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Abstract—Frequency hopping (FH) signals have well-docu- challenging when the hopping patterns of the constituent sig-
mented merits for commercial and military applications due to nals are unknown, and, in addition to dwell frequency, hop
their _near-far resistance and roblfstne.ss to jamming. Estimating timing is randomized as well for added protection. Maximum
FH signal parameters (e.g., hopping instants, carriers, and am- likelihood (ML) estimation is practically intractable in this
plitudes) is an important and challenging task, but optimum . . g :
estimation incurs an unrealistic computational burden. The spec- CONtext, which motivates the pursuit of alternative low- to
trogram has long been the starting non-parametric estimator in this  moderate-complexity solutions.

Index Terms—Compressive sampling, frequency hopping sig- Starting fromcoarse channelization tech_niql_Jes based on the _
nals, sparse linear regression, spectrogram, spread spectrum SPectrogram and related non-parametric time-frequency esti-
signals. mation tools, there is considerable literature on the subject of
FH signal parameter estimation and tracking. Non-parametric
methods based on the spectrogram are simple but suffer from
limited resolution and require further rebnements [1], [29].
Time-frequency distribution techniques have been investigated
in [2] for acquisition of FH signals.

Parametric methods for FH signal estimation model the active
frequency as piecewise-constant and achieve improved estima-
tion accuracy at the cost of higher complexity. The crux of the
overall problem isiop timing estimation: given the hop instants,
what remains is essentially a sequence of harmonic retrieval
problems. When the hops are periodic, the timing problem re-
duces to estimating the hopping period(s) and offset(s) [1], [2],
[29]. Hop timing estimators for the more difbcult case of ape-
riodic hop timing have been developed based on dynamic pro-

REQUENCY-HOPPING spread-spectrum signaling igramming (DP) [22], [23], and the expectation-maximization
widely adopted in tactical communications due to its lokEM) algorithm [24]. The algorithms in [22], [23] and [24] re-
probability of detection and interception, agility, and robustne&lire multiple receive antennas, and rely on the spectrogram for
to jamming [34]. Estimating and tracking the parameters €Parse acquisition.
multiple superimposed FH signals are important tasks with When only one FH signal is present, an effective particle bl-
applications in both military and civilian domains: from in-tering solution based on a stochastic dynamical system formu-
terception of noncooperative communications, to collisioition has recently appeared in [36]. Different from [22], [23]
avoidance and cognitive radio. The problem is particulargnd [24], the approach in [36] allows for sequential processing,
and is robust to various sources of mismatch in the probabilistic
Manuscript received October 26, 2009; accepted June 01, 2010. Date of pu Qdel adOpFed' The .Ilmltatlon of [36] is that IF doe; not.gener-
lication June 10, 2010; date of current version September 15, 2010. The @iz€ to multiple FH signals, due to therse of dimensionality:
USA (e-mail: angfll?Q@;Jhn:ﬂéeglé; 3ﬁ?§%ir?tsc?.¥$2£fodn”%and Computer En t_h_e required number of particles grows fast with the dimension-
ne’:fir?g.;,S':'Célcr:zﬁioclgloa:ixrsity of CPete, 73100, Chania, Crete, Gre%li:e (e-ng'le !ty ofthe state-space. The complexny of DP_.based approaCheS
nikos@telecom.tuc.gr). 2], [23], on the other hand,~ increases rapidly also with the
Digital Object IdentiPer 10.1109/TSP.2010.2052614 number of temporal samplesNthus only short data records can
be processed.
While sparse linear regression (SLR) has been advocated in
[10] and [16] for harmonic retrieval without carrier hopping, in
this paper a novel SLR-based technique is developed for mul-
tiple FH signals. Relative to [10] and [16], here we also take ad-
vantage of sparsity in terms of carrier hopping, which is effected
through a dual sparsity penalty. The developed estimator is also
generalized to handle polynomial-phase hopping (PPH) signals
that emerge in chirp spread spectrum communications [6], [21],

|I. INTRODUCTION
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[28]. A pertinent sparsity-aware optimization problem is formu- [I. PRELIMINARIES AND PROBLEM STATEMENT
lated and solved using the alternating direction method of multi- ~qsider the noiseless signal
pliers (ADMoM). Simulations illustrate that the developed tech- consists of
nique is robust to model mismatch, and far outperforms spec-

trogram-based methods, especially with regard to hop timing

estimation. Q)

Due to the non-convexity of the FH estimation problem, para-
metric techniques based on the likelihood function (such as the

, which at time
pure tones; that is

EM algorithm) can be trapped in local minima if the initializawhere is the th system-wise hopping instar22],
tion is far from a global minimum. Due to its low complexity is the th system-wise dwell, and
and high accuracy, the novel SLR-based estimator can be used are the complex amplitude and

both as a stand-alone FH signal estimation algorithm, and asfeequency of the th tone in the th system-wise dwell, re-

excellent initialization for iterative rePnement algorithms, suckpectively. The number of tones, , can also vary with ,

as the one in [24]. due to emitter (de)activation or bandwidth mismatch [24]. The
Interestingly, the closely related problem of identifyingntire observation interval is . A noncooperative

the parameters of a piecewise-sinusoidal mixture model frasynchronous scenario is considered; hop timing is aperiodic,

(generalized) samples has been studied in [5] using a Pnite-ratel independent across transmitters. Our approach is geared to-

of innovation (FRI) approach. SLR and FRI are different toolard slow FH signals, and offsets due to frequency modulation

dealing with similar problems; see also [9] for a tutorial on FRdan be accommodated as well. The measured continuous-time

and its relation with SLR and compressive sampling. Whilgaveform is corrupted by additive circularly-symmetric

introducing interesting identiPability conditions and algorithmgomplex white Gaussian noise | i.e.,

for perfect reconstruction of the underlying continuous-time

signal, the approach in [5] is not directly app]icable to the @)

present context. The switching instants (OhopsO) in [5] are con-

tinuous variables, and the measurements are obtained through . .

analog pre-bltering with a properly chosen kernel wavefornt-€t ~ denote the total number of system-wise hops in ,

which may or may not be affordable. Since the hopping stef8 o the period with which  is sampled

are not instantaneous in practice [34], the present algoritr?rhthe receiving end. The discrete-time FH signal can be written

(as well as all existing alternatives for acquiring FH signafs [cf. (1]

[22]D[24], [36]) do not attempt to localize tlexacthopping

instants, but rather aim to detect hops. Also, PPH signals are

: : . . X 3
not considered in [5]. On the other hand, numerical simulations 3)
suggest that a suitable modibcation of the SLR estimator for
the noiseless case can perfectly recover the sampled FH sigpals, .o
as well. , and . Corre-

The rest of this paper is structured as follows. Section Il cog
tains preliminaries, and the problem statement. The novel SL
formulation is introduced in Section lll, where sparsity tuning

Bondingly, the discrete-time noisy observations are [cf. (2)]

and extensions to PPH signals are also presented. An efpcient )
solution based on the ADMoM is developed in Section IV. Sim-
ulations are presented in Section V, and conclusions are drawere is white, and .
in Section VI. Given , the objective is to estimate
Notation: Column vectors (matrices) are denoted with ,and . Since ML estimation of FH
lower-case (upper-case) boldface letters and sets with cafiignal parameters is practically intractable, non-parametric es-
graphic letters; stands for transposition, for con- timators based on the spectrogram have been traditionally em-
jugate transposition, and  for pseudoinverse; ployed. These are outlined briel3y in the next subsection in order
denotes the complex Gaussian probability density functié® establish notation and context for the novel approach we will
with mean and variance denotes the Kronecker develop in Section [Il.
product; and . Qenote the_z real gnd imaginary part ok Spectrogram-Based Estimators
, respectively; is the -dimensional column vector
with all zeros and is the -dimensional identity matrix,  1h€ Spectrogram of is the squared modulus of the
while denotes the matrix with all zeros. The Short-term Fourier transform debned as
(pseudo) -norm of is debned as the number of nonzero
elements of . The -, -, and -norms of are _
debned, respectively, as ®)
, and

1The set of system-wise hopping instants is the union of all individual emitter
hopping instants, splitting the time axis in system-wise dwells.
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for , and where , and
. Specibcally, one splits the observed data into . Observe that represents
overlapping segments, windows with , the amplitude and phase of theth frequency bin at
and computes the discrete Fourier transform (DFT) evaluatéthe . Since , a few of the coefbcients
at frequencies. Parameters , and the window , representing the active frequencies at each time,
highly affect the performance of spectrogram-based FH paragfe nonzero. Letting , and
eter estimators. A large vyields improved frequency resolu- , the model in

tion, but poor temporal resolution which blurs hop timing. Small
blurs the frequency axis, and close-by hops become ind{8) and (4) can be expressed in vector-matrix form as

tinguishable. This unyielding tradeoff is the major limitation

of spectrogram-based estimation, and it also affects parametric (7

techniques which employ the spectrogram for coarse acquisi-

tion. Two types of spectrogram-based techniques have been bere , and .

posed in the literature for (aperiodic) hop timing estimation. The FH signal parameters to estimate can be obtained from
1) Entropy-based techniqug®2]. The columns of the spec- , which obeys the linear regression model in (7). Matrix

trogram matrix formed with entries as in (5) are normal- ~ represents the time-localized
ized to sum to unity, and the entropy of each column fequency content of the signal, andredatedto the spectro-
computed. With denoting the sequence ofgram.

entropies, FH causes spectral spreading that translates thhe key advantage of introducing the grid of candidate fre-
higher entropy. This suggests obtaining the hopping ifuencies is that the nonlinear parameter estimation task at
stants by picking the peaks of ; and hand is converted to a linear one [cf. (7)]. This is possible by
2) Gradient techniquef24]. After setting to zero the entriesincreasing the problem dimensionality through the selection of
which are smaller than a predebned threshold -Note alsothatasthe ~ matrix isfat,
(typically equal to the sample mean of the spectrogranﬂ‘,e least-squares (LS) solution with minimumnorm, namely

the sum of the difference of consecutive columns is _» does not yield an accurate estimate of
evaluated. i.e. even when the signal-to-noise ratio (SNR) is high. Improved

for . The system-wise hoppi,ng alternatives are possible how_e\{er, if one capitalizes on t_he fact
instants can then be estimated by picking the peaks of that the_ unknown vector exhibits the following twasparsity
These estimates are subsequently processed for further qj'é)pertlgs. , i i
Pnement. Once hopping instants are acquired, the paramete]rl: Aptwe carrier-domain sparsﬂpnly a few of th.e coefb-
within each dwell are estimated via harmonic retrieval tech- g::ar]rfe are nonzero, which implies that in (7) is
niques [22], [24]. X S . .
ql’he rLet]ho[d d]eveloped in the sequel can be used as an effe%)— p|ﬁerentlal time-domain sparsity (smoothne_s:ﬁh?ce FH
tive stand-alone solution that jointly recovers hop timing and is assumed SIOW.’ . . most of the yme, hence,
the remaining parameters of interest, namely , dwell fre- egch row of 1S g}f?cemse constant. This means that
guencies, and amplitudes. Alternatively, the novel method can n; djeatcﬁg\fvrfr\]z “wise dl erencesmi:t? iiparse.
be used to extract timing estimates, to be passed on to succes-
sive stages (e.g., those described in [22] and [24]) for further

rebnement.
(8)
[ll. ESTIMATION VIA SLR
Suppose that the true frequencies in (3) belong to a \here , and the notation
known Pnite set with cardinality - = - =

. Note that this is not a limiting assumption for civilian represents the riaht cvclic shift of positions. From
applications, provided that Doppler is negligible. In caseswhetrhee debni?ion in (8), the ght ¢y th entrv of P conta.ins the
this information is not available, the set can be a dense grid difference S hence. as merzltioned earlier. s a
such that the separation between two consecutive frequencies ' ' '
in  is less than the desired resolution (in the same spirit gPe:jrse”vector. Id § d i .

[10], [16] for harmonic retrieval). Clearly, as the preselected |dea ¥ one wolu' Omeﬁ parse and piecewise colnst:?mt es-
increases the density of the grid increases, and so doest{Weate of by solving the following optimization problem:
frequency resolutionNwhat in the sparse linear regression par-
lance is referred to as super-resolution [16]. -
With , the received noisy samples can be

rewritten as ©)

The brst term of the cost function in (9) takes into account the
(6) observed signal while the positive scalarsand  control the
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intrinsic sparsity and smoothness of the estimate, respectivddpunds of these parameters. To boundwe will rely on the
However, the problem in (9) is non-convex and NP-hard.  following result, which was derived in [25].

Motivated by recent advances in variable selection [33] and
compressive sampling [13], th&-norm is relaxed with the
convex/;-norm. Hence, the advocated formulation becomes

Proposition 1. [f A\ = 0, then ™ = Onp if and only if \1 >
AL = [WHY |l

Proposition 1 asserts that ¥; is greater than a threshold
~ . 1 : . ; :
=arg in |=|[ly =W || +Xi]l L1+A D || specibed by the regression matrix and the observations, and
A A = 0, then (10) yields estimates that are identically zero. This
(10) property of the Lasso has been exploited in [10] to select the
penalty paramete;. In the present context of FH signal esti-

Large, effects sparsity, and large effects smoothness. Sincémation, the implication is thak, must be chosen strictly less
ID [+=>" >, lzn —x,_1 |, the second;-norm

i . ' than\j in order to prevent the all-zero solution. Our extensive
penalty in (10) captures the sum of total variation penalties. ;1 lations suggest that setting equal to a small percentage
A couple of remarks are now in order.

> It k . of A}, say 5%D10%, results in satisfactory estimates; see also
Remark 1. One motivation behind SLR-based harmonic réection V.

trieval in [10] and [16] is that non-uniform sampling can be Turning our attention to bound the selectionoflet &, de-

accommpdatedNa case of interest, &g, in astronomy or Whﬁate theN N lower triangular matrix with all nonzero entries
observations are missing. Parametric and subspace-based rggllam to one. DebnE := £ © Ip, and partition the matrix
resolution algorithms (such as ESPRIT and MUSIC) can aﬁomoducth into M, € CJ\JTVXP an’dM € CNX(N-DP gq

non-uniform sampling only under suitable identibability Cond'fhat[MO. M] := WX. Using these debnitions, we have estab-

tions (such as shift invariance); see e.g., [30]. Similar to [1Q]gheq the following property of the SLR estimator in (10): see
[16], the novel FH parameter estimator in (10) remains OPeTRnpendix A for the proof.

tional even with non-uniformly sampled data, thanks to the grid-

based formulation. In this case,, := [ J1n e, jr n]T, PI‘OpOSitiOH 2. If/\l =0, and MQ I’lanI/lll column rank, then

wherer,, denotes the acquisition time of théh sample. T=0 T T wirh = (M M)~ My, if and only
Remark 2. If A\ = 0, (10) is known as the least-absolutdf A > X* := [M"(My —y)]|c.

shrinkage and selection operator (Lasso) [33]. With# 0, ¢ \ exceeds a threshold which is specibed by the regres-

the cost in (10) is similar to the one utilized by the fused Lass®,, matrix and the observations and = 0, Proposition 2

in [19]. o . , implies that the estimates in (10) are constant in time; that is, all
The optimization problem in (10) is convex because the cosbgyency bins are hop-free. To avoid this trivial (non-FH) so-

comprises the sum of af -norm term and arf -norm term, | 4ion the guideline provided by Proposition 2 is thatmust

both of which are convex by depnition; hence, the costin (1B chosen strictly less thart. As with A;, the simulations of

can be minimized via interior point solvers, which are compusgtion v will demonstrate that settig to a small percentage
tationally affordable for small-to-medium size problems [32];¢ |« yields satisfactory estimation performance.

Since the non-differentiable part in (10) is not separable coordi-p a4 3. The scalars weighting the regularization terms

nate-wise, convergence to a global optimum of coordinate-dgs, affects the bias present in the estimators obtained as in (10).
sce_nt so_lvers [35_] cannot be invoked for Iarge-sme prObIe”§peciDcally, note thak, || || biases™ towards zero, which

An iterative algorithm taipproximate the solution of the fused oy render the complex exponential amplitude estimates unre-
Lasso is developed in [19]. On the other hand, alow-complexifypje \while the proposed back-off in selecting the regulariza-

algorithm to solve (10}xacrly will be derived in Section V. tjon narameters relative to the bounds in Propositions 192 can

Before presenting this solution, itis of interest to explore usefil,it this pias, several strategies can be adopted to correct it. A
properties of the estimator in (10) as a function of the Sclars gjm e way for correcting the bias is to brst acquire the hops (or

andA . hops plus frequencies) via (10), and then solve a line spectrum
A Guidelines for Choosing Ay and A _(correspondingly, amplitude) estimation problem_foreach dwell

: in-between the detected hops. A drawback of this per-dwell ap-

Selection of the regularization parametérs, A ) affects proach is that it does not exploit the possible correlation present
critically the performance of the estimator in (10). While undelacross adjacent dwells [cf. Section V-C].
regularizing may not be sufbcient to retrieve the signal of in- Another approach to correct the bias in sparse regression is
terest, over-regularization can result in poor and biased estiretain only the support of (10) and re-estimate the amplitudes
mates. Of course, if the number of tones present can be pv@, e.g., LS. Notice that this approach is not directly appli-
vided a priori by other means, e.g., by inspecting the spectroable here because the number of non-zero entriesmm{10)
gram,(\1, A ) can be tuned accordingly by trial and error. Butiris generally in the order oM N, while the number of equa-
general, analytical methods to automatically choose the Obéist@s in (7) isN; that is, the resultant linear regression model
values of\; and\ are not available. In essence, selecting ths still under-determined. However, one can take advantage of
regularization parameters is more a matter of engineering dite fact that the vector estimateis not only sparse but also
rather than systematic science. piecewise constant. To this end, summing the column$vof

In this subsection, heuristic but useful guidelines will be prazorresponding to the entries dfthat are equal, it is possible to
vided to choosé\;, A ) based on rigorously established lowereduce the number of unknowns.
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Observe that the model in (15) coincides with (3) widés= 1,

5049

Associating Lagrange multiplie(g, ) with the equality con-

while for G = 2 it includes also a linear-chirp hopping signalstraints, the quadratically augmented Lagrangian of the problem

For simplicity in exposition, the cagé = 2 is detailed next.
Suppose that the parameter{s;fi)k} and {qfn)k} in
(15) belong to bnite sets ; = {w{V ...

not the case, ; and
. 1
proximate the true parameter$qfn)k} and {(L(n)k}- If

[] 11)n7"'7 7 Pll)n]T7

this is the case, debnaﬁll)
. - )
Qh(z)::[Jl)n/ ’P"/]T,and&n =wl) @w’,

with w,, € ChP, Upén properly debning, € C™F | the

discrete-time signal in (15) can be written as

~ . ~T~
n =W, T,.

(16)

At the receiver, ™, is corrupted by additive noise,,
and observed ag, = ., + v,. Debningw, :=

,wg}} and
= {w§ ),...7w§3)}, respectively. Again, if this is
represent dense grids that ap-

in (20) is

L( ,z,u,( p)
1
=S ly =W I +Xillzlls + A [[ulls
+R{CY( ~2)+p (D —u)}

C
+5 0 =2l +ID —ul ).

5 (21)

Selecting any positive numberas well as arbitrary initial
vectorsz(®, u® ¢ 4 the ADMoM algorithm iterates
over the following steps:

@ — arg inL ’Z(z‘fn,u(H)}C(i—1>,”<z’71>)(22)

[0'};1) 01/1;]) (:/)T 0%’;17 0'};17 ]T c CP1PN [Z(l)/u(z):l = arg lunﬁ (L)/Z/u/<(1—1)7ll'(l—1)> (23)
__n N-n-1 ¢ =¢i=D 4o O _ Z(i)) (24)
W = [wy,...,wy_1]7, and lettingy := [vo,..., unv_1]" ‘ ‘ , ,

~ ’N ~ . . @ — ,G-1) @ _ y®
and™ := 7,...,0x_1]  denote the observation and noise ~ # —H ' tc D u ) : (25)

vectors, the received vector becomes

y=Wz" +~ (17)
~% ~T ~T T PPN i
where ° = [Zg,...,Tn_4] e CHhP N Again,
T" is sparse and piecewise constant. Lettidg :=
[-1,0,...,0,1, 0,...,0 ]%,and
— — — —
PP -1 (N-1)PP -1
di
D - d1T(1) (18)

D:=
a{((NA)PIP —1)

the proposed SLR-based estimator for PPH signals is

~

Tz arg in
XGCNPI P

1~ ~
1T =W 1l LA D ]
(19)

Clearly, by simply replacing the regression maivi with W,

the SLR estimator in (10) developed for FH signals carries over

to the wider class of PPH signals.

IV. EFFICIENT IMPLEMENTATION VIA ADMoM

A low-complexity algorithm is developed in this section t

o . . L
u. Since the resulting minimizers w.rdandu are found anal-

With the auxiliary variables and the multipliers available from
the (i — 1)st iteration, the wanted vectof?) at iteration(i) is
obtained as in (22). Becaugein (21) is linear-quadratic in,

in Appendix B is shown that this convex minimization problem
accepts a closed-form solution, namely

(i) — (WHW+ CDHD + CINP)—I WHy _ C(ifl)

— D=1 4 g1 4 cDHu(i_l)) . (26)

Having found (9 and with the multipliers bxed from the —

1)st iteration, the auxiliary variablgs(®, u(®] at iteration(4)

are subsequently obtained as in (23). After neglecting irrelevant
terms, the pertinent minimization problem reduces to

[Za)’ u(i)}
—org i | Al =R ¢V S ) O] )

# A ull = %G+ ([0 O] ))]. @)

Clearly, the cost in (27) can be minimized separately nd

obtain™ in (10). The crux of the advocated solver of the opti-
mization problem in (10) is to show how the alternating dire& U H ,
tion method of multipliers (ADMoM) [8, pp. 243D253] can bdVoting that, |z[|, — Rz} +(e) /@) D —2]| ) =
applied to the problem at hand.

gously, only the minimization ovet is detailed for brevity.

SRRl = R k) H0/@)l” = &l ), the min-
Consider re-writing the minimization in (10) with the use ofmization in (27) overz can be solved coordinate-wise; that is,

auxiliary variables andu, as for each coordinaté = 1, ..., NP, the problem to solve is
~ A~ . 1 i . i—1)%* c i
(28] =arg in |Gy =W I+ 0llelh+ A | O =arg i [al =% (70 +S a0 )]
st. z= ,u=D . (20) (28)
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Albeit non-differentiable, the scalar convex costin (28) canb — [T s —_—
solved in closed form. Specibcally, we show in Appendix B thez

15

9 a
S S
N

frequency
u

the solution of (28) is given by j 20 1so~'l - g0
25— 200 ' 25—
(i), ¢ b % 250 3
) 0, if xy, 42k =) 10 20 30 40 10 20 30 40
‘1, = ) 1 1) . 1) time time
’ I’”ﬁ‘% ax x,(f)-l-c“— — 2L 0), otherwise ®) ©
|z, 7+ ¢,
) (i—1) A
:= shrin m,(:’) + 2k —1> (29) =
C C

o 20 40
time

®
a vector, the closed-form solution of (23) can be compactly ekig. 1. Two hopping complex exponentials. (a) True time-frequency pattern;

which corresponds to the complex version of the soft shrinkacg
operator in, e.g., [17]. Collecting the coordinate minimizers i @

pressed using the vector Shrinkage operator with entries asf pectrogram; (c) sparse linear regression estimates; (d) entropy of the (nor-
malized) spectrogram estimates, (e) sum of the difference of consecutive

(29), namely columns of the spectrogram; (f) As g, S Tt = Tnl
(2.
4 , G=1) )\
z® =shrin @ 4 C—, —1) (30)
¢ ¢ A. Noiseless Case

. . (i-1) . . . . o
u® = shrin (D @ 4 “_7 )‘_> ) (31) Similar to (10), the estimator in (12) admits an efbcientimple-
¢ ¢ mentation via the ADMoM. Indeed, mimicking the steps used to

Furthermore, note that the Lagrange multipliers are SubsSép_lvethe minimization problemin (10), the following holds true.

quently updated as in (24) and (25), which are brst-order, leasProposition 4. For any ¢ > 0, (9, u©, ¢ 4© p©) spe
mean-square (LMS)-like iterations. iterates

In a nutshell, the primal problem in (10) can be decoupled in () _ 1 WEW + DED + Invp) L (cWH (i—1)
the minimization problems (22) and (23), which entail closed- c( + +Inp) (e ytez

form solutions per iteration plus simple Lagrange multiplier up- + DFul=D — =D _pH =) _ ywH pi=1))

dates implemented as in (24) and (25). Apart from simplicity in (32)

implementation, this iterative algorithm for SLR-based FH pa- (i-1) 4

rameter estimation is provably convergentan (10), since  z(9 = ghrin @ 4 ¢ o 7) (33)

the ADMoM is guaranteed to converge to a global minimizer ¢ ¢

for convex functions [8, p. 253]. Summarizing, we have estab- @) ) @ pli=b 5

lished the following. u'* = shrin <D +— ;) (34)
Proposition 3. For any ¢ > 0,2, u®, ¢V and p), the () = (-1 4 . @) _ z(z’)) (35)

iterates V) in (26), z® and u® in (30) and (31), as well as

C(i) and p'? in (24) and (25), are all convergent. Specifically, p.(i) = u(i_l) +¢ D @— u(i)> (36)
() converges to the solution of (10); thatis,1i ;oo ) =", ) = pli=1) 4 (W () v) (37)
It is worth stressing at this point that the ADMoM solver of (@) _ ~

the SLR problem in (10) and the associated convergence re§@ft¢8¢ 10 the solution of (12); that is, li i~
in Proposition 3 are not conbned to the FH/PPH signal estima-
tion problem dealt with here. In fact, they carry over to all prob-
lems that fused Lasso can be applied [19]. An extra attractiveln this section, the developed algorithms are tested in several
feature of the ADMoM algorithm in (26)D(31) is that the mascenarios.

trix to be inverted in (26) remains bxed during the iterations; ) o o

hence, the matrix inversion in (26) can be performed off-liné: Frequency Hopping and Hop Timing Estimation

With (WHEW + DD+ cIyp)~! obtained off-line, the com-  The signal of interest in (3) and (6) consists of two hop-
putational complexity per iteration is dominated by the multing tones, while the grid of carriers is chosen to be =
plication in (26), that i?(N P ). Furthermore, since the ma-{ *If*lw}P 1 With P = 32, andN = 48. The brst FH tone is

trix WEW + ¢cDPD + cIyp is very sparse [cf. (7) and (8)], generated to be active on the 10th carrier in the interval [0, 9],
solving (26) for largelV and P can be facilitated via computa- and then hops to the 20th carrier during the interval [10, 47]. The
tionally efpcient solvers of sparse linear systems of equatiosecond hopping tone occupies the 25th carrier in the interval [0,
such as the conjugate gradient algorithm [7, p. 130]. In additio?9], and the 5th carrier in the interval [30, 47]. The two FH sig-
the ADMoM can afford a convergemtstributed implementa- nals are in-phase and have equal amplitude.

tion which is also robust to noisy links [27]Na useful attribute The true time-frequency pattern of the signal of interest is de-
when estimation is to be performed using wireless sensor ngicted in Fig. 1(a). (Here and in what follows the squared mod-
works, where observations are spatially distributed. ulus of theX™ entries is plotted.) The spectrogram obtained with

V. SIMULATIONS
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Fig. 2. Two hopping complex exponentials. Probability of incorrect detecticﬁg. 3. Three hopping complex exponentials. (a) True time-frequency pattern;

versus SNR (b) spectrogram; (c) sparse linear regression estimates; (d) entropy of the (nor-
) ) malized) spectrogram estimates, (e) Sum of the difference of consecutive
N; = 8 N = 256, = 1, and using a rectangular windowcolumns of the spectrogram,; (f) s r» Y e — Tl

is shown in Fig. 1(b) aBNR := 10log;,(||z*|| )/(No ) =
10 dB. In Fig. 1(c), the modulus of the estimate in (10) rear-
ranged in matrix form, e, = [To,-.-, ~n-1],is depicted for
A1 = Af/20andA = A*/10, with AT (A*) as in Proposition 1
(correspondingly 2). Here and in what follows these scaling pa- 107 ¢
rameterg )\, A ) are used unless specibed otherwise. ADMoM
updates in (22)D(25) are terminated either after a bxed number 5
of (here10?) iterations, or, by using the following stopping cri- o
terion: (|| @ — =Y )/(|]] @] ) < 1078, Observe that
is a far better estimate of the true time-frequency pattern than 10°
the spectrogram. —— Entropy

Fig. 1(d) and (e) depicts, respectively, the entropy sequence =
H, [22], and the gradient sequence, [24] versus time. o 2 4 & 8 1o 12 w4 1
Notice that the peaks of these statistics provide estimates of SNR [dB]
the system-wise hopping instants. In Fig. 1(f), the statistidg- 4. Three hopping complex exponentials. Probability of incorrect detection

I PN ~ . versus SNR versus SNR .

SLRn:Z 1|f17n+1 — Tn | fOfnZO,...,N—2IS
plotted. Clearly, spLr, represents a better statistic thah
and , to estimate the hopping instants. probability of incorrect acquisition versus SNR. Observe that

Performance of the spectrogram- and SLR-based hop timithg performance of the entropy-based estimator degrades while
estimators is next assessed via Monte Carlo simulations. Tthe SLR estimator achieves satisfactory performance.
signal of interest is the one in Fig. 1(a) and, for simplicity, the So far, the true signal comprised a bxed number of complex
number of system-wise hofs = 2) is assumed known. The exponentials hopping only once. Next, a case is tested where the
hop timing estimates are obtained by picking thepeaks of number of complex exponentials varies across dwells and more
Hy, ¢,and spr,. TOpickthe peaks of those statistics, thehops occur. The brst complex exponential occupies the 10th car-
following steps are repeated times: i) The maximum value rier over the interval [0,9], then hops to the 20th carrier over [10,
of the statistic is found; ii) its index is stored; and iii) the valu&4], and to the 30th carrier over [35, 47]. The second complex
of this entry and the adjacent, entries are set to zero. Correcexponential occupies the 15th carrier over [0,19] and then it dis-
acquisition (CA) corresponds to having each of thestimates appears, while the third complex exponential occupies the 25th
of the hopping instants less thavi, samples away from the carrier over the interval [0, 29], and the 5th carrier over [30, 47].
associated true hopping instants. Fig. 2 depicts the probabiNyjth the parameters identical to those used in Fig. 1, the resulting
of incorrect acquisitiofP ¢ =1— P ) versus SNR (aver- signal along with the spectrogram, the SLR estimates, and the
aged oveil 0* noise realizations) for the two spectrogram-basetkcision statistics are depicted in Fig. 5. The selection strategies
estimators, and the novel estimator in (10) with = 5 and advocated in Section IlI-A are seen effective also in this case of
N,, = 3. Observe that the entropy-based technique outperformsiltiple hops and a varying number of tones per dwell.
the gradient-based one, and the SLR estimator achieves the best
overall performance. B. Robustness to Sources of Model Mismatch

Next, the tested signal of interest compridés= 3 FH tones: In Section V-A the signal of interest was a superposition of
the two of Fig. 1(a) plus a third one that occupies the 15th cadeal complex exponentials that hopped within a known fre-
rier in the interval [0, 19], and then hops to the 30th carrier iguency grid. In this subsection, the estimator in (10) is tested in
the interval [20, 47]. With the parameters used in Fig. 1, the rethe presence of various sources of mismatch between the model
sulting signal together with the spectrogram, the SLR estimateq3), (4), and (6) and the signal of interest. First, a carrier mis-
and the decision statistics are depicted in Fig. 3. Fig. 4 shows thatch is considered.
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Fig. 5. Time-varying number of hopping complex exponentials. (a) True
time-frequency pattern; (b) spectrogram; (c) sparse linear regression

estimates; (d) entropy of the (normalized) spectrogram estimates,
(e) sum of the difference of consecutive columns of the spectrogram,
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Fig. 7. Mismatch due to B-FSK modulation: signal frequencies not within the
grid. True frequencies (top) and SLR estimates (bottom).

the spectrogram and the SLR estimates for SNR =10 dB, re-
spectively. Notice that the SLR estimator picks the two closest
carriers. While the time and frequency resolution of the SLR es-
timator is still better than the spectrogram, increasing the den-
sity of the frequency grid can further improve performance.
Next, a mismatch due to frequency modulation is considered.
Each exponential signal in Fig. 3(a) is the carrier of a binary fre-
guency shift keying (B-FSK) modulation, where each symbol
lastsN, = 5 sampling instants, and the two symbols undergo
a frequency shift oftm /5P, which corresponds td/10 of the
carrier spacing. Despite the fact that the estimator in (10) may
recover such a signal if a frequency grid 10 times denser than
={(2 - P-1)/(P)r}’ ,wasadopted, the question con-
sidered here is whether the SLR estimator wititan Oblter outO
the modulation and recover the actual tones. Fig. 7(a) and (b)

Fig. 6. Mismatch due to carrier shift: true frequencies are not within the gri§NOWs the true time-frequency pattern along with the SLR esti-

Spectrogram (top) and SLR estimates (bottom).

mate for SNR =10 dB, respectively. It is clear that the SLR es-
timator recovers the carrier hops only, because frequency varia-

Itis Prstassumed thateach carrierin Fig. 3(a) is shifted By  tions due to modulation are negligible relative to the grid spacing.
so that none of the actual frequencies is within the grid; instead Next, anear—far scenario is considered. Wireless propaga-
they lie in the middle of two grid carriers. As a consequence, (6pn may cause Ructuations of the received signal amplitude due
is not exact but only an approximation. Fig. 6(a) and (b) shovs time- and frequency-selective fading. Frequency selectivity
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means that different tones are subject to different attenuation

and phase shift; time selectivity means that the attenuation an(bnce hop timing is acquired, one can solve a set of harmonic

phase shift of a given tone vary with time. If this is the case, eXarctzattrieval problems on a per-dwell basis to obtain rebPned fre-

reconstruction of the signals of interest is impossible, because . . o
the number of unknowns is much larger than the number of o uency and complexamplitude estimates [22], [24]. This kind of

. . . e[Processing is clearly suboptimum, since it does not take into ac-
servations. In many cases, however, fading only induces rela-

tively small Buctuations around a nominal ampliitude. IndeeEountobservatlons of adjacent dwellsNwhich contain informa-

Fig. 8(a) and (b) depicts the signal of interest affected by tim ?n ?(?O‘Jtt_;hebflrfq;’e’:ﬁy contgnt IIT ;\he dwe_ll of [[n_terels t Pslram-
varying fading, and its SLR estimate for SNR =10 dB. Th&'©F l0entibabliity forthe per-awetl harmonic retrievat probiem

nonzero time-varying amplitude coefbcients in (6) are generat%?ieS dbac|l|< ;{O Caratheodp ry [15] seehals_c()j [31.]"3 A;ﬁum|fngh(_j|s-
as a brst-order GaussBMarkov process.ig., = G, tinct dwell frequencies, it turns out that identibability of this

LWith =0 . CN'(0,1),and , CA(0,1—3). nonlinear problem boils down to counting equations-versus-un-

Interestingly, the developed estimator is able to recover the yifgowns: for M complex exponentials within the dwell, one

time-localized frequency pattern, and Oaverage out® small 3ffds atleast/ + M/2] observations (length of the dweH).
plitude variations due to fading. Next, a case similar to Fig. 3(a) is considered except that the

prst signal hops to the 20th carrier at time 18, so that only one
C. Noiseless Case sample is taken during the second dwell. In this case, per-dwell

In this subsection, the noiseless reconstruction algorithm Rfiocessing fails to recover the signal within the second dwell
(12) is tested. The signal of interest is the one in Fig. 3(a). Fig&yen with perfect knowledge of the hop timing. Fig. 10 shows
shows the squared error (SE),) —z*|| , versus the iteration t_he SE versus the iteration index (i) of the alg(_)rlthm in Proposi-
index (i) of the algorithm in Proposition 4 for = 0.25, and ON 4 withc = 0.25. Observe that the SLR estimator is capable

Var_'ous vglues ofy. Surprlsmgly, if properly_tuned, the SLR 2There are three real unknowns per complex exponential, and two real equa-
estimator in (12) can perfectly recover the sigaal tions per complex measurement.
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of recovering the signal of interest perfectly. This is possible be-
cause the estimator in (12) exploits the frequency smoothness
along adjacent dwells. Clearly, this does not constitute an iden-
tipability claim; what it does demonstrate, however, is that the
SLR estimator is capable of perfect recovery in situations where
per-dwell processing unequivocally fails.

D. PPH Signal Estimation

In this subsection, the generalization of the SLR es-
timator to PPH signals is tested. A mixture of FH and
linear chirp hopping signals is considered. Specibcally,
the chosen parameters are:

and
. The signal of interest is a super-
position of FH signals in , and hopping chirp signals in
The particular choice of is not instrumental in any way
other than allowing for easy visualization: it guarantees that the
instantaneous frequency of the chirp signals at every sample
point belongs to

The signal of interest was generated as the superposition of
two signals. The brst occupies the 7th carrier in the interval
[0,24], and then hops to the 12th carrier in the interval [25, 47].
The second signal occupies the 15th carrier in the interval [0,
14], and then turns into a linearly decreasing chirp starting from
the 18th carrier in the interval [15,31], and Pnally to a linearly
increasing chirp starting from the 5th carrier in the interval [32,
47]. Fig. 11(a) and (b) shows the true time-frequency pattern
along with the SLR estimate for SNR = 10 dB, ,
and . It is worth noting that since the
assumption of Proposition 2 is not met. As expected, the SLR
estimator correctly recovers the frequency content of the signal
of interest.

VI. CONCLUSION Fig. 11. Estimation of polynomial-phase hopping signals. True signal (top) and
. . . . SLR estimates (bottom).
A novel technique was introduced to estimate FH signal pa-

rameters based on sparse linear regression. Earlier approaches

rely upon the spectrogram of the received signal, at least for APPENDIX

coarse acquisition. The estimation task was formulated here as

an under-determined linear regression problem with a dual spér- Proof of Proposition 2

sity penalty. Its exact solution was obtained using the ADMoM. \yjith , the problem in (10) simplibes to
Guidelines were provided to select the regularization parame-

ters, and the estimation approach was generalized to PPH sig-

nals. Simulations demonstrated that the novel technique out- - (38)
performs spectrogram-based estimators by a signibPcant margin,

especially with regard to hop-timing estimation. A modibca-
tion of the novel estimator in the noiseless case revealed t
the SLR estimator can perfectly recover the signal of interest,

even when per-dwell identibability failsNthus holding greater (39)
promise than per-dwell processing approaches. The ADMoM-

based algorithm developed here for FH/PPH signal estimatiDebning , it holds that
can be ported to other problems, such as applications of fused

Lasso [19]. Interesting extensions of this work can be pursued

in slowlytime-varying line spectrum estimatién.

%call that , and let
a

(40)

3The views and conclusions contained in this document are those of the Qtip—d
thors and should not be interpreted as representing the ofbcial policies, either
expressed or implied, of the Army Research Laboratory or the U. S. Govern- (41)
ment.









