THE PARAFAC DECOMPOSITION

STEP 1
Suppose H(t) ~ H(t + 1) and get a first estimate of b(¢ + 1):

b (t+1) = HN (t)x(t + 1).

STEP 2

Get a first estimate of B(t + 1): BT (¢t + 1) = [BT(¢), bT (¢t + 1)].
STEP 3

Estimate H(t + 1): H(t + 1) = XM (¢ + 1)(BT (¢t + 1))1.

STEP 4

Estimate A(t + 1) and C(t + 1) from H(t + 1):
Forr=1...R, Do

H,(t + 1) = unvec([H(t + 1)].,,)

[er,or,ar] =svd(H,(t 4+ 1)), —- = principal singular vectors —
[C(t+1)].,r = orcy and [A(t + 1)].,» = a

End

STEP 5

Re-estimate B(t + 1) with a time-shift structure:
b7 (t+1) Hi(t+ D)x(t+1),
BT (t+1) BT (t),bT (¢t +1)].

the price paid in terms of estimation performance is small when
the model changes slowly, as expected.

Table I summarizes the steps proposed in this section. To-
wards fleshing out complete adaptive algorithms, the following
key issues should be addressed:

i) the observed matrix X () () has to be properly windowed
so as to weight past observations;

ii) pseudoinverse matrices should be recursively updated;

iii) SVDs should be replaced by SVD tracking algorithms;

iv) operations having a complexity increasing with time

should be avoided.

In the next section, we focus on i) and we show how an ex-
ponential window or a sliding window can be used.

V. CHOICE OF THE WINDOW

A. Exponential Window

Estimation of the PARAFAC components of X' (¢ 4+ 1) can
be done by minimization of the following exponential window
least squares (EWLS) criterion:

. EW 1
s By ® D) (10
with
t+1 )
¢EV\/ t+ 1 Z At+1 T ||X t + 1)bT( )|| (11)

where )\ is the forgetting factor. This window implies that at any
time, all previous observed slices are involved with a different
weight. Let us define the weighted observed matrix by
Xew(t+1) & XD+ DAL+ 1) (12)
where A(t + 1) = diag([\Y/2,X=Y/2 ... AY2 1]) is the
weighting matrix. The exponential window implies the fol-
lowing update rule for Xgyy:
Xew(t+1) = M/ Xew(t),

x(t +1)). (13)
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B. Truncated Window

For a truncated window of length N > R, we denote by
XU (t + 1) the IK x N (unweighted) matrix consisting of
the last N columns of X (¢ + 1)

XOt+1) = [x(t+2 = N),...,x(£),x(t+ 1)].
Let us define by Xpw (t + 1) € CIXV XK the tensor built from
the N most recent slices, of which X(Tl\),v(t + 1) is a matrix
representation. Estimation of the PARAFAC decomposition of
Xrw (t+ 1) can be done by minimization of the following trun-

cated window least squares (TWLS) criterion

(14)

min Wit 41 15
{H(t+1),BT\v(t+l)}(¢ ( )) ( )

with
™ (t+1) Z)\N T |Ix(u+7) (t+1)bT(u+T)||2
(16)
where A is the forgetting factor, u = t+1— N and Brw(t+1)

consists of the last N rows of B(¢ + 1). This window implies
that at any time, the N most recent slices are involved with a
different weight. The case A = 1 corresponds to a rectangular
sliding window, while the case A < 1 is known as the exponen-
tial decaying sliding window.

Let us define the weighted observed matrix Xw (¢4 1), built
from X(Tl\),v(t + 1) as follows:

def (1)

Xow(t+1) € xXW (¢ + 1A (17)

where A = diag([\Y-1/2,A\N-2/2_
rule for Xy is

A/2.1]). The update

INV2x(t 41— N), Xow(t +1)] = M/ 2Xpw (), x(t + 1)].

(18)

Given the windowed observed data, we now adapt the skeleton
of Table I to build the PARAFAC-SDT and PARAFAC-RLST
algorithms.

VI. PARAFAC-SDT ALGORITHM

A. Preliminaries

For an exponential window, let us consider the two following
factorizations of the weighted matrix Xgw (¢):

{ Xew(t) = (A(H) © C(t)) BT (DA(1)

X () = Upy (£) S (£) VE (1), (19)

The first factorization results from substitution of X()(¢)
in (12) by its PARAFAC decomposition. The second is the
economy-size SVD of Xgw(t), where Ugw(t) € CIEXE,
EEw(t) € CEXE gpd VEVV(t) € CJU)XR.

Similarly, for a truncated window, we get

{ Xrw(t) = (A(t) © C(t))BLy(t)A

2
Xrw(t) = Upw (1) Sow (1) Vi (1) 20
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where UTVV(t) € CIKXR, ETw(t) € CRxR gpd VT\,V(t) €
CNXR_

Under the conditions of Theorem 1, Xgw (¢) and Xw ()
have rank- R, almost surely [29]. Thus, from (19), there exists a
nonsingular matrix Wgy (£) € C*** such that

{ At)o C(t) = El()WEW(t)
BT (1)A(t) = Wiy (1) Viw(t)

where Egyw (¢) < Ugw (£)SEw (¢). Similarly, from (20), there
exists a nonsingular matrix Wy (t) € CF*% such that

{A( )© C(t) = ETW(t)WTVV(t)
Bl (H)A = Wiy () VR (1)

21

(22)

where Evw (1) def Urw(t)X1w(t). It was established in [29]
that the matrix Wgw () that links both equations in a system
of the form (21) can be found by solving a simultaneous-di-
agonalization problem of a set of R matrices of size R X R.
The same remark holds for Wy (¢) and system (22). However,
solving such a problem for each time index should be avoided in
real-time applications. Instead, the objective of PARAFAC-SDT
is to update Wgw, Wrw and their respective inverses in a re-
cursive way.
At time ¢ + 1, (21) becomes

= Egw(t + 1)Wgw(t + 1)

At+1)oC(t+1) 23)
BT(t+ DAt +1) = Wi (t + )VEL(t+ 1)
and (22) becomes
{ Al+1)0CHt+1)=Erw(t+ 1)Wrw(t+1) (24)
BIw(t+ 1A= Wb (t+ 1)VE(t+1).

The main idea of PARAFAC-SDT is to link (21) to (23) and (22)
to (24) by capitalizing on the time-shift structure of B(¢ + 1).
Hence, we show that exploitation of the common block between
B(t) and B(t+ 1) leads to the recursive updates we are looking
for. Before derivation of these update rules, the first step consists
of the estimation of Egw (¢ + 1) and Vgw(t 4+ 1) from that
of Egw(t) and Vgw(¢), i.e., we have to track the SVD of the
weighted matrix Xgyw. The same remark holds for Xty .

From now on, subscripts EW and TW will be omitted when
the same properties hold for both windows.

B. Steps of PARAFAC-SDT

1) Step 1: SVD-Tracking: First, we notice that for both win-
dows, left and right subspaces have to be tracked. Also, we need
to compute orthonormal right subspace basis vectors because
this property on V will be used in the next step to derive the re-
cursive update of W. In the exponential window case, X gw has
a growing dimension and so has Vg . In the truncated window
case, Erw and V 1y both have fixed dimensions. For both win-
dows, one solution to update E and V is to perform a single step
of the classical Bi-Iteration technique [34].

However, with an exponential window, this technique in-
volves complexities growing with time for three operations out
of four, because of the growing dimension of Xgw. Though
many adaptive algorithms proposed in the literature deal with
the exponential-window case, most of them are designed to
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track the subspace associated to the fixed dimension only.
One solution to handle this problem is to combine Bi-SVD1
algorithm [6] with the time-updating recursion for the growing
orthonormal right singular basis matrix given in [6, eq. (11b)].
In this way, only one step involves a complexity growing
linearly with time, instead of three.

For a truncated window, complexities are fixed, but the dom-
inant cost of Bi-Iteration is 16 RIK N (if R <« min(IK, N)).
Several algorithms for sliding-window SVD tracking problems
with similar robustness and lower complexities have been pro-
posed, see, e.g., [7], [8]. In practice, we will use SWASVD (with
a slight modification to include \) proposed in [7], of which the
dominant cost (under R < IK) is 23(N + IK)R?.

2) Step 2: Recursive Updates of W and W1 To derive
recursive updates of W and W~1!, we use orthonormality of
the right subspace basis vectors in V, obtained from the first
step. For both windows, we have

{ BT (t)A(t) = W) VE(1)
BT(t+ DAt +1) =Wt +1)VE(E+1).

where the indices TW and EW have been omitted and A(¢ + 1)

resumes to A in the TW case. In this system, previous estimates

B(t), W~(t), V(t) are known and V(¢ + 1) is known from

Step 1. Moreover, due to the time-shift structure, B(¢) and B(¢+
1) have a block in common, denoted B(t).

If an exponential window was used in step 1, Vgw(¢) and
Vew(t + 1) have dimensions J(¢) x R and J(t + 1) X R,
respectively. So are the dimensions of B(¢) and B(¢ + 1). In
this case the common block B(t) is B(t) itself.

If a truncated window of length NV > R was used, then Vv
and Brw have dimensions N x R for every time index. In this
case, the common block B(t) has dimensions N — 1 x R and
is given by B(t) = [BTW(t)]Z:N,: = [BTVV(t + 1)]1:]\7_17:.

Let us now define the following matrices, according to the
window under consideration.

(25)

. (EW):
V(t) = Vew(t)
V(t+1) = [Vew(t+ Dliiw.
V(t+1) = [Vew(t + D]set),:
. (TW):
V(t) = [Vow(t)]2:n,:
v(t) = [Vrw(t),:
V(t+1)=[Vow(t+ 1)]in-1,
v(t+1)=[Vow(t+1)]n,..

For both windows, identification of the common block B(%) in
(25) yields

MW V) =W e+ 1)V +1). (26
It follows that
WLt 4+ 1) = A 2W () VE(¢h) (\”/H(t + 1))T (27)
and
W(t+1) = \"V2VH( 4 1) (VH(t))TW(t). (28)
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The task is now to avoid explicit computation of the pseudoin-
verse in (27) and (28). For both windows, V(t + 1) results from
deleting the last row v(¢ 4+ 1) of the orthogonal matrix V(¢ + 1)
produced by the first step. From the matrix inversion Lemma for
rank-1 updates, we have

(VH(t + 1))T

. FH(t + 1)%(t + 1)
=V({i+1) (|1 29
(t+ )( r+ — 5+ D ) (29)

which is substituted in (27) to get the recursive update of W1,
Let us now define a recursive update for W. In the expo-
nential window case, V(¢) = Vgyw(#) is a unitary matrix so
(v 0) =
sults from deleting the first row v(¢) of the orthogonal matrix
Vrw(t). From the same matrix inversion Lemma, we get

(Vi) =¥ (IR - ﬁ) (30)

which is substituted in (28) to get the recursive update of W.
3) Step 3: Updates of A and C: First, we form the matrix
Ht+1) = Et+ 1)W( + 1), from E(t + 1) = U(t +
1)X(t+ 1) produced by step 1 and from W (¢ + 1) produced by
step 2. H(¢+ 1) is an estimate of A(¢+ 1) ® C(¢+ 1) and one
could possibly extract A(¢+ 1) and C(¢+ 1) from H(¢+ 1) by
following the procedure described in step 4 of Table I. Instead,
the recursive updates of ¢, and a, consist of tracking the first
left and right singular vectors of H,.(¢t + 1). A single Bi-SVD
iteration applied to these extreme singular vectors resumes to
the following substeps:
Step 3a. a%(t + 1) = HE(t + 1)c,(¢).
Step 3b. ¢.(t + 1) = H,(t+ 1)a.(t+ 1)/ [|H.(t + 1)
x a(t+1)].
4) Step 4: Update of B: The updated new row b (t + 1) =
WLt + 1)vH (¢t + 1) is finally appended to B(#) to build
B(t + 1), where W—1(¢ + 1) is given by (27).

= Vgw (). In the truncated window case, V (#) re-

C. Complexity

The PARAFAC-SDT algorithm is summarized in Table II,
with the complexity associated to each step. The complexities
are expressed in terms of Real FLoating point OPeration (flop)
counts. For instance, the scalar product of d dimensional com-
plex vectors involves 8d flops. The choice of an exponential
window with this algorithm involves a time-dependent com-
plexity because of step 1, since V(t) has an increasing hor-
izontal dimensions. In this sense, it is preferable to combine
PARAFAC-SDT with a truncated window. In the latter case, the
global complexity is 16 R*+R?* (31T K+31N +40)+ R(32I K +
10K + 20). On the same basis, the complexity of a single itera-
tion of the batch ALS algorithm, applied on the tensor built from
the last N slices, is 88 R® + R*(64N K +641 K +641N +24)+
R(24INK +8NK + 81K + 8IN) [35]. From these results, it
is clear that PARAFAC-SDT has a much lower complexity than
ALS.
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VII. PARAFAC-RLST ALGORITHM

A. Principle of the Algorithm

In this section, we derive a very different tracking algorithm,
which we term PARAFAC-RLST (PARAFAC via Recursive
Least Squares Tracking). The principle of PARAFAC-RLST
algorithm follows the skeleton given in Table I. As a starting
point, an initial estimate of b(¢ 4+ 1) is given by (8), where
HT(t) is known from the previous tracking step. Then, the
recursive updates of H(¢ + 1) and H(# + 1) are derived from
the minimization of ¢FWV (¢ + 1) or ¢TW(¢ + 1) defined in
Section V. Finally, b(t + 1) is reestimated by substituting
H(t) by H (¢ + 1) in (8) and B(¢ + 1) is built by appending
the new row b(t + 1) to B(¢). From now on, subscripts EW
and TW will be omitted when the same properties hold for both
windows.

B. Steps of PARAFAC-RLST

1) Update of H: Letus derive arecursive update for H(¢+1),
given an initial estimate of b(t + 1). Let V(¢ + 1) € CTHxE
denote the gradient of ¢(¢ + 1) with respect to H(¢ + 1):

* in the exponential window case:

Ve EW) (¢ 4 1)
t+1

_QZAt—l—l T

¢ in the truncated window case:

—H(t+ 1)b" (1)) b*(r) @31)

N
VQS(TW)(t +1)=2 Z AN-T (x(u +7)
T=1

~H(t+ D)bT(u+7))b*(u+17). (32)

After solving V(¢ + 1) = 0, we get the following:
* in the exponential window case:

H(t+1) = Rpw(t + 1)Pgy(t+ 1) (33)

where

{ REVV(t + 1) = Ei—‘;lll )\t+1_TX(T)b*(T)
Pow(t+1) = 37 XH1="bT(1)b*(7)
¢ in the truncated window case:

H(t+1)

=Rrw(t+ 1)Pri(t+1) (34)

where

{ Rrw(t+1) =Y,
Prw(t+1) =37,

AN=Tx(u+ 7)b*(u + 7)

AN="bT (u + 7)b*(u + 7). 33

The recursive updates for Rew, Prw, Rrw and Prw imme-
diately follow: see (36)—(37) at the bottom of the next page.

The rank-1 update structure of Rgw and Pgyy is characteristic
for an exponential window, where the data matrix has increasing
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TABLE 11
SUMMARY OF PARAFAC-SDT ALGORITHM
INPUTS at time t
Old estimates: A (t), B(t), C(t), W(t), W~ 1(t), E(t) and V(t)
Observations: X (¢) and X (¢ 4 1) = [XD) (¢), x(t + 1)]
Windowing: choose A and apply a TW or an EW on X (¢ + 1) to build X(t 4+ 1) =X7w (t + 1) or Xgw (t + 1))
UPDATES at time t+1:
STEP 1: Track the SVD of X (¢t + 1)
First option: for (EW) or (TW), do one step of Bi-iteration SVD.
Better options:
(EW): choose Bi-SVDI [6], with the modification [6, Eq.(11b)] to compute orthogonal right subspace too. Complexity: growing linearly with time.
(TW): choose SWASVDI [7] with a slight modification to take A into account. Complexity: R2(231K +23N) + 16RIK.
Outputs of step 1:
(EW): U(t+ 1) € CEIXE 53t + 1) e CBXE V(t+1) e C/GHDXR
(TW): U(t+ 1) € CEIXE 53t + 1) e CBXE V(t 4+ 1) € CNXE
STEP 2: Update W, W~
Build matrices: -
EW): V(t) = V(t), V(t+1) = [Vt + D]igeey,» V(E+1) = [V(E+ D]y,
(TW): V(t) = [V(®)]2:n,:, V(£) = [V(#®)]1,:, V(E+ 1) = [V(t+ 1)]1:n—1,: and V(¢ + 1) = [V(t + 1)]n,:
Updates EW complexity TW complexity
Build Z = A" 2VE(t + 1)V(¢) 8R2J(t) 8R?(N — 1)
-Update W
EW: W(t + 1) = ZW(t) 8R*
~-H ~
TW: W(t + 1) =Z(IR+ %) SW(t) 8R® 4+ 23R2 + 10R
-Update w!
~-H -~
EW or TW: Wl (t +1) = W 1)z . (IR + %ﬁ) 8R3 + 23R + 10R | 8R® + 23R? + 10R
STEP 3: Update A and C
Updates EW complexity TW complexity
H(t+1)=E(t+ 1)W(t+1) S8RIK SR’IK
Forr=1...R Do Rx Rx
H,.(t + 1) = unvec([H(t + 1)]. )
ax(t+1) = HI (t + 1)c,(¢) 8KT 8KT
_ _Hr(t+ap(t+1)
cr(t+ 1) = TH A De DT 8KI + 10K 8KI + 10K
STEP 4: Update B
Updates EW complexity TW complexity
bT(t+ 1) =W Tt +1)vA(t+1) 8R? 8R?
and set B(t + 1) = [B(#)7,bT (¢t + 1)]
OUTPUTS
Matrices A(t + 1), B(t + 1) and C(t + 1) now stand for estimates of the PARAFAC decomposition of X' (t + 1).
dimensions. The rank-2 update structure of Rrw and Prw is  where
characteristic for a truncated window, where the new data are ap-
. . def
pended while the oldest are deleted. The matrix Qrw = PE\l,V
in (33) can thus be efficiently computed in a recursive way from
the matrix inversion lemma:
A -1
Qew(t+1) = A7 Qew(1) )\EQQ ()b (t + 1)b*(t + 1)Qrw (1)

1A+ 1)Qew ()BT (t+ 1) G

Similarly, Qrw def P;\IN can be computed by applying this
Lemma twice, as follows:

L+ A 1b*(t + 1)Qrw(t)bT(t + 1)

Finally, the update of H(¢ + 1) in (33) or (34) follows from
the recursively updated matrices Rgw (¢ + 1), Py (¢ + 1) or
Rrw(t + 1), Poy(t +1).

Quwli+1)=Q+ AN QLT (u)b* (u)Q (39) 2) Update of H' : Suppose now that, given the previous esti-
™w - 1 — \Vp* (u)QbT(u) mate of H(¢ 4 1), we want to estimate the last row b(¢ + 1) of
Rew(t+1) = ARpw(t) + x(t + 1)b*(t + 1) (36)
PEw(t + 1) = )\PEw(t) + bT(t + l)b*(t + 1),
RTw(t + 1) = )\RTw(t) + X(t + 1)b* (t + 1) — )\Nx(u)b* (u) (37)
Prw(t+1) = APrw(t) + bL(t + 1)b*(t + 1) — AVbT (u)b*(u).
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TABLE III
SUMMARY OF PARAFAC-RLST ALGORITHM

INPUTS at time t

Old estimates: A (t), B(t), C(t), P(t), R(t), P~ (¢) and RT(¢).
Observations: X1 () and XV (¢ + 1) = XD (¢), x(¢t + 1)]
Choose a window (TW or EW) and A\

UPDATES at time t+1:

STEP 1: Initial estimate for b” (¢ + 1)

Updates complexity
EW: b7 (t + 1) = Pew (H)RL, ()x(t + 1) 8RKI(R+1)
TW: b7 (t + 1) = Prw ()RI, ()x(t + 1) SRKI(R+1)
STEP 2: Update R, P, R and P~
STEP 2a: Update REw or Rrw
EW: REgw (t +1) = ARgw (t + 1) + x(t + 1)b" (¢ + 1) S8RKI
TW: Rrw (t + 1) = AR7w (t + 1) + x(t + 1)b* (t + 1) — AV x(u)b* (u) 16RK I
STEP 2b: Update Pgw or Prw
EW: Prw(t+1) = APpw(t) +bT(t+ 1)b*(t + 1) 8R?
TW: Prw (t+1) = APrw () + bT (¢t + 1)b*(t + 1) — AVbT (u)b* (u) 16R?
STEP 2c: Update RLW or R;"w
EW: Apply the Matrix Pseudo-Inversion Lemma once to compute
R, (t+1) = ORew (t) +x(t + 1)b* (¢t + 1))T 48IKR
TW: Apply this Lemma twice to compute
;
RL,, (t+1) = (ARTW(t) +x(t+ 1)b*(t+1) — )\Nx(u)b*(u)) 96IKR
STEP 2d: Update PE%,V or P;"lxv
EW: Apply Matrix Inversion Lemma as in (38) to compute
-1
Poi(t+1) = (\Pew () + b7 (t+ 1)b"(t +1)) 24R” + 10R
TW: Apply this Lemma twice as in (39) and (40) to compute
-1
Prw(t+1) = ( APrw (t) + b (t+ 1)b*(t + 1) — )\NbT(u)b*(u)) 48R? + 20R
STEP 3: Update H, A and C
EW: H(t + 1) = REW(t+1)Pgi,V(t+1) 8R%IK
TW: H(t + 1) = Rrw (t + )Py, (t+ 1) 8R2IK
Forr=1...R Do RXx
H,(t + 1) = unvec([H(t + 1)]. )
ar(t+1) = HZ (t + 1)c,(t) 8KI
Hy(t+1)ar(t+1
or(t+1) = i Tas T 8KI + 10K
STEP 4: Update B
EW: bT (¢t + 1) = Ppw (¢t + 1)RE (¢ + 1)x(t + 1) 8R? + 8RIK
TW: bT(t + 1) = Prw (t + DRI, (¢ + 1)x(t + 1) 8R? + 8RIK
Then BT (¢t + 1) = [BT (¢), b7 (¢t + 1)]

OUTPUTS

Matrices A(t + 1), B(t + 1) and C(¢ + 1) now stand for estimates of the PARAFAC decomposition of X (¢ + 1).

B(t+1). Since Hf(t+1) = P(t+1)R(¢+1), the least-squares
estimate of b(¢ + 1) is given by

b7 (t+1) = Pew(t + DRL,(t+ Dx(t+1) (41
in the exponential window case and by
bY(t+1) = Prw(t+ DRL(t+ Dx(t+1)  (42)

in the truncated window case. The task is now to find a recursive
update for RTEW and Rl}w

Rbw(t+1) = ORew(t) +x(t + Db (t+1)", (43)
Rby(t+1) = ARrw(t) + x(t + 1)b*(t + 1)

— AVx(u)b*(u))". (44)

Since RJ][:W (t41) has arank-1 update structure, it can efficiently

be computed by applying the matrix pseudoinversion Lemma

given in the Appendix . Given the rank-2 update structure of

ijw(t + 1), it can be efficiently computed by applying this
Lemma twice.

3) Updates of A, B, and C: These unknown matrices are
finally updated in a way similar to PARAFAC-SDT.

C. Complexity

The PARAFAC-RLST algorithm is summarized in Table III,
with the complexity associated to each step. With a truncated
window, the total complexity of this algorithm is R?(161K +
72)+ R(144I K + 10K +20), and with an exponential window,
itis R%(16 K 1+40)+ R(88 K I1+10K +10). For both windows,
PARAFAC-RLST has a much lower complexity than ALS (see
Section VI-C).

VIII. INITIALIZATION

In this section, we discuss how PARAFAC-SDT and
PARAFAC-RLST can be initialized before entering the tracking
mode and we propose two options. First, one can collect the
first J;,;¢ slices to build the initial observed tensor and then
run a batch algorithm to fit a PARAFAC model on this tensor.
The delay introduced by this initialization step depends on the
complexity and convergence speed of the batch algorithm used.
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Another option is to build an EVD-based initialization, which
is commonly used to initialize batch PARAFAC algorithms,
by exploiting an ESPRIT-like idea [33]. Let us consider the
tensor X" of size I x 2 X K built from the first two observed
slices. The task is to find initial estimates of A € CI*E
C € CF*R and B € C**® that fit the PARAFAC model of
X. The first I x K slice can be written as X(1) = AD;C7,
where D; = diag(b;) and by is the first row of B. Similarly,
X(2) = AD,CT. Assume at this point that A and C are full
column rank, D; and D5 are not singular and that all diagonal
elements of D1 D5 ! are distinct. Under these conditions, it
was shown in [36] that the PARAFAC decomposition of X" is
unique. If A, B and C fit the model exactly, they can be found
in a simple and noniterative way. By combining the two slices,
we get X(1)X(2) = AD;D;*Af, so A can be estimated
as the R principal eigenvectors of X(1)X(2). Similarly, C
can be found from the EVD of X(1)X(2). Given A and C,
B is finally estimated in the least squares sense. In presence of
noise, though the so-obtained matrices may not fit the model
optimally, they are generally good starting points, obtained at a
significantly lower complexity than batch initialization.

IX. NUMERICAL EXPERIMENTS

A. Application: DOA and DOD Tracking in MIMO Radars

The concept of MIMO radar has recently received consid-
erable attention [37], [38]. A MIMO radar utilizes multiple
antennas at both the transmitter and receiver, but unlike conven-
tional phased-array radars, it can transmit linearly independent
waveforms. In this section, we illustrate the performance of
PARAFAC-SDT and PARAFAC-RLST in the context of DOA
and DOD tracking of multiple targets present in the same
range-bin for a bistatic MIMO radar system where the transmit
and receive arrays have colocated antennas. The system under
consideration is parameterized as follows:

 atransmit array of I colocated antennas;

* areceive array of K colocated antennas;

* R targets in a particular range-bin of interest;

s S € CM*M holds I mutually orthogonal transmitted pulse
waveforms, M being the number of samples per pulse pe-
riod;

o {a,}E |, {7 }E_, are the locations of the targets with re-
spect to transmit and receive arrays, respectively;

* A(a)=lalay),...,a(ar)]isthe I x R transmit steering
matrix and C(v) = [¢(y1), . ..,¢c(yr)] the K x R receive
steering matrix;

e J transmitted pulses;

* [3,; is the reflection coefficient of the rth target during the
7th pulse.

If the steering matrices C(y) and A () are assumed constant
over the duration of the .J pulses, while the target reflection coef-
ficients are varying independently from pulse to pulse (Swerling
II model), the observed data model obtained after matched-fil-
tering the received data by the orthogonal waveforms in S can
be written as [39]

Y =(A(a)®C(H)BT +Z (45)

2307

where Y € CIEX7 collects the observations across the J
pulses, BT = [b],... b] with b; = [31,,...,r;] and Z
contains the interference and noise term.

The model (45) was established in [39] and can be consid-
ered as the generalization of the single-pulse multitarget model
[40] to the multipulse Swerling II multitarget model. However,
the link between (45) and PARAFAC was not recognized in
[39], where the method proposed for the localization of mul-
tiple targets is a two-dimensional radar imaging method, that
consists of looking for the peaks of a Capon beamformer output.
In [41], we have linked (45) to PARAFAC and we have shown
that batch PARAFAC algorithms allow more accurate localiza-
tion of the targets than the Capon estimator of [39], at a lower
complexity. As aforementioned, (45) considers that A («) and
C() are fixed during .J pulse periods and that only the reflec-
tion coefficients vary from pulse to pulse.

If the localization of the targets with respect to both arrays
is now supposed to vary from pulse to pulse, the PARAFAC
decomposition (45) has to be tracked. For each new pulse, a new
row is appended to B, a new column is appended to the observed
matrix Y and all entries of A(«) and C(v) may change. This
corresponds precisely to the problem considered in this paper.

B. Simulation Results

The sth transmitted waveform, i.e., the th row of S, is gen-
erated by [S];. = 1+ \/—_1/\/§[HM]1',;, where H,; is the
M x M Hadamard matrix, and M is fixed to 256. We con-
sider uniform linear array (ULA) transmit and receive arrays
with half-wavelength inter-element spacing for both arrays. The
carrier frequency is fixed to 1 GHz. Following the Swerling II
target model, we assume that the reflection coefficient of the rth
target obeys the complex Gaussian distribution with zero mean
and unknown variance U%w The entries of Z obey the complex
Gaussian distribution with zero mean and unknown variance.
The signal-to-noise ratio (SNR) for a given pulse 5 is defined
by

[(A(a) © C(y9)))bT|?
1121511

where {a,(nj ) WA ~ ) 1B are the locations of the targets with
respect to transmit and receive arrays, during the jth pulse.

We have conducted numerical experiments with I = K = 6
antennas and R = 5 targets. The set {05 }2_, holds linearly
spaced values from 0.3 to 0.5. The SNR is fixed to 8 dB for
each pulse. The targets have an elliptic trajectory in the plane
(a, ), see Fig. 2. The performance is assessed in the two cases
J = 100 pulses and .J = 500 pulses. Each target follows the
same trajectory in both cases, with the same initial and final
positions. Thus, the tracking problem is more difficult in the first
case since the positions of the targets vary from a larger amount
between two consecutive pulses.

We compare the performance of PARAFAC-RLST-TW,
PARAFAC-RLST-EW and PARAFAC-SDT-TW to the batch
ALS algorithm [23]. Since PARAFAC-SDT-EW has a com-
plexity growing with time, it is not included in the loop. The
forgetting factor is A = 0.7 and the length of the truncated
window is N = 10. To initialize the tracking procedure,

SNR = 10log;, [dB]
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Fig. 2. Estimated trajectories of the 5 targets. SNR = 8 dB. I = K = 6
antennas. Left: J = 100 pulses. Right: J = 500 pulses.

the EVD-based technique described in Section VIII is used.
The batch ALS algorithm is used repeatedly to compute the
PARAFAC decomposition of the tensor formed from the N
most recent observed slices. For the comparison between ALS
and adaptive algorithms to be fair, ALS is initialized with the
loading matrices estimated from the decomposition of the pre-
vious tensor, which are supposedly close to the actual solution.
Consequently, a few iterations of ALS (typically 20) are needed
to converge.

In Fig. 2, we plot the trajectories estimated by PARAFAC-
RLST-TW and ALS. It turns out that both algorithms
have very close performance, especially with J = 500
pulses. For the sake of clarity, the corresponding trajec-
tories of PARAFAC-RLST-EW and PARAFAC-SDT-TW
have not been plotted, since they are very close to those of
PARAFAC-RLST-TW.

In order to highlight differences in tracking accuracy between
the proposed adaptive algorithms and their batch counterpart,
we plot in Fig. 3 the evolution of the absolute value of the dif-
ference between true and estimated angles of departure, aver-
aged over all targets. As a first observation, it is clear that batch
and adaptive algorithms all perform better in the case J = 500
than J = 100, since the error is always less than 1° in the first
case. As a second observation, the performance gap between
batch and adaptive algorithms reduces as .J increases. This is
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Fig. 3. Evolution of error on angle of departure, averaged over the 5 targets.
SNR =8dB.I = K = 6 antennas. Left: J = 100 pulses. Right: J = 500
pulses (zoom on the first 100 pulses).

expected since a high value of .J corresponds to slowly varying
target positions, which makes tracking easier.

The previously derived per-iteration flop counts for the var-
ious algorithms are summarized in Table IV. Unlike the adap-
tive algorithms, batch ALS is iterated until convergence, and the
number of iterations depends on the specific problem instance
and the quality of initialization. In the experiments detailed in
this section, PARAFAC-ALS typically converged in 20 itera-
tions. In Fig. 4, we compare the execution time of batch and
adaptive algorithms. The execution time for the first 10 slices
corresponds to the initialization. It is clear that the proposed
adaptive algorithms have a very low complexity compared to
their batch counterpart—the gap in terms of execution time is
between two and three decades. This observation is in accor-
dance with Table IV, which indicates that, in theory, 20 itera-
tions of PARAFAC-ALS yield a complexity that is about 200
times higher than the one of the adaptive algorithms, for the di-
mensions chosen in this experiment. While differences in exe-
cution times depend on implementation, comparing algorithms
relying solely on matrix algebra tools implemented in Matlab
gives a good idea about complexity, especially in our case where
the execution times are orders-of-magnitude apart. Finally, since
the complexity of PARAFAC-RLST-EW is lower than that of
PARAFAC-SDT-TW and PARAFAC-RLST-TW, with a similar

Authorized licensed use limited to: University of Minnesota. Downloaded on May 29, 2009 at 04:16 from |IEEE Xplore. Restrictions apply.



NION AND SIDIROPOULOS: PARAFAC DECOMPOSITION OF A THIRD-ORDER TENSOR

Algorithm

TABLE 1V
COMPARISON OF THE COMPLEXITIES

Complexity (flops)

I=6K=6N=10,R=5

PARAFAC-ALS

88R3 + R*(64NK + 641K + 64IN) + R(24INK + 8NK + 8IK + 8IN)

310640 per iteration

PARAFAC-SDT, TW 16R% + R?(311K + 31N + 40) + R(32IK + 10K + 20) 44810
PARAFAC-RLST,TW R2(161K + 72) + R(144IK + 10K + 20) 42520
PARAFAC-RLST,EW R?(16IK + 40) + R(88KI + 10K + 10) 31590
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Fig. 4. Evolution of execution time. SNR = 8 dB. I = K = 6 antennas.
Left: J = 100 pulses. Right: J = 500 pulses.

accuracy (at least in the MIMO radar application considered in
this section), the use of this algorithm is to be preferred.

X. CONCLUSION

In this paper, we have proposed two adaptive algorithms
to track the PARAFAC decomposition of a third-order tensor.
To our knowledge, this problem has not been addressed in
the literature before. The first algorithm, which we termed
PARAFAC-SDT, is the tracking version of the batch algorithm
based on simultaneous diagonalization proposed in [29]. The
second algorithm, which we termed PARAFAC-RLST, is based
on the minimization of a weighted least squares criterion.
The use of PARAFAC-SDT algorithm is preferable with a
truncated window, since its cost with an exponential window
increases with time. The PARAFAC-RLST algorithm can be
used with both windows. Through the application of multiple
target tracking in a MIMO radar system, we have illustrated
the excellent tracking capability of these algorithms, which
offer performance very close to the well-known batch ALS al-
gorithm, at a much lower complexity. Finally, PARAFAC-SDT
and PARAFAC-RLST can be readily employed in a variety of

established PARAFAC applications, such as those considered
in [23], [24], [27], to deal with a time-varying wireless com-
munication or acoustic propagation channel, or in [42], [43]
for tracking the epileptic seizure localization. The derivation
of adaptive algorithms to track the PARAFAC decomposition
of tensors of any order for which only one mode is growing
can be done in the same way as for the three-way case. The
only difference in the N-way case is that the matrix H(¢) in
(4) would be the Khatri-Rao product of N — 1 matrices. The
generalization to the case where two or more dimensions are
growing is left as future work.

APPENDIX
PSEUDO-INVERSION LEMMA FOR RANK-1 UPDATE

Let A € CMXN M > N, be a full column rank matrix.
Consider the vectors ¢ € CM*1 and d € CN*1, Assume that
A + cd¥ is full column rank, then

1 *
(A+cd®)F = AT + EAThHuH - %qu (46)

where 3 = 1+dZAfc,h=d? AT, u= (I, - AAT)c, k =
Afe,p = —(lul?/8" Ath7 +K), a7 = —([h|>/F*u" +h),
and o = ||h|” |lu]|* + |8]°. Note that in the case M = N,
then u = 0, such that (46) then reduces to (A + cd®)’ =
At —1 /Bkh, which is the inversion lemma.
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