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Modeling multi-way data with linearly
dependent loadingsy

Rasmus Broa*, Richard A. Harshmanb, Nicholas D. Sidiropoulosc

and Margaret E. Lundyd

A generalization/specialization of the PARAFAC model is developed that improves its properties when applied to
multi-way problems involving linearly dependent factors. Thismodel is called PARALIND (PARAllel profiles with LINear
Dependences). Linear dependences can arise when the empirical sources of variation being modeled by factors are
causally or logically linked during data generation, or circumstantially linked during data collection. For example, this
can occur in a chemical context when end products are related to the precursor or in a psychological context when a
single stimulus generates two incompatible feelings at once. For such cases, the most theoretically appropriate
PARAFAC model has loading vectors that are linearly dependent in at least one mode, and when collinear, are
nonunique in the others. However, standard PARAFAC analysis of fallible data will have neither of these features.
Instead, latent linear dependences become high surface correlations and any latent nonuniqueness is replaced by a
meaningless surface-level ‘unique orientation’ that optimally fits the particular random noise in that sample. To avoid
these problems, any set of components that in theory should be rank deficient are re-expressed in PARALIND as a
product of two matrices, one that explicitly represents their dependency relationships and another, with fewer columns,
that captures their patterns of variation. To demonstrate the approach, we apply it first to fluorescence spectroscopy
(excitation-emission matrices, EEM) data in which concentration values for two analytes covary exactly, and then to flow
injection analysis (FIA) data in which subsets of columns are logically constrained to sum to a constant, but differently in
each of twomodes. In the PARAFAC solutions of the EEMdata, all factors are ‘unique’ but this is onlymeaningful for two of
the factors that are also unique at the latent level. In contrast, the PARALIND solutions directly display the extent and
nature of partial nonuniqueness present at the latent level by exhibiting a corresponding partial uniqueness in their
recovered loadings. For the FIA data, PARALIND constraints restore latent uniqueness to the concentration estimates.
Comparison of the solutions shows that PARALINDmore accurately recovers latent structure, presumably because it uses
fewer parameters and hence fits less error. Copyright � 2009 John Wiley & Sons, Ltd.

Keywords: PARAFAC; PARATUCK2; constrained ALS estimation; uniqueness; linear dependence; equality constraints;
multi-mode factor analysis

1. INTRODUCTION

Many methods have been proposed for multivariate curve
resolution and more generally for factor or component modeling
of (multi-way) data such as constrained Tucker3 [1], PARAFAC
[2,3], INDSCAL/CANDECOMP [4], window factor analysis [5], and
multivariate curve resolution [6]. In this paper, we propose a class
of methods (which we call PARALIND for PARAllel profiles with
LINear Dependences) that are specially designed to deal with
complications arising from linearly dependent factors. They do
this by preserving the component dependences (and thus any
partial uniqueness properties) that characterize the latent
structure of the data being analyzed.
When it is known on theoretical or other grounds that the

latent PARAFAC structure involves linearly dependent factors, use
of PARALIND to incorporate this information into the analysis will
‘strengthen’ the results in at least two ways: it will improve the
probable accuracy of the factor estimates by improving the
data-degrees-of-freedom per parameter estimated; and it will
improve the theoretical appropriateness of the factor estimates
by making their properties correspond more closely to those
implied by the scientific model of the data generating process.
Note that both benefits are obtained whether or not the latent
structure has a unique solution.
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This work has implications for many different areas in which
multi-way analysis is employed. For example, linear dependences
arise naturally in handling certain types of radiative energy
transfer in fluorescence spectroscopy, as described, e.g. by Ross
and Leurgans [7]. In signal processing/communications appli-
cations, data with PARALIND structure arise, for example, in
certain localization problems due to what is known as specular
multipath interference, where identical signals appear with
different delays (see, e.g.Reference [8]). In this case, by
capitalizing on additional problem-specific structure, the associ-
ated PARALIND solution can be shown to be unique [9,10]. In
some statistical applications (e.g. in Psychology or Environmental
Science) data may be so scarce and/or expensive to collect that
investigators are forced to analyze three-way arrays for which it is
known in advance that certain of the factors will not show the
independent variation over the ‘third mode’ required for full
uniqueness.

1.1. Rank deficiency

With three-way data, it becomes possible for patterns generated
by the underlying sources of variation to have independent
effects in two modes yet nonetheless be linearly dependent in a
third mode. When such linear dependences exist in the latent
factor structure, the most appropriate PARAFAC solution would
show these same dependences in the recovered factors. Such a
solution could be called rank deficient in the sense that the
component matrices for one (or even several) mode(s) would
have less than full column rank. However, the solution obtained
by standard PARAFAC will never have this property because data
noise causes the estimated loadings for collinear latent factors to
become linearly independent (though usually still quite
correlated).
Such theoretical or latent rank deficiency is a common

phenomenon in some types of data, as known from literature
[11,12] and demonstrated in the example section. The reason can
be either mathematical (e.g. preprocessing steps such as
centering), physical (e.g. some analytes appear in identical
proportions throughout an experiment) or combinations thereof
(e.g. centering data that suffer from closure) [13,14].
To introduce and explain the modeling issues involved, we can

start with a simple two-way example. Consider a chemical
reaction MþN! P for which spectral data are obtained over
time. If M and N have the same initial concentration, their
subsequent concentration profiles will be identical (perfectly
correlated over time). Yet, there are two different spectra (one for
M and one for N). This illustrates how a given set of underlying
phenomena can produce variation in the spectral domain and in
the concentration domains that have different ranks. Some
authors view this as showing that there is only one phenomenon
evolving in the concentration/time domain—the reaction of M
and N [11,15,16]. However, this perspective forces one to
consider the spectral domain and time domain at different
‘levels of description’—one for chemicals, the other for
phenomena. One could view both modes at the same (chemical)
level of description by allowing the rank-2 concentration domain
to be described in terms of three concentration curves (say,
length I vectors ~a1 and ~a2 and ~a3) but making explicit the fact
that two of them are linked and have identical shapes. We will
use the � to signify the actually perceived profiles in order to
be able to distinguish them from the ‘un-tilded’ profiles that
are the ones estimated. Only two distinct concentration

profiles are then needed (say, vectors ~a1 and ~a2), since the
concentration profiles of analyte M and N, (~a2 and ~a3) will be
identical. Letting

A ¼ ½~a1 ~a2� (1)

and letting the J� 3 matrix B hold the spectra of P, M and N, then
a model of the measured spectra held in X (I� J) can be written

X ¼ AHBT (2)

where the matrix H is a two by three binary matrix which, in this
case, reads

H ¼ 1 0 0
0 1 1

� �
(3)

1.2. Improving recovery of latent structure by explicit
representation of dependences

In the above example, the number of parameters to be estimated
in Mode A is reduced by 33% without introducing any new ones
elsewhere (since the 1s in H are not estimated). As a result, there
is less fitting of error, which improves recovery of the latent
structure. Recovery is also improved because the factor
dependency at the latent level (known to exist on theoretical
or other grounds) is explicitly maintained in the estimated factor
loadings. These advantages will be demonstrated below when
PARALIND is applied to real data.
The ‘dependency matrix’ H will sometimes be referred to as an

‘interaction matrix’ because of its similarity to the core matrix in
the Tucker3 model [17]. From a Tucker perspective, the rank
deficiency can be interpreted as arising from ‘interactions’
between factors in a particular column of A and factors in a
different column of B. Chemically though, it is arguably more
natural to think of the rank deficiency as simply a (linear)
dependency between distinct factors. Then, the physical
interpretation is still that there are three (concentration) profiles,
one for each analyte; the model simply specifies that two of these
profiles are identical, through the relation

~A ¼ AH ¼ ½ ~a1 ~a2 ~a2 � (4)

Thus, there are alternative ways one might look at the rank
deficiency. In one view, the factors in A represent two phenomena
in the first mode that have mathematical ’interactions’ with three in
the second mode, as defined through H. In the other view, a more
chemical interpretation is taken. The factors in ~A represent three
phenomena in the first mode (which are the same three that are
represented by factors in the other modes), while the product of
A and H describes the structure of patterns they produce in terms
of a set of distinct patterns A and their linearly dependent
relations to the observed patterns. Introducing the linear
dependences in an explicit, well-defined way is a key feature
of our approach to developing a model for handling rank
deficiency.

1.3. Three-way solutions required

It is not, in general, possible to fit such a linearly dependent
model for a two-way problem. Because of the intrinsic equality of
matrix row-rank and column-rank, only two spectral profiles can
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be determined. That is, the rank of a dataset such as that
described above will be two (plus small factors due to random
noise and other errors, which we ignore here) and hence only two
independent factors can be found for the row-mode as well as for
the column-mode. Usually, ways to circumvent rank deficiency in
two-way problems are based on either rotations of the solution
using prior knowledge of the data or data augmentation [11]
where the closure and/or other linear dependences are ‘broken’
by adding samples of different constitution. However, by
extending models such as that in Equation (2) to three-way
data, it will become possible to handle the rank deficiency
directly and in a rational way.
Before proceeding further, we note that essentially the same

approach, though in less general form, has been proposed earlier
by several authors. One version was introduced in Bro [18] and
Smilde et al. [14], where it was developed as a restricted
PARATUCK2model (PARATUCK2 is described in References [3,19]).
It was also independently proposed by Harshman [20] and
referred to as ’Structured PARAFAC’. Finally, Reference [8]
independently proposed a PARALIND-type model for handling
certain problems in signal analysis.
The PARALIND family of models is related to both of the larger

general families of multi-way models: the Tucker and PARAFAC
families. For example, just as PARAFAC can be viewed as a
constrained case of Tucker3, so can PARALIND [1]. However, in this
paper PARALIND’s derivation and its distinct approach to substantive
scientific (e.g. chemical) interpretation is as a constrained PARAFAC
model. It is also useful to view the various constrained PARAFAC
models described here as members of an identifiable model
(sub)family, because they all share certain distinctive uniqueness
properties and practical statistical benefits.

1.4. Outline of paper

The rest of this paper is organized as follows. In Section 2,
the basic PARALIND approach that we have conceptually
introduced in two-way terms will be developed more rigorously
by means of explicit three-way formulations. In Section 3, the
approach is demonstrated more concretely by developing
two specific PARALIND models, one for a flow injection
dataset and one for a fluorescence dataset. The actual results
of applying the models are discussed in Section 4. An algorithm
for fitting the PARALIND model is developed in Appendix A and
some specific proofs of uniqueness for the application are given
in Appendix B.

2. THEORY

2.1. Dependences in three-way arrays

Assume that a three-way data array X (I� J� K) is given for which
an S-component PARAFAC model holds. For a typical slice, say,
level k of the third mode, the standard ‘typical slice’ way to write
this is

Xk ¼ ~ADkB
T þ Ek k ¼ 1; . . . ; K (5)

In the above, the first mode loading matrix is denoted by ~A
(I� S) to distinguish it from another loading matrix to be
introduced shortly. The PARAFAC model may also be written in

matricized form [18] as1

XðI�JKÞ ¼ ~AðC� BÞT þ E (6)

where the operator � is the Khatri-Rao product [21], which is
equivalent to a columnwise Kronecker product.
Now consider an example involving factor dependency.

Assume that, say, a four-component model is valid, but that
the loading matrix ~A is rank-deficient (has rank 3) because ~a3 and
~a4 are identical; we assume that B and C have full column rank (in
this example, rank 4). In terms of our hypothetical chemical
interpretation, this could represent a dataset involving four
chemical analytes that have different emission (Mode B) and
excitation (Mode C) spectra, but the same time profiles (Mode A)
for the third and fourth analytes.
This is a three-way dataset, and the rank of a three-way array

can exceed the rank of the fiber (e.g. column) spaces of its
individual modes [see. e.g. Reference [22]]. The rank of this array
will be four (before addition of random error), requiring a four
factor PARAFAC solution. With error free data, the solution would
recover the first two factors exactly and uniquely (provided they
showed the requisite independent variation in all three modes),
and it would also reveal that two of the factors have identical
loading patterns in Mode A, which would alert us to a uniqueness
problem for these two factors. As will be explained in the
discussion of partial uniqueness below, the proportionality of
factors three and four in Mode A will prevent PARAFAC from
uniquely resolving these two factors in Modes B and C. However,
the other two factors will still be uniquely recovered—provided,
of course, they show the independent variation in all threemodes
generally needed for uniqueness.
At this point, it seems that the analysis problemmay be at least

partly solved. There is unfortunate loss of information due to the
mixing of Mode B profiles of factors three and four, and also their
Mode C profiles, which is due to the nonuniqueness, but at least
we are able to obtain a four factor solution which has the same
level of description in all modes—as was our goal earlier in the
two way example but which was infeasible there because of rank
problems. However, because of the rank deficiency, there is a
subtler analysis problem that remains, one that (to our knowl-
edge) has previously been overlooked.
The problem arises from the disturbance of the linear

dependences by the (inevitable) presence of error and random
noise in the data. The linear dependences of the latent source
patterns will not be reflected in the recovered loadings (though
factors may appear highly correlated) and the nonuniqueness will
be lost. Even when the theoretical model of the generating
process call for linear dependences, it cannot be enforced by
standard PARAFAC. Put in another way, unless PARAFAC is
‘informed’ about the need for dependency (via PARALIND), noise
will inevitably lead to actual PARAFAC solutions which are not
rank-deficient. The factor matrices that should physically be
rank-deficient will obtain full rank and non-sensible uniqueness
because PARAFAC will also fit some of the noise part of the data.
This solution will be technically unique, since there will normally
always be one set of loadings which happens to best fit the
systematic variation plus the random error variation better than
any other. However, the resulting position of the estimates of ~a3

1For further discussion of these two kinds of representation, as well as Bro’s

superscript notation for unfolding, and related issues, see Harshman and Hong

[44].
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and ~a4 axes will be specific to the error that perturbed this
particular set of observations, and will not replicate in a new
sample of data. This phenomenon is what we call ‘surface’
(surface-structure-determined) rather than ‘deep’ (deep-structure-
determined) uniqueness. It is important to minimize ‘surface’
uniqueness and PARALIND provides an explicit way to do this.

2.2. PARALIND: a new family of PARAFAC models that
explicitly represent rank deficiency

By introducing a new matrix, H, which is called a dependency
matrix (from a PARALIND perspective) or an interaction matrix
(from a Tucker perspective), rank deficiency can be explicitly
incorporated into the three-way model in a concise and
parsimonious way. If the rank of ~A is R (�S) then it holds that
~A may be expressed

~A ¼ AH (7)

where A is an I� R matrix and H is and R� S matrix, and the
model for the data becomes

Xk ¼ AHDkB
T (8)

If there are four different components in the above example
then S¼ 4. The situation with ~a3 ¼ ~a4 will yield

A ¼ ½ a1 a2 a3 � (9)

and

H ¼
1 0 0 0
0 1 0 0
0 0 1 1

2
4

3
5 (10)

It directly follows that

~A ¼ AH ¼ ½a1 a2 a3 a3� ¼ ½~a1 ~a2 ~a3 ~a4� (11)

and thus the third and fourth column of ~A are forced to be
identical. This example of a dependency or interaction matrix is
quite simple. As a second example, consider a chemical process in
which factor 4 values depend on the joint contribution of two
other factors; the loading matrix could then have the form

~A ¼ AH ¼ ½a1 a2 a3 ða1 þ a2Þ� ¼ ½~a1 ~a2 ~a3 ~a4� (12)

with the associated H matrix

H ¼
1 0 0 1
0 1 0 1
0 0 1 0

2
4

3
5 (13)

More complicated relations can, of course, be envisioned
allowing for multiple dependences involving additional factors,
such as

~A ¼ AH ¼ ½a1 a2 a3 a4 ða1 þ a2Þ ða1 þ a3 þ a4Þ�
¼ ½~a1 ~a2 ~a3 ~a4 ~a5 ~a6� (14)

These last two examples are provided not just for added clarity,
but because they have different properties. They are examples of
structures that include dependences yet retain uniqueness of
decomposition. (For succinctness we will use ‘uniqueness’ without

the qualifier ‘essential’ but ask the reader to always recognize that
there is a harmless indeterminacy of column order and relatively
benign indeterminacy of column scaling in all the multiway factor
models.)
The PARALIND principle can also be applied in more

complicated situations where there are linear dependences in
more than one mode, and it can be extended to higher-way
arrays; many of these extensions are relatively straightforward,
but would take us beyond the scope of the current paper.
The Hmatrix can also become more general, and used in more

complex ways. Intermediate situations may be envisioned where,
for example, it is known that certain interactions are non-existent
whereas the strength of the remaining ones is to be estimated. In
some exploratory applications, the dependency matrix H need
not even be predefined. This matrix, which defines the pattern
and strength of the interactions, may also be estimated from the
data if no prior knowledge is available. The approach would then
be more similar to the PARATUCK2 model introduced by
Harshman and Lundy [3,19]. This is the approach to dependences
taken by Bro [18] and Smilde et al. [14].

2.3. Effects of linear dependences on uniqueness

As demonstrated above, constructing three-way models with
linear dependences can make it possible to use distinct factors to
directly represent theoretically distinct—but not linearly inde-
pendent—sources of variation, even in cases where two-way
models cannot. However, there are sometimes limitations on the
information that can be recovered: certain kinds of linear
dependences will limit or reduce the uniqueness of the obtained
solutions. Because of the importance of uniqueness in the
scientific use and interpretation of PARAFAC and PARALIND, the
relation between different loading-vector dependences and
different levels of uniqueness needs to be carefully considered. In
particular, we need to consider a phenomenon called ‘partial
uniqueness’ that can result from some kinds of linear
dependences.
We discuss the phenomenon in terms of PARAFAC. However,

we believe that the PARAFAC and PARALIND models will have the
same properties ‘at the latent level’, i.e. if one decomposes an error
free array into the correct number of components. This is because
the PARALIND model would also be a best-fitting PARAFAC
model, and so the constraints imposed by PARALIND would be
‘inactive’. It is only with fallible data (i.e. any ‘real’ data) that the
constraints become active and the difference becomes import-
ant; this will be discussed in Section 2.5.
The PARAFAC model is neutral with respect to linear

independence or dependence among the columns of factor
loadings in any mode; it is simply defined as a sum of n-way outer
products which approximates a given array, with no special
restrictions placed on the vectors of factor loadings used to
generate these outer products. In many cases, linearly dependent
loading vectors (e.g. columns of A, the set of vectors fa1; a2; . . .g)
will be required, as when the rank of the array exceeds the
number of levels in any (or even all) of its modes (e.g. see
References [22,23]). In this case, the factor-loading matrix
necessarily involves linear dependences since it will have more
columns than rows. (Even linear independence of the rank-1
outer products, the fr ¼ ar � br � � � �, is not required by the
model definition; more outer products than needed to exactly
reproduce a given array could constitute a ‘legal’ PARAFACmodel,
and it might even be meaningful in certain contexts, e.g. if
additional observations could require the added dimensions).
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In some cases, linear dependences among factor loading
vectors will affect the uniqueness of the decomposition, while in
other cases, it will not. Solutions with multi-factor dependences,
as in Examples 2 and 3 (Equations (12) and (14)) can retain
standard PARAFAC uniqueness properties: loadings of all factors
in all modes would still be determined up to column order and
scaling—providing, of course, the factors otherwise meet the
usual requirement of adequate distinct variation in all three
modes. However, solutions with simple factor collinearity (as in
our three-way Example 1, above) will lose uniqueness of the
factors that are collinear.
A precise description of the nonuniqueness in Example 1

would be as follows: any nonsingular linear transformation T
could be applied to the Mode B loadings for factors 3 and 4, e.g.

_
b3

_
b4

� � ¼ b3 b4½ �T (15)

where T is a nonsingular 2� 2 matrix, so long as the inverse
transformation is applied to Mode C (i.e.

_
c3

_
c4

� � ¼ c3c4½ �T�1); the
Mode A loadings remain the same (i.e. two copies of the shared
collinear pattern of variation). The remaining factors will be
unique in all three modes, just as they would in a PARAFAC
solution with no dependences. This is an example of the
phenomenon referred to as ‘partial uniqueness’, in which only
some factors (in this example, factors 1 and 2) are uniquely
determined in all modes and others have rotational freedom.

2.4. Rules governing partial uniqueness

Because PARALIND is specifically performed when some factors
are expected to be linearly dependent in some modes, a general
understanding of the impact of dependences on uniqueness and
partial uniqueness is desirable. This section reviews some
relevant aspects of what is known at this point, including some
unpublished results from our previous and ongoing study of
uniqueness and partial uniqueness. In Section 2.5 we return to
the question of PARALIND itself, and the advantages of PARALIND
over PARAFAC for cases involving latent dependences, with or
without uniqueness.
The phenomenon of partial uniqueness has been of interest

ever since the original PARAFAC monograph (References [2], p.
35–44; [24]), and interest has continued to this day (e.g. see
Reference [25]). Some mathematical grounds for partial unique-
ness were noted briefly in Reference [24], but the full implications
were not fully developed. To illuminate the issue from a different
direction, we present in Appendix B an analysis of partial
uniqueness based on eigen-decomposition2. It is a constructive
proof, based on a two-slice approach as in generalized rank
annihilation [26–28] and ESPRIT [10,29,30].As noted earlier, we
believe that the uniqueness and partial uniqueness properties of
a PARALIND model should follow directly from the uniqueness
and partial uniqueness properties of the corresponding PARAFAC
model in the case of an error free array in which the rank-one
patterns have the linear dependences specified in the PARALIND
H matrices.

2.4.1. When two modes have full column rank

The case where factor-loading matrices in at least two modes
have full column rank is better understood than cases where only
one or nomodes have this property. Fortunately, this corresponds

to many, possibly most, ‘real world’ three-way cases. In these
cases, the property governing uniqueness turns out to be
remarkably simple: all that matters is whether or not factor
loading vectors are proportional (i.e. collinear) in that third mode
(see, e.g. References [24] or [31] for direct discussion of this point).
To aid our intuition, we can translate our algebraic discussion of

partial uniqueness into a simple geometric description of partial
uniqueness, formulated in terms of ‘subspaces’. This can be done
as follows: Let A and B designate the two modes with factor
loading matrices of full column rank. If the Mode C loading matrix
has no proportional columns, all factors in the solution are
uniquely determined. If, however, there is a set of Mode C loading
vectors that are proportional to one another, it identifies a
nonunique set of factors. The Mode A loading vectors for those
factors span a transformable subspace of the Mode A factor space,
and their Mode B vectors span the dual transformable subspace in
the Mode B factor space. The factors in either subspace can be
given a non-singular linear transformation, so long as the inverse
transformation is applied to the factors in the other. Any factor
not in that set (i.e. whose Mode C loading vector is not
proportional to those for members of that set) has A and B
loading vectors that lie outside of their (respective) transformable
subspaces. In the combinations of loading vectors appearing as
factors in alternative solutions, these vectors lying ‘outside’ that
subspace will never be combined with any of those belonging to
factors ‘inside’ that subspace.
Similarly, if there is a second set of factors with loading vectors

proportional to one another in C, but not proportional to those in
the first set, these vectors span a second transformable subspace
in each mode. While factors in both subspaces will be nonunique
within their respective subspaces, those in one subspace will
never be linearly combined with those in the other in any
solution. The subspaces remain distinct and are uniquely
determined as subspaces.
It follows that a factor which is nonproportional to all others in

C will be in its own distinct ‘subspace’ and will remain ‘separate’
from the other factors across all alternative solutions. That factor
will be distinct in all decompositions and hence uniquely
determined. A factor in any decomposition that is nonpropor-
tional to some but not all of the other factors will be ‘incompletely
resolved’ in alternative decompositions, reliably distinct from all
and only those factors to which it is nonproportional.
In summary, then, two factors of a given initial solution that lie

in different transformable subspaces will be ‘separated’ from one
another in not only that solution but in all solutions, but will be
‘incompletely resolved’ relative to the total factor set, since they
will not be reliably separated from other factors in their subspace.
(Although stated here for the three-mode case, these results carry
over to arrays of all orders, provided there are two modes of the
array in which the factor loading vectors have full column rank.)

2.4.2. When only one or no modes have full column rank

The uniqueness properties of factor structures where depen-
dences exist in two or even all three modes of a three-way array
are not as well understood. There are some general uniqueness
results that have been obtained for restricted Tucker3models [16]
which could be relevant for some PARALIND models. Also, there
are empirical approaches for testing uniqueness that have been
suggested for multilinear models [32] and these apply for
PARALIND models as well. The uniqueness properties of a
complicated PARALIND model could often be inferred with

2A similar application of an eigendecomposition approach can be found in 10

Berge [25].
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reasonably high probability from empirical results of experiments
applying PARAFAC to error free synthetic datasets.
However, we do not have a full characterization of uniqueness

conditions for the case in which only onemode or nomodes have
loading matrices with full column rank.
We have been investigating such cases both mathematically

and empirically, and there are several principles which we can
tentatively offer to provide some guidelines; these convey a
general impression of the kind of restrictions and relations that
appear to exist.
(1) If a factor has loading vectors that are linearly independent

of all other factors in at least three modes, that factor will be
uniquely determined. (2) If two factors have collinear loadings in
one mode of a three-mode array (or N-2 modes of an N-way
array), they will not be uniquely determined; their loadings will
not be ‘resolved’ or separable in the two non-collinear modes; in
some circumstances, they may also become mixed with other
factors in the collinear mode. (3) If two factors have collinear
loadings in two modes of a three-mode array (or N-1 modes of an
N-way array), they will collapse into a single factor.
We also conjecture that there are general principles similar to

the following: (4) If a factor is a linear combination of certain other
factors in two modes, and these dependences have the same
form in both modes, it will not be separated from those other
factors in some modes; (5) if no factor has linearly dependent
loadings in two modes, and no mode has collinear loading
vectors, the solution should be unique. (6) If a subset of columns
satisfies the Kruskal criterion (has a sum of k-ranks of 2Rþ 2,
where R is the number of factors involved in the subset), then that
subset will be uniquely determined. More generally, it appears
likely that uniqueness and partial uniqueness properties of
subsets of factors—with respect to their separation from one
another within the subset can be obtained by applying the same
criteria to that subset that one would apply if they constituted a
separate dataset and solution. Note, however, that these
conjectures all assume that the factor structure in question,
here often referred to as ‘the solution’, has the minimum number
of factors sufficient to provide the resulting array product: the
factor set or subset does not have redundant components. Note,
however, that these conjectures all assume that the factor
structure(s) in question, here often referred to as ‘the solution’, has
(have) the minimum number of factors sufficient to generate the
corresponding array product(s): the number of factors is equal to
the resulting array rank.
It also seems, from numerical results, that when linear

dependences involve ‘enough’ factors (have adequately high
k-rank), they need not interfere with uniqueness. A factor may
have loading vectors that are linearly dependent on other factors
in any or all modes, and yet still be uniquely determined, if the
dependences are ‘adequately complex’. For example, this will
happen (i) if each linearly dependent vector of loadings includes
contributions from a vector that is not involved in other linear
dependences in any mode or (ii) if it includes contributions from
enough other vectors—for example, this will happen if each
linearly dependent vector of loadings includes contributions
from a vector that is not involved in other linear dependences in
any mode, or if it includes contributions from enough other
vectors.
The earliest example of unique solutions with linear

dependences among factors in all modes is from Reference [2]
(subsequently noted by Kruskal and others), in which a unique 10
factor solution was obtained from an 8� 8� 8 dataset. However,

we now know that this did not come close to the upper bound for
this kind of case. Some recent empirical work indicates that much
higher-rank unique solutions are possible, even in cases where
one or more modes have low k-ranks (e.g. k-rank of 2 in one
mode) by carefully constructing the factor loading matrices (e.g.
so as to avoid the same linear combination in the same columns
across modes). We have built 8� 8� 8 arrays with PARAFAC
structure, in which the dependences reduce the k-rank in each
mode to two, (and so the Kruskal criterion only assures unique
determination of two factors), and yet it was possible to uniquely
recover more than 16 factors! Even higher numbers of unique
factors can be obtained if one does not impose any added
dependences above those implicit in the more-columns-
than-rows nature of the factor loading matrices. For the
8� 8� 8 case, recent unpublished experiments suggest that
the maximum rank of a unique solution is 23, which is just one
short of what is believed to be (and numerically seems to be) the
‘typical [maximum] rank’ of 8� 8� 8 arrays. So far, the 24-factor
PARAFAC structures constructed for 8� 8� 8 arrays have been
found to have multiple perfect fitting solutions, and thus appear
to be nonunique. However, these arrays do appear to have a true
rank of 24, since they have not been perfectly fit in any attempts
at finding 23-factor solutions. In contrast, 8� 8� 8 arrays
constructed with 25 factors can apparently be perfectly fit with
24, suggesting that 24 is the maximum rank of 8� 8� 8 arrays.

2.5. How PARALIND improves the characteristics of the
solution

The advantages of PARALIND are not related to uniqueness. They
have to do with better recovery of latent structure and more
appropriate characteristics of the solution. These result from a
‘better informed’ PARAFAC model, one that incorporates
information about known or expected dependences in the
latent structure.
As noted earlier, there is a mathematical equivalence between

PARALIND and PARAFAC decompositions of the same error-free
array, and so we can use existing knowledge about PARAFAC
uniqueness when considering the ‘latent structure’ properties of
PARALIND. This equivalence does not hold when the models are
fit to fallible (error contaminated) data, however. Here, the special
properties of PARALIND can be a distinct advantage, and these
will be the focus of this section.
In PARALIND, linear dependences are incorporated and fit in

such a way that the theoretical dependences among PARAFAC
loadings hypothesized for the latent structure also hold among
the factor loading estimates. This is one of the senses in which
PARALIND can be viewed as constrained PARAFAC. A con-
sequence of this is that when dependences introduce partial
uniqueness of latent model parameters, these are reflected in
corresponding partial uniqueness of their fitted parameter
estimates.
For example, consider the factor structure discussed earlier

whose dependency relations are given in Equation (10) andMode
A loadings are given in Equation (11). As was pointed out in
Section 2.3, the collinearity of the last two columns of Mode A
loadings introduces a partial nonuniqueness of representation:
the decomposition will still be exact for any alternative solution in
which a nonsingular linear transformation T is applied to factors 3
and 4 (i.e.

�_
b3

_
b4� ¼ b3b4½ �T), so long as this is compensated for

by an inverse transformation in Mode C. The additional point to
be made here is that the PARALIND factor loading estimates
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obtained by fitting this model to fallible data exhibit the
corresponding nonuniqueness

�_
b̂3

_

b̂4� ¼ b̂3b̂4

h i
T, where the ^

operator means the estimate. The alternative versions of the
loadings estimates or fitted values produce exactly the same
approximation of the data and consequently, have the same
residuals and overall fit.
With regular PARAFAC, on the other hand, this does not

happen. PARAFAC loadings give a better fit value for the specific
dataset than the PARALIND solution does, because it better
‘capitalizes on’ fitting the random error variance. Some of the
improvement in fit to the random error is due to distinct
perturbations introduced into the factor loading vectors ~a3 and
~a4, which as a result are no longer strictly collinear. In this respect,
the fitted approximation to the data is less theoretically
appropriate or correct, since linear dependence between these
two loading vectors is to be expected because of the processes
being modeled.
Also, for PARAFAC, linear transformations of loadings in

Modes B and C do not produce alternative factor loading
estimates in Mode B and C that have identical fit (i.e.
fitð½_b̂3

_

b̂4� 6¼ fitð½b̂3b̂4�Þ), because PARAFAC’s b̂3 and b̂4 incorpor-
ate perturbations which make these loading vectors indepen-
dent, and which (in conjunction with perturbations incorporated
into ~a3 and ~a4) maximally fit the random error specific to that
dataset.
The PARAFAC model is full rank in all modes and has standard

PARAFAC uniqueness, but the unique factors are oriented
arbitrarily by the fitting of the random error. This phenomenon
has been observed repeatedly with real data, and demonstrated
with synthetic data involving collinear true structure plus random
error. (Sometimes, there are several different, arbitrarily rotated,
solutions which appear from different random starting positions,
all highly collinear, with very similar but non-identical residuals
and overall fit; this is one way that it is sometimes possible to
detect latent-level nonuniqueness.)
In either case, the superior fit value of the ‘optimal’ PARAFAC

solution is misleading. The loading perturbations optimally fit the
specific random error in the given sample or dataset, but these
perturbed loadings will not be the best fit for a new sample or
experimental dataset, since the new one will of course have
different random error. In fact, on average, the ‘poorer fitting’
PARALIND solution has better cross-validation, because it uses
fewer parameters and so absorbs less error.
More important, however, is the fact that PARALIND, by using

fewer parameters, provides better recovery of latent structure.
This can easily be demonstrated with synthetic data, but we will
do even better and demonstrate it with the real data of our
example applications. A second advantage is that by blocking
‘surface level’ uniqueness of the parameter estimates (i.e.
uniqueness due to error-fitting, rather than uniqueness that
reflects latent structure), the analyst is able to assess the nature
and range of nonuniqueness directly, by comparing solutions
obtained from different starting points.

3. APPLICATIONS

3.1. Fluorescence excitation-emission data

As our first example, we report the results of an experiment set up
specifically to test PARALIND. Twenty three different chemical
samples were created, containing different amounts of the four

fluorophores cathecol, hydroquinone, indole, and L-tryptophane.
Flourescence excitation-emission matrices (EEMs) were then
obtained for each sample (and this analysis was repeated four
more times to allow later assessment of reliability). To simulate
circumstances where it is not possible to get independent
concentration profiles for all analytes, the concentrations of
cathecol and hydroquinone were made identical (Table I). Typical
landscapes for these samples are shown in Figure 1. To avoid
problems from scatter, an EEM of pure solvent (water) was
subtracted and emission at slightly (10 nm) below and above the
excitation frequency was set to missing [18,33,34]. Each sample
was measured in five replicates and hence for each sample five
EEMs are available.

3.1.1. Background for the experiment

It is well known that EEMs can be well approximated by PARAFAC
(unless concentrations are too high, leading to inner filter effects).
This is because all parts of the flourescence spectrum for a given
compound show the appropriate proportional variation (i.e. with
excitation frequency, emission frequency, and concentration) to
make its pattern of ‘latent contributions’ consistent with the
contributions of a single PARAFAC factor [7,18,31,35]. In the EEM
data used here, two factors will have identical loading profiles in
the Concentration Mode (here, Mode A), which we know from
Section 2.4.1 will make these factors nonunique with respect to
one another. While this was set up deliberately for our
experiment, such unfortunate dependence could arise realisti-
cally in various ways, e.g. in standard addition or for biochemical
reasons.

Table I. Concentrations of analytes in the fluorescence
dataset (scale is arbitrary)

Sample Cathecol Hydroquinone Indole Tryptophane

1 15 15 0 10
2 0.5 0.5 0.5 10
3 20 20 15 15
4 15 15 0.5 20
5 0.5 0.5 10 20
6 0.5 0.5 15 20
7 10 10 0 10
8 0 0 0.5 0
9 15 15 10 10
10 0 0 0 0.5
11 15 15 15 0
12 10 10 15 0
13 0.5 0.5 20 20
14 10 10 0.5 15
15 0 0 10 0
16 0 0 15 15
17 20 20 0.5 0.5
18 10 10 10 0.5
19 20 20 10 20
20 20 20 0 0
21 20 20 20 0.5
22 0 0 20 10
23 10 10 20 15
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Because of the dependency in Mode A, these data should be
suitable to test whether the theoretical advantages of a
PARALIND analysis, compared to an application of unconstrained
PARAFAC, can be demonstrated with real data. As stated in
Section 2.5, these advantages should include less error-fitting due
to a better degrees-of-freedom ratio, and restoration of exact
collinearity and consequent nonuniqueness in the parameter
estimates for components that have these properties at the latent
level, thus facilitating empirical assessment of the range and
nature of nonuniqueness in the recovered information.

3.1.2. Constructing the model

The appropriate PARALIND model for these data would use a
Mode A dependency matrix of the form

H ¼
1 0 0 0
0 1 0 0
0 0 1 1

2
4

3
5 (16)

thus making the fact that there are two collinear loading patterns
in that mode a part of the model. (Of course, the model does not
directly specify which two analytes are dependent, but the
maximization of fit ensures that the appropriate loading patterns
end up being assigned to the appropriate pairs of columns.) This
dependency relationship is the same as the one for the first
example discussed in Section 2.2.
Four-factor PARAFAC and PARALIND models, with and without

nonnegativity constraints, will be applied to these data.

3.1.3. Anticipated uniqueness properties

The latent structure of the EEM data means that theoretically,
without nonnegativity constraints, both PARAFAC and PARALIND
models are only partially unique at the latent level. The rules
discussed in Section 2.4.1 allow us to predict that two of the
Mode B components would be unique while the other two
components, the ones that in Mode B correspond to the factors
collinear in A, will only be determined up to a general linear
transformation of the plane that they span. In addition, we know
that the arbitrary linear transformation of a column pair in Mode

B by which one solution differs from another will be matched by
the inverse transformation applied to the corresponding plane or
column pair in Mode C. We can also deduce that all the loading
vectors in Mode A will be ‘unique’, with two columns identical. (It
is perhaps a matter of mathematical aesthetics whether the two
identical Mode A columns are considered to be ‘really’ unique or
simply subject to an indeterminacy that is invisible because the
columns are identical.)
While both models are partially nonunique at the latent-

structure level, we expect only the PARALIND model to remain
partially nonunique at the ‘surface level (i.e. when fitting the
noise-perturbed observed data). In contrast, the PARAFAC
solution will become fully unique, due to fitting of non-collinear
perturbations of the otherwise collinear patterns in the data.
Such uniqueness would be misleading, however, because it
would not depend on the latent structure of the data, which is
what we want to fit, but rather on characteristics of random noise
(and sometimes on nonrandom but irrelevant distortions of
measurement) that happen to be present in the data. Thus, we
expect the PARALIND solution to more accurately recover the
latent structure.

3.2. Flow injection analysis (FIA)

Our second application will be a dataset generated by FIA
originating from Nørgaard and Ridder [36].

3.2.1. Background

This is an example of linear dependences among factors that arise
unavoidably from the logical or causal structure of a measure-
ment technique. In cases of this kind, the dependences are
unavoidable but at least they have a mathematical structure that
can be anticipated and thus they permit us to construct an
appropriately constrained analysis model. In this dataset, the
dependences are more extensive and complex than those in our
first example, and so they constitute a more challenging case for
PARAFAC, one that calls for an evenmore extensive application of
the enhancements provided by applying the principles of
PARALIND.

Figure 1. Plots of the fluorescence excitation-emission data of the first six samples. This figure is available in color online at www.interscience.wiley.com/

journal/cem
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The Nørgaard and Ridder dataset has been used in at least two
other demonstrations of proposed three-way methods of
analysis. By applying PARALIND to these data, we make it
possible for the reader to directly compare our approach and
results to those in these other recent proposals. The most closely
related model was that described in Reference [14], an paper that
is not only useful in itself but also useful in this context because it
presents comparisons with other alternatives for second order
calibration. It should be particularly interesting and instructive,
however, for the reader to compare the approach we take below
to that taken by Kiers and Smilde [1]. They used a constrained
Tucker3 model, and this led to an interpretation in the more
dynamic terms often characteristic of models that use a core
array. Their article also includes a proof of (partial) uniqueness
which is relevant to our analysis because the structural
restrictions assumed by the two approaches are formally
equivalent. We would recommend that the reader compare
these articles and methods to the one we propose here, since,
unfortunately, limitations of space and scope, and the subtlety
and complexity of some of the required discussion, make it
infeasible for us to do an adequate job in this paper.

3.2.2. The FIA method

In FIA, a chemical sample is introduced into a transparent channel
through which a carrier fluid is flowing. As it moves downstream,
the sample disperses into the carrier (or reagent) and possibly
undergoes a chemical change. These changes are typically
monitored by spectral detection. For each sample, a ‘landscape’ is
obtained, showing the absorption spectrum at each of the
measurement times; conversely, this could be described as a
landscape showing the time profile of changes in light
absorbance at each of the measured wavelengths.
It is characteristic of FIA that there is no physical separation of

the analytes. The carrier fluid is set up to control the progress of
the reactions; in the example considered here, this will be done
by means of a pH gradient. For this reason, it often happens that
the chemical transformations and/or exchanges that help to
separate, identify and quantify the separate constituents are
causally linked to one another in ways that introduce linear
dependences into the resulting measurements, as happens in
this dataset.

3.2.3. The FIA data

In this example, three analytes were measured, 2HBA, 3HBA, and
4HBA (2-, 3-, and 4-hydroxy-benzaldehyde, respectively). All three
analytes have different absorption spectra depending on
whether they are in their acidic or basic form, and this fact
plays an important role in the procedure. Depending on the pKa
of a given analyte, it will appear in its acidic and basic form in
different proportions, and hence will show different relative
strength of its acidic vs. basic spectrum in different parts of the
injected sample ‘plug’ and hence at different measurement times.
The first part of the sample plug, i.e. the earliest measurements of
a sample, will be dominated by deprotonated (basic) analytes
while the end of the sample plug and the later measurements will
be dominated by protonated (acidic) analytes. For any one time
point, the FIA measurements can be held in an I� Jmatrix called
Xk where I is the number of samples, J is the number of
wavelengths, and k indicates the specific pH/time selected. Our
analysis used every other level of the original Modes B and C

values, resulting in a dataset where I¼ 12 and J¼ 50 and there
are K¼ 45 matrices.

3.2.4. The model with single mode dependency

Since there are three analytes, there are only three different
variations in their concentrations. Thus, in the sample mode, a
three-component decomposition would seem appropriate.
However, each analyte exists in two forms (acidic and basic)
each of which generates a separate spectrum to resolve. To
accommodate these seemingly conflicting requirements, the
PARAFAC-like form of the model in Equation (5) would need six
components. The PARALIND form, corresponding to Equation (8),
would have three components in A and an H matrix that
expressed the sample equivalence of the concentrations for the
acid-base spectral pairs, as follows:

HA ¼
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

2
4

3
5 (17)

The corresponding K� 6C matrix gives the weights/fractions
for the six spectra (corresponding to the two forms of the three
analytes) at each of the K time points/pH values measured. Thus,
the kth row of C holds the six weights for time point k. The first
element in this row is simply the amount of the first analyte in the
basic form and the second is the amount in acidic form. For every
k, we can construct a 6� 6 diagonal matrix Dk which contains the
kth row of C on its diagonal. With this we can describe the data at
time point k. In the general case, this model can be written (in
‘typical slice’ form) as

Xk ¼ AHDkB
T

¼ A

1 1 0 0 � � � 0 0
0 0 1 1 0 0
..
. . .

. ..
.

0 0 0 0 � � � 1 1

2
664

3
775

ck1 0 � � � 0
0 ck2 0

..

. . .
. ..

.

0 0 � � � ckJ

2
6664

3
7775 BT

(18)

This model in Equation (18) demonstrates how the use of a
distinct H and C (and thus distinct Dk) allows the qualitative and
quantitative relationships between A and B to be expressed
separately.
In this version, the model is another case in which two modes

have full column rank and so its partial uniqueness properties can
be deduced from the principles discussed in Section 2.4.1 and
detailed in Appendix B. For our particular six-factor analysis, we
expect that: (i) Mode A will be unique but will consist of three
pairs of identical columns and (ii) the corresponding column pairs
in Modes B and C each reflect a separate compound for which the
acidic and basic forms are not uniquely resolved.

3.2.5. The model with dependency in two modes

While one of the models that we will fit is the one discussed
above, there is actually an additional set of linear dependences in
these data, and these must be included in our full model of the
FIA dataset.
It happens that all analytes measured here have the same

dilution profile, and so they have identically shaped total
(acidicþbasic) time-profiles. Incorporation of this into the
PARALIND model requires a second H matrix. The resulting
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model can be written as

Xj ¼ AHA bj

� �
HT
CC

T (19)

with a (transposed) right hand dependency matrix

HT
C ¼

1 0 0 0
�1 0 0 1
0 1 0 0
0 �1 0 1
0 0 1 0
0 0 �1 1

2
6666664

3
7777775

and a Mode C loading matrix C consisting of four columns, the
first three representing the concentration of, say, the odd
numbered column substances, plus a fourth which represents the
total concentration for each pair at each level of C, (i.e. at each
time).

3.2.6. Uniqueness properties

When the added dependency in Mode C is considered, the FIA
data become an example of those cases where at most onemode
has full column rank, discussed in Section 2.4.2. Unfortunately,
our current knowledge does not let us predict with confidence
which aspects of the doubly-dependent PARALIND analysis will
be unique and which will not.
As we will report in Section 4, the, models of flow injection data

subject to constraints such as those found here can be expected
to provide means for quantitative analysis by PARALIND, and
possibly also with PARAFAC with more difficulty, but neither
model can be used directly for qualitative analysis. That is, the
models are useful for identifying how much of the compound is
present, but not what the compound is. This situation can be
improved with the addition of nonnegativity and additional
constraints as shown earlier [18].
Even with the uniqueness limitations that are intrinsic to these

data, we will see that, compared to PARAFAC, the PARALIND
model improves the accuracy of recovery for those parameter
estimates that can be uniquely determined. And because it
restores to the estimated parameter values the partial non-
uniqueness that holds at the latent level, it allows better
assessment of the degree to which parameter estimates can be
used as approximate measurements, and, more generally,
increases the theoretical appropriateness of the solution.

4. RESULTS

4.1. Fluorescence data

Theoretically, the fluorescence EEM data should be a relatively
straightforward application of PARALIND, since there is factor
dependency in only one mode, and this involves only two factors.
However, real data can sometimes show additional complications
not anticipated by the theory. This is demonstrated by this case,
in which an important illustration of misleading uniqueness
revealed itself.

4.1.1. Assessing uniqueness and identification of
interpretable parameters

Although the theoretical expectations are eventually confirmed,
this is not initially apparent in the results of the PARAFAC analysis,

which would seem to indicate that the the unconstrained
PARAFACmodel is doing a surprisingly good job (Figure 2, left). All
20 fitted solutions are superimposed and are seen to be virtually
identical. Not only do the four refitted models of each dataset
give the same results as expected but also the five different
replicate datasets are apparently also (almost) identical. If the
data behave according to theory, then there should be only three
different variations in the samplemode, and as a result fitting four
components should lead to some non-identifiability in the
spectral modes when fitting different datasets. This is not seen.
Apparently, the chemical analytes interact: different amounts of
one analyte affect the signal of the other analytes to a small, but
sufficiently reproducible degree, to produce a four-component
solution that is consistent over the replicates. However, this
solution is misleading; it does not provide estimates that
correspond (at least linearly) with the pure analyte profiles. For
example, one emission mode profile is systematically below zero
at approximately 300 nm, as is the corresponding excitation
profile.
The solution can be dissected into two parts, and the

misleading results identified. By elimination of the recognizable
and approximately correct profiles, we can identify the profile
with the impossible negative weights as one of the two
corresponding to collinear factors in the sample mode. However,
the impossible loadings are not literally the result of ‘nonunique-
ness’ at the surface level, since the solutions replicate from
different random starting positions. In fact, although there is
theoretically ‘nonuniqueness’ at the latent structural level, this is
not apparent from these data because the impossible curve is
replicated in all five different datasets.
It is possible to get an indication of the problem by looking at

the values of the concentration-mode loadings or ‘scores’ that
were obtained in the PARAFAC solution. Figure 3 shows a scatter
plot of scores for factor three vs. those for four from a PARAFAC
analysis. The plot clearly indicates that the two factors have
scores that are approximately collinear, yet there appears to be
some subtle bifurcation in which, for example, samples 21 and 18
are distinguished from samples 4, 20, and 22.
A comparison of these results with the unconstrained

PARALIND solution is quite instructive. At first sight, the PARALIND
results seem more difficult to interpret. However, looking more
carefully at Figure 2 (right), reveals that in the spectral modes, two
of the components are uniquely identified whereas the two
remaining ones vary from replicate to replicate and from refit to
refit. This is even more evident in Figure 4 which shows the
PARALIND emission mode loadings, split in two parts. Results for
components corresponding to cathecol and hydroquinone are
shown to the right and those for components corresponding to
indole and tryptophane are shown to the left. As can be seen,
only the two left-most components are uniquely determined
whereas the two rightmost ones are definitely not. In different
runs, different (rotated) solutions are obtained. This result is in
exact accordance with theory and thus immediately leads to the
(verifiably correct) interpretation that all concentration-mode
scores are uniquely recovered as are the loadings defining
spectra for two of the four compounds in the other two modes.
On the other hand, the two components in the spectral modes
that correspond to factors that are collinear in the concentration
mode are not uniquely identified. (Further careful analysis
revealed, however, that the nonunique alternative solutions
consist solely of different linear combinations of the two
nonunique spectra, with nothing from the other unique ones
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mixed in). Hence, in the PARALIND solution, the only parameters
that are uniquely determined are those that are unique at the
latent level, and hence those whose unique solutions are
meaningful. In contrast, the PARAFAC solution is also unique for
the other parameters but this is misleading and not fully
meaningful. While we were expecting to demonstrate that these
surface-unique spectra varied randomly across replicates,
revealing the ‘meaninglessness’, we instead demonstrated that

a deeper illusion of uniqueness was produced by some kind of
nonlinear interaction that produced nonmeaningful results that
were in fact consistent across replicates. In some sense, this
further demonstrates a strength of the nonuniqueness built into
the PARALIND model.
As stated in Section 2.5, the fit of PARAFAC will be better than

PARALIND regardless of which model is appropriate. This is also
verified as expected. An unconstrained PARAFAC model fits
99.98% of the variation whereas PARALIND fits 99.93%. For the
nonnegativity-constrained models, PARAFAC fits 99.91% and
PARALIND 99.83%. Hence, minor difference in fit values do not
warrant any conclusions in themselves about whichmodel would
be preferred.

4.1.2. Recovery of latent information from the EEM data

The quantitative results for different analyses of the EEM data are
given below. We discuss the results obtained using PARAFAC with
nonnegativity constraints as well as PARALINDwith nonnegativity
constraints. For assessment of accuracy of recovery of infor-
mation in the concentration mode, estimates are computed
based on regression. To quantify the accuracy of the concen-
tration estimates, the R2 (fraction of variance explained) and
RMSEC (the Root of the Mean Squared Error of Calibration) are
given for each analyte. These values are based on a univariate
regression of the appropriate analyte concentration on the
associated score (done, as is usual, ‘through the origin’—without

Figure 3. Scatter plot of scores for factor three and four from the
PARAFAC solution. This figure is available in color online at www.

interscience.wiley.com/journal/cem

Figure 2. Component matrices from four repeated runs on each of five replicate datasets using unconstrained PARAFAC (left) and unconstrained

PARALIND (right). Top plot holds the scores, middle plots emission loadings and bottom plots the excitation loadings. The similarity but incorrectness of
the twenty repeated runs of PARAFAC illustrates the problem of apparent uniqueness of PARAFAC. This figure is available in color online at

www.interscience.wiley.com/journal/cem
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a constant or intercept term). The RMSEC is computed as
follows:

R2 ¼ 1�
PI
i¼1

ðyi � ŷiÞ2

PI
i¼1

ðyi � yÞ2

PARALIND provides systematically better results than PARAFAC
(Table II). The predictions are shown in Figure 5. It is also worth
noting that the two collinear analytes (catechol and hydro-
quinone) are much better predicted than the remaining two. The
reason for this is most likely the highly similar spectral properties
of indole and tryptophane.

4.2. Flow injection data

In order to explore the usefulness of alternative PARALIND
models of the FIA dataset, three different versions were tested: (i)
linear dependency in the sample mode; (ii) linear dependency in
both sample and time modes; and (iii) dependences in both

modes plus nonnegativity constraints on the parameters. All were
compared to a baseline analysis that used a standard PARAFAC
model with six components.
To perform these comparisons, the quality of the resulting

solutions is evaluated by looking at how well the parameter
estimates recover the known concentrations.

4.2.1. Recovery of latent information on concentrations

These values, computed are shown in Table III. As can be seen, the
predictions are fair except for 3HBA. The reason for this may be
that the similarity of all time profiles causes multi-collinearity
makes it difficult to distinguish 2- and 3HBA. The most important
trend in the results is that the predictions improve by adding
more constraints. The more constrained the model is, the less
degrees-of-freedom are used for fitting the data, but still the
prediction consistently improves except some minor deviations.
Thus, the quantitative results confirm that adding the chemical
information specifically into the structure of the model is
beneficial and actually takes the predictions frommediocre in the
case of PARAFAC to close to excellent for the double PARALIND
with nonnegativity. It is found that the predicted uniqueness

Figure 4. Emission mode loadings from the unconstrained PARALIND models in Figure 2. Left, the 20 estimates of the first two components are shown

and to the right components three and four are shown. This figure is available in color online at www.interscience.wiley.com/journal/cem

Table II. Calibration results for one of the five replicate datasets

Catechol Hydroquinone Indole Tryptophane

PARAFAC nonneg 0.45 (86) 0.12 (86) 0.11 (41) 0.18 (33)
PARALIND nonneg 0.36 (89) 0.09 (89) 0.09 (49) 0.11 (59)

For each analyte the RMSEC (�106) is given and R2 (%) is given in parentheses. The results are from a univariate regression of the
reference using as independent variable, the scores of an unconstrained model.
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properties (Section 2.4) are confirmed in the empirical results. For
example, the Mode A loadings in single PARALIND are unique and
the Modes B and C parameters are not unique. However, for each
analyte, the two loading vectors e.g. in Mode B are found to vary
but always stay in the same subspace. More detailed analysis of
the qualitative recovery of the spectral data confirms the

predicted uniqueness properties but these results can be found
elsewhere [18].
The actual predictions are shown in Figure 6 visualizing the

quantitative results given in Table III. The plot clearly shows the
significant improvements that are gained by incorporating sound
a priori knowledge into the algebraic structure.

Table III. Calibration results

2HBA 3HBA 4HBA Average R2

PARAFAC 51 (0) 24 (66) 13 (49) 38
Single PARALIND 15 (62) 30 (28) 3 (88) 59
Double PARALIND 21 (56) 18 (76) 2 (91) 74
Double PARALINDþ nonnegativity 2 (95) 7 (77) 1 (97) 90

For each analyte the RMSEC (�1000) is given and R2 (%) is given in parentheses. The results are from a univariate regression of the
reference using as independent variable, the scores of an unconstrained model.

Figure 5. Predicted versus reference concentrations for nonnegativity constrained PARALIND. Each plot shows the actual concentration on the x-axis

and the prediction from a univariate regression of the appropriate score vector on the concentration. This figure is available in color online at
www.interscience.wiley.com/journal/cem
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5. CONCLUSION AND FURTHER
PERSPECTIVES

Both theoretical and empirical results indicate that PARALIND
strengthens a PARAFAC-type analysis in those cases where the
process generating the data introduces linear dependences into
the latent structure in one or more modes. PARALIND fits less
error and better recovers the true latent structure, and the
properties of the solution are more appropriate theoretically and
because of the restored partial uniqueness allow better
assessment and characterization of the range and nature of
partial uniqueness that results from the dependences. PARALIND
models transform implicit dependences into explicit representa-
tion of dependences in the model structure. An algorithm for

fitting certain PARALIND models has been developed and is
described in Appendix A.
Thus, PARALIND would seem to provide a more appropriate

analysis method for certain multi-way problems that can be
characterized by having component matrices with the same
number of columns but different ranks in different modes. The
method employs a constrained-PARAFAC perspective, which
maintains the one-factor-per-chemical analyte scheme of
interpretation, instead of introducing factors that represent
interactions of processes or other levels of description. This may
or may not be advantageous depending on one’s scientific
problem and analysis objectives, and perhaps also ones scientific
style or aesthetic preferences, but in any case it serves as a way to
strengthen PARAFAC for these kinds of cases, and hence provides
a new tool in the analyst’s toolbox.

Figure 6. Predicted versus reference concentrations. Each plot shows the actual concentration on the x-axis and the prediction from a univariate

regression of the appropriate score vector on the concentration. This figure is available in color online at www.interscience.wiley.com/journal/cem
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6. MATERIALS AND METHODS

The type of PARALIND algorithm applicable for the FIA data has
been implemented for imposing linear dependency in onemode.
It is written in MATLAB v. 7.6 (MathWorks, Inc.) and is available
from the Internet at http://www.models.life.ku.dk. To run the
PARALIND algorithm it is advisable to have the N-way toolbox [37]
which is available at the same site. A more general PARALIND
version is available in PLS_Toolbox (Eigenvector Inc.) which was
used in this paper. This version allows linear dependences in all
modes and also allows higher-order models.
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APPENDIX A: AN ALS-TYPE PARALIND
ALGORITHM

In this appendix, we present the basics of an algorithm for fitting
PARALIND models. In practical implementations, the algorithm
can be made more efficient by the use of line-search,
compression and similar approaches [2,18,38,39]. As currently
written, this algorithm only implements linear dependency in one
mode. Extension to higher orders and linear dependency in more
than one mode can be implemented along the same lines. For
illustration of how to incorporate constraints into the algorithm
the reader is referred to the literature [18,40,41].
Let X be an I� JKmatrix obtained by rearranging (matricizing)

the I� J� K array X, so the first J columns correspond to xij1
(i¼ 1,...,I, j¼ 1,. . .,J, k¼ 1) and the last J columns correspond to
xijK. A PARALIND model of left-dimension (column-dimension of
A) R and right-dimension (column dimension of B and C) S is
sought. Thus the solution to

min X� AH C� Bð ÞT�� ��2
F

(A1)

is sought.
The operator diag(X) means a column vector with the diagonal

elements of X. The operator vec is introduced for simplifying the
formulae. vec(X) is the vector obtained by stringing out X
columnwise to a column vector [42].
The operator ‘*’ is the Hadamard (elementwise) product. The

algorithm proceeds as follows after initialization of all loading
matrices

1. vecH ¼ BTB
� 	 	 CTC

� 	� ATA
� 	� ��1

vec
PK
k¼1

ATXkBDk


 �

2. A ¼ PK
k¼1

XkBDkH
T


 �
H BTB

� 	 	 CTC
� 	� �

HT
� �1

3. B ¼ PK
k¼1

XT
kAHDk


 �
HTATAH
� 	 	 CTC

� 	� �1

4.
diagDk ¼ BTB

� 	 	 HTATAH
� 	� �1

diag AHTXkB
� 	

;

k ¼ 1; . . . ; K

5. Go to Step 1 until relative change in fit is small.

The algorithm basically follows from extending traditional PAR-
AFAC-ALS algorithms [2,4,43]. If the interaction matrix is fixed, the
updating step for H is simply skipped. The main difference from
ordinary PARAFAC comes from the need to develop an efficient
update step for H. The updating of H can be explained as follows.
The model for any frontal slab of the array is

Xk ¼ AHDkB
T )

vecXk ¼ vecðAHDkB
TÞ )

vecXk ¼ ðBDk � AÞvecH
(A2)

Considering all slabs simultaneously this leads to

vecX1

vecX2

..

.

vecXK

2
6664

3
7775 ¼

BD1 � A
BD2 � A

..

.

BDK � A

2
6664

3
7775vecH )

vecXðI�JKÞ ¼ C� Bð Þ � A½ �vecH

(A3)

from which the update of H in Step 1 immediately follows taking
into account that

ðC� BÞTðC� BÞ ¼ ðB TBÞ 	 ðC TCÞ (A4)

and using the rules for Kronecker and Khatri-Rao products [18].

APPENDIX B: PROOF OF PARTIAL
UNIQUENESS OF FIA-TYPE PARALIND
MODEL WITHOUT LINEAR DEPENDENCE IN
THE THIRD MODE

Consider the recasting of the PARALIND model as a PARAFAC
model. Let

~A ¼ ½~a1 ~a2 ~a3 ~a4 ~a5 ~a6� ¼ ½a1 a1 a2 a2 a3 a3� (B1)

Then the FIA model

Xk ¼ AHDkB
T; k ¼ 1; . . . ; K (B2)

with the special structure of H is equivalent to

Xk ¼ ~ADkB
T: k ¼ 1; . . . ; K (B3)

Rather than representing the model in terms of the frontal
slabs consider the model represented by the horizontal slabs

Xi ¼ BDiC
T; i ¼ 1; . . . ; I (B4)

where Di is to be seen as an operator Dið~AÞ which outputs a
diagonal matrix with the ith row of ~A in its diagonal [29]. For the
basic FIA model, it follows that the diagonal elements of Di are
pairwise identical because of the structure in ~A. Consider the
generalized eigenvalue problem representation of PARAFAC as
exemplified in, e.g. GRAM [26–28] and ESPRIT [10,29,30]. Two
horizontal slabs of size J� K are given for which all factors
contribute with a non-zero amount and where the initial
concentrations of the three analytes are distinct. These slabs
follow the model

X1 ¼ BCT

X2 ¼ BDCT (B5)

where D has multiple nonzero elements, and B and C are tall, F
columns, and full rank. Let U be the first F left singular vectors of

the 2J� Kmatrix
h
X1

X2

i
. Then it is true that the span of U is equal

to the span of
h
X1

X2

i
and since

h
X1

X2

i
¼

h
B
BD

i
CT and C is full rank,

it follows that the span of U is equal to the span of
B
BD

� �
. Hence

U ¼ U1

U2

� �
¼ BT

BDT

� �
ðB6Þ

where T is square full rank. Define G¼ TTBTB and define

R1 ¼ U1
TU1 ¼ TTBTBT ¼ GT

R2 ¼ U1
TU2 ¼ TTBTBDT ¼ GDT

(B7)

Notice, that R1 and R2 are full rank and square. It follows that

G�1R1 ¼ D�1G�1R2 (B8)
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or, equivalently

G�1 ¼ D�1G�1R2R
�1
1 , ðR2R

�1
1 ÞTðG�1ÞT ¼ ðG�1ÞTD (B9)

Hence (G�1)T and D are regular eigenvectors and correspond-
ing eigenvalues of the matrix (R2R

�1
1 )T. Eigenvalues including

multiplicities are uniquely determined whereas the span of
eigenvectors corresponding to a given eigenvalue is uniquely

determined from the corresponding eigenvectors. Thus, D is
unique, whereas (G�1)T is recovered up to the stated ambiguity.
So we transpose it and get G�1 up to the said ambiguity. Then
from R1¼GTwe get T as (G�1)R1; then from U1¼BTwe get B as
U1T

�1; then from X1¼BCT we get C as BþX1, all up to the said
ambiguity, and the proof is complete.
It thus follows that for the FIA data A, span([c1 c2]), span([c3 c4]),

span([c5 c6]), span([b1 b2]), span([b3 b4]), span([b5 b6]) are unique.
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