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Abstract—Direction-of-arrival (DOA) estimation is a problem
of significance in many applications. In practice, due to the oc-
currence of coherent signals and/or when the number of available
snapshots is small, it is a challenge to find DOAs accurately. This
problem is revisited here through a new enhanced principal-sin-
gular-vector utilization for modal analysis (EPUMA) DOA estima-
tion approach, which improves the threshold performance by first
generating DOA candidates for sources where

, and then judiciously selecting of them. The asymptotic
variance of EPUMA is theoretically derived, and numerical results
are provided to validate the asymptotic analysis and illustrate the
practical merits of EPUMA.
Index Terms—DOA estimation, weighted least squares, linear

prediction, subspace method, small sample size.

I. INTRODUCTION

S UBSPACE based direction-of-arrival (DOA) estimation
algorithms offer a good compromise between estima-

tion accuracy and computational complexity. Due to their
competitive advantages, subspace algorithms such as MUSIC
[1]–[3] and ESPRIT [4]–[6] have been deeply studied during
the past three decades, towards improving their so-called
threshold performance and achieving high estimation accuracy,
especially under certain challenging scenarios, such as in the
sample-starved regime where relatively few snapshots are
available, and in the case of correlated or even fully coherent
signals.
The threshold effect refers to the severe and abrupt perfor-

mance degradation that happens when the signal-to-noise ratio
(SNR) and/or the sample size drops below a certain threshold,
and it is the characteristic of many subspace based algorithms.

Manuscript received July 09, 2015; revised January 28, 2016; accepted
February 26, 2016. Date of publication March 17, 2016; date of current
version June 30, 2016. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Fauzia Ahmad. This
research has been supported in part by Natural Science Foundation of China
(NSFC) under Grant No. U1501253, the Guangdong Natural Science Founda-
tionunder Grant 2015A030311030, the Foundation of Shenzhen under Grant
ZDSYS201507081625213, and the Chinese Scholarship Council.
C. Qian and L. Huang are with the College of Information Engineering,

Shenzhen University, Shenzhen, 518060, China (e-mail: qianc@umn.edu;
dr.lei.huang@ieee.org).
N. D. Sidiropoulos is with the Department of Electronics and Computer En-

gineering, University of Minnesota Twin City, Minneapolis, MN 55455 USA
(e-mail: nikos@umn.edu).
H. C. So is with the Department of Electronic Engineering, City University

of Hong Kong, Hong Kong (e-mail: hcso@ee.cityu.edu.hk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2016.2543206

At low SNR, this phenomenon can be alleviated by collecting
a larger number of samples, but this is not always possible,
especially in rapidly time-varying scenarios. To improve the
threshold performance, pseudo-noise resampling (PR) strate-
gies have been developed for maximum likelihood (ML) [7],
unitary root-MUSIC [8], and unitary ESPRIT [9], where the re-
ceived data is resampled several times by directly adding man-
made noise. PR based algorithms use sectors determined via
conventional beamforming techniques, and if a source DOA
falls outside its presumed sector then they fall apart.
In recent work [10], the authors have studied the performance

breakdown at the threshold SNR, and concluded that it is mainly
due to the subspace leakage where the estimated signal subspace
is corrupted by a portion of its orthogonal projection space. In
order to improve the threshold performance, they proposed two
algorithms named root-swap root-MUSIC and two-step root-
MUSIC, where the former takes a different approach to deter-
mining the signal roots and the latter employs a modified sample
covariance matrix (SCM) to estimate DOAs. Specifically, un-
like conventional root-MUSIC, which picks the roots that are
closest to the unit circle, the two-step root-MUSIC picks the
roots that minimize the stochastic ML cost function (among
those inside the unit circle). Note that using theML cost function
to determine final DOA estimates was first introduced in [11].
However, the performance of two-step root-MUSIC hinges on
the modified SCMwhich is estimated by a time consuming one-
dimensional search strategy. Furthermore, its high-SNR perfor-
mance is limited by that of root-MUSIC, since the modified
SCM is almost the same as the conventional SCM in this re-
gion. Therefore, in the presence of coherent signals (especially
for closely-spaced DOAs), the performance of both root-swap
and two-step root-MUSIC may not be satisfactory.
In the case of coherent signals, most of the subspace based

estimators can be modified by some decorrelation techniques,
e.g., spatial smoothing (SS) [12] and forward-backward spa-
tial smoothing (FBSS) [13] methods. However, both of them
have the drawback that decorrelation is achieved at the expense
of reducing the array aperture, resulting in reduced degrees-of-
freedom (DOF), which directly affects the DOA resolution per-
formance. Generally speaking, smaller DOF will cause worse
threshold performance. Thus, how to design DOA estimation
algorithms that are able to deal with coherent signals has been
an important problem in array signal processing.
Recently, an accurate and low-complexity algorithm

called principal-singular-vector utilization for modal analysis
(PUMA) has been proposed for frequency estimation [14]–[16].
However, in the low SNR and small sample (e.g., the sample
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size is smaller than the number of sources) regime, the PUMA
method suffers performance breakdown which is mainly due to
the outliers caused by the inaccurate estimation of the signal
subspace, and such a performance degradation will be further
aggravated if there are highly correlated or even coherent sig-
nals. To alleviate the aforementioned problems, motivated by
the PUMAmethod for multiple sinusoids [16] and also drawing
insights from the two-step root-MUSIC method in [10], we
propose an enhanced PUMA (EPUMA) algorithm which first
generates DOA candidates where , and then
selects of them using the deterministic ML criterion, to
improve the threshold performance of PUMA. Using a uniform
linear array (ULA), the DOA estimation problem can be formu-
lated as a linear prediction (LP) problem [17]–[19] where the
LP coefficients are estimated via an iteratively weighted least
squares (WLS) technique. Furthermore, a detailed derivation of
the asymptotic performance analysis of the EPUMA technique
is presented. We theoretically prove that when there is only one
source, the asymptotic variance is identical to the Cramér-Rao
bound (CRB) in the high SNR case.
The rest of the paper is organized as follows. In Section II,

we introduce the data model. In Section III, the EPUMA
algorithm is derived. Section IV is devoted to analyze its
asymptotic performance. In Section V, numerical simulations
are provided to compare the performance of EPUMA with
that of the deterministic ML, root-swap root-MUSIC, two-step
root-MUSIC, and ESPRIT algorithms. Finally, conclusions are
drawn in Section VI.

II. SIGNAL MODEL

Consider a ULA with isotropic sensors. There are
narrowband source signals impinging on the array from

distinct directions in the far field. The
observation vector is

(1)

Here, is the steering matrix,
is the source signal vector with being

the transpose, is the number of snapshots, and the steering
vector due to the th source is expressed as

(2)

where is the carrier wavelength and is the inter-
element spacing. It is assumed that the noise vector is a
white Gaussian process with mean zero and covariance
where is the power and is the identity matrix.
Moreover, the noise is uncorrelated with . Our task is to
estimate the DOAs from the observations . The
covariance matrix of is

(3)

where denotes expectation, is the conjugate trans-
pose, and denotes the signal covariance ma-
trix.
Note that, throughout the paper, the number of sources

is assumed to be known. For detecting the number of sources,

Akaike’s information criterion (AIC) [20] and minimum de-
scription length (MDL) [21] are the most widely studied algo-
rithms. Interested readers are referred to [22]–[24], where sce-
narios involving small number of samples and coherent sources
are considered.

III. EPUMA ALGORITHM

A. PUMA With Extra DOA Estimates
Define the eigenvalue decomposition (EVD) of as

(4)

where is the signal subspace,
is the noise subspace and

that contains the largest eigenvalues
with being its corresponding
signal eigenvectors and being the noise eigenvec-
tors. Here, denotes a diagonal matrix.
In the ideal case where is exactly known, and span

the same column space

(5)

Since is a Vandermonde matrix, according to the LP theory,
each column of is a sum of sinusoids.
More precisely, each element in can be expressed as a linear
combination of its previous samples [16]:

(6)

where is the th element in and are the LP
coefficients. Therefore, the DOAs can be related to the fol-
lowing polynomial [25]

(7)

where .
The matrix form of (6) is

(8)

where is a zero vector, and

...
...

...
(9)

(10)
(11)

Let . Stacking into a vector yields

(12)
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where

(13)
(14)

However, the covariance is not available in practice. The
typical approach is to use the sample covariance matrix in-
stead of where

(15)

with being the data matrix1. Take the
EVD of as

(16)

where

(17)
(18)
(19)
(20)

In the presence of noise, we replace by in (12) and pro-
duce and . Thus, (12) becomes an approximate equality, i.e.,

(21)

The straightforward way to estimate is to utilize least squares
(LS). However, the LS technique is suboptimal since both sides
of (21) contain noise (due to the estimation errors). For this
reason, we employ WLS instead of LS to estimate . The use
of WLS in this context is called weighted linear prediction, and
it has been successfully used in other signal processing applica-
tions, where it was shown to yield a significant improvement in
the estimation performance [26], [27]. The WLS technique tries
to minimize the following cost function

(22)

where

(23)
(24)

The solution to the unconstrained minimization of (22) is

(25)

However, we cannot directly use (25) to estimate since
is the true covariance matrix of which is unavailable.

The calculation of requires knowledge of and also both
the signal eigenvalues , and the noise power .
Despite all that it is still possible to calculate an approximate

1In order to circumvent the problem of degraded estimation performance in
case of closely-spaced DOAs in the same dimension, can be replaced by the
forward-backward (FB) smoothing covariance matrix:

where is the complex conjugate and is the exchange matrix
with ones on its anti-diagonal and zeros elsewhere.

optimal weighting by substituting consistent estimates of
, and .

In the absence of noise, we find that

(26)

where

(27)

where stands for a Toeplitz matrix having as
its first column and as its first row. Moreover, we have

(28)

where is the vectorization operator. By taking the noise
into consideration, (28) becomes

(29)

where is the Kronecker product, , and
. According to (24), has the form of

(30)

It is shown in [28]–[31], that the errors between the signal
eigenvectors have the following property:

(31)

where is the delta function. It follows from (31) that

. . .

(32)

Since and are all block diagonal ma-
trices, is also a block diagonal matrix where its th diagonal
matrix is

(33)

Noting that and utilizing the result in
(28), (33) yields

(34)
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Combining (30), (32) and (34) yields

(35)

where

. . . (36)

It is seen in (35) that there are three unknown components,
namely, and in . For , one simple and straightfor-
ward way is to replace by . For , we replace it by its
consistent estimate which is given by [32]

(37)

where is the trace of a matrix. We note that when
becomes a zero matrix. Thus, we have . How-

ever, if in (36) will be infinity that makes ill-con-
ditioned. Nevertheless, it is easily seen from (25) that will
be canceled out and thus it can be ignored. Finally, we obtain the
approximate optimal weighting as

(38)

where

. . . (39)

At this point, the original WLS problem in (22) is approximated
by

(40)

whose solution is

(41)

We should point out that the DOA estimation accuracy depends
on how accurate is. However, note from (41) that is not
available at this time since is unknown. Thus, our next
goal is to find a proper way to approximate . Towards this
end, we suggest using the LS estimate from (21), namely

(42)

where is the pseudo-inverse. This enables us to initialize
by substituting (42) into (27), leading to

(43)

Then plugging (43) into (41) produces a new estimate of . The
latter can also be exploited to update and thus obtain an
improved estimate of . Such an iterative estimation procedure
can be summarized as follows:
1) Initialize by using in (42);

2) Utilize the obtained to construct via (38);
3) Calculate via (41);
4) Repeat 2) to 3) until a stopping criterion is satisfied2.

After obtaining and solving for the roots, denoted by ,
we get a total of DOA candidates, i.e.,

(44)

When there are DOA candidates, the question that
naturally arises is what criterion should be used to reduce them
down to final DOA estimates.

B. Two-Step DOA Selection Strategy

Contrary to ‘conventional wisdom’, we do not advocate de-
termining the DOA estimates by choosing the signal roots
that are closest to the unit circle. There are mainly two reasons
against this: 1) In low SNR cases, especially when the signal
power is smaller than the noise power, there is a high proba-
bility of subspace leakage [10], i.e., the noise perturbation oc-
cupies some portion in the signal subspace resulting in
noise rooting, since signal roots have smaller amplitudes than
the noise roots; and 2) Through empirical and theoretical study,
we find that for the PUMA, a larger , namely, , usu-
ally produces better threshold performance than the case of

but the latter possesses higher estimation accuracy than
the former when SNR is high or the sample size is large. For 1),
we follow [10] to make use of a larger sized LP system to pro-
duce DOA candidates, and then determine the final
DOA estimates from the DOA candidates. For 2), since the
signal subspace contains a large portion of its null space for low
SNRs, the signal roots of the PUMA with are cor-
rupted by those from the null space. Unfortunately, the PUMA
algorithm will treat them as the signal roots, resulting in some
unreliable DOA estimates and thus leading to significant per-
formance degradation. However, for the case of , the
PUMA will generate more than signal root candidates. This
increases the probability of removing the outliers and finding

DOA estimates associated with the true DOAs at the same
time. Nevertheless, cannot be too large, because a larger
produces a smaller dimension of and leads to smaller DOF.
In this way, the root mean square error (RMSE) curve of PUMA
will depart from the CRB as increases.
This intuition will be confirmed by our theoretical perfor-

mance analysis, but before we get to that, it is instructive to illus-
trate this point by means of examples. We consider a 10-element
ULA receiving two correlated source signals from
and . We choose and for
comparison. In the first example, we set and
dB. Fig. 1 plots the magnitude of the estimated signal root
candidates versus their corresponding DOA estimates. It is seen
that the PUMA with only has one DOA estimate close
to the true one while another one is far away from 2 . Moreover,
the criterion that chooses the signal roots that are closest to

2Two or three iterations are enough in most cases for EPUMA to achieve
reliable performance, and further iterations do not bring any significant perfor-
mance improvement, in our experience. We therefore stop iterating after a fixed
number of iterations in our simulations.
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Fig. 1. Root radii of PUMA with when
and two coherent signals with .

Fig. 2. RMSE performance of PUMA for different versus SNR when
and two coherent signals with .

the unit circle is inappropriate. Taking as an ex-
ample, the second and third roots are the correct ones, but, ac-
cording to that criterion, we should choose the second and fourth
roots as signal roots.
In the second example, we set the sample size as

and include the CRB [33] as a benchmark, and a preview of the
analytical variance expression in (47). A total of 2000 Monte
Carlo tests are carried out to compute the RMSE, where

(45)

Note that the final DOA estimates are determined by the second
step. The only difference is that we generate candidate sub-
sets of DOAs each, and then employ the ML cost function in
(46) to determine the final DOA estimates. It is shown in

Fig. 2 that a larger provides better threshold performance but
with a little bit larger variance in the high SNR regime.
From the above discussion and ‘sneak preview’, we find that

to improve the threshold performance, it is better to choose
, while to decrease the variance in the high SNR region, it is

preferable to use . This suggests the following two-step
idea, i.e., the EPUMA algorithm:

i) Employ the PUMA twice with and ,
respectively, to generate DOA candidates;

ii) Pick up DOA estimates from the estimated
DOA candidates.

For Step ii), in order to reliably choose DOA estimates, we
follow [10], [11] to determine the final DOAs:
1) Divide all the DOAs into different

subsets with each subset having different DOAs, de-
noted by , which corresponds to different
, i.e., ;

2) Substitute each into the ML cost function3

(46)

which yields .
3) The final DOAs are in the that mini-

mizes among all those considered.
Remark 1: The implementation of the EPUMA algorithm re-

quires three major steps:
1) Calculation of and its EVD;
2) Inversion of ;
3) Calculation of .

The total flops to calculate is about , while the com-
plexity for its EVD is . Since is a block diagonal ma-
trix, the computational complexity of is mainly caused
by the inverse of which is about

, and thus the computation of is about
. The complexity of calculating is about

. Recalling
that the EPUMA is implemented twice to generate
DOA candidates, in each iteration, and are calculated two
times. Moreover, the complexity for the final DOA selection
is . Since is usually a little bit
larger than , e.g., or , by con-
sidering , the complexity of the EPUMA scheme is
about

with being
the number of iterations. As a matter of fact that is enough
for the EPUMA to achieve comparable performance, thus, we
have . If , the complexity is reduced to

.

3Although we employ the determinedML cost function as a criterion for final
DOA selection, the readers can also use the stochastic one. However, from nu-
merical simulations, we find that compared to the determinedML criterion, there
is little threshold performance improvement when we employ the stochastic
one, and sometimes the former is even better than the latter. Besides this, the
stochastic ML cost function has higher complexity than the determined one.
Therefore, we recommend to use the determined ML cost function to determine
the final DOA estimates.
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IV. PERFORMANCE ANALYSIS

A. Mean Square Error Analysis
It is often interesting andmeaningful to know the quality of an

estimator. The asymptotic performance of PUMA methods for
one- and two-dimensional frequency estimation of a single-tone
has been recently studied in the literature [15], [16]. However,
the performance analysis of PUMA for multiple frequencies has
not yet been analyzed. In this section, under a high SNR as-
sumption and using first- and second-order approximations, a
closed-form variance expression for the EPUMA algorithm for
DOA estimation is derived. The main result is summarized in
the following proposition.
Proposition 1: The asymptotic variance of the PUMA algo-

rithm in Section III.A for DOA estimation is4

(47)

where is the absolute value and

(48)

with

(49)
(50)

Proof: See Appendix A.
Remark 2: It should be pointed out here that when ,

Proposition 1 gives the asymptotic variance of PUMA for a
single rather than the two-step idea in Section III.B, where
we combine two PUMA estimators with and
to determine the final DOA estimates. For the latter, since (47)
is established in the high SNR cases where the estimation ac-
curacy only depends on PUMA with , the asymptotic
variance of EPUMA is exactly the variance of PUMA with

which can be calculated via substituting into
(47).

B. Special Case: Asymptotic Variance of EPUMA for a Single
Source
In this case, there is only one vector in the signal subspace,

i.e.,

(51)

The and are reduced to

(52)
(53)
(54)

4Note that the true LP coefficients can be obtained by calculating
the LS solution of (12), i.e., . When , we can also compute
by forming the following polynomial

Thus, associates with the coefficient of .

where

(55)
(56)

From the rotational invariance property, assuming that the noise
is small, we have

(57)

According to the definition of in (27), we find it can be
expressed as

(58)

where . Adopting the WLS approach for (57) produces

(59)

where

(60)

It is worthmentioning that unlike themultiple source case where
it is inevitable to estimate both the signal eigenvalue and noise
power, here, we do not need to do this because the constant term

will be canceled out in (59). Therefore, we rewrite
by ignoring this term as

(61)

Using the results in Proposition 1, the variance of is

(62)

where is simplified by using the fact that in (76)
and in (77) are all equivalent to 1, and the last equation in
(62) holds since and with

being the signal power.
The next step is to calculate . Re-

calling that , we have
. Then

(63)

where

(64)
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Since calculating is not straightforward, instead, we first com-
pute its inverse which has the form of

(65)

where . Taking
the inverse of (65) yields , whose entry is

(66)

After some algebraic steps, we obtain

(67)

Combining (62) and (67), the variance of for be-
comes

(68)

which is exactly the CRB [33].

V. SIMULATION RESULTS
To illustrate the performance of the EPUMA scheme and

to validate the analytical error expression in (47), simulation
examples are presented in this section for several representa-
tive cases. Meanwhile, the stochastic ML [33], root-swap root-
MUSIC [10], two-step root-MUSIC [10] and ESPRIT [4] algo-
rithms are employed for performance comparison. Note that the
EPUMA approach with is initialized by
in (43) and then refined by two iterations. For the two-step
root-MUSIC method, the user-determined factor is estimated
by searching from 0 to 1 with step 0.1. In our simulations, the
signals are assumed to be Gaussian with equal power, impinging
upon a ULA consisting of omnidirectional sensors
with interelement spacing . The noise is assumed to be
a white Gaussian process with mean zero and variance . The
SNR is equal for all the sources.
In the first example, we consider a severely sample-starved

scenario where there are uncorrelated sources from
and

but only snapshots are available, so that we have
. The SNR is 20 dB. Fig. 3 plots the real and imaginary

parts of under 200 independent tests. It is seen that
ESPRIT, root-swap root-MUSIC and two-step root-MUSIC fail
to resolve the six signals, while the EPUMA as well as the ML
method successfully determine all of them.
In the second example, we compare the RMSE performance

versus SNR. All the following results are averaged from 2000
independent runs using a computer with 2.6 GHz dual-core Intel
i5 processor and 8 GB RAM. We also examine performance in
terms of the probability of DOA resolution, where the DOAs
are considered to be resolved if the following is satisfied

(69)

Fig. 3. RMSE performance versus SNR when and six uncorrelated
signals with . The ‘ ’ stands for the
estimates and stands for the true values.

where . The analytical
variance of EPUMA is calculated through (47). Fig. 4 is plotted
under coherent signals with DOAs and

. The number of samples is . Since the two-
swap root-MUSIC, two-step root-MUSIC and ESPRIT cannot
handle coherent signals, we adopt the well-known FBSS tech-
nique [13] to help themwork properly. It is seen in Fig. 4 that the
performance of EPUMA is very close to theML estimator, and it
outperforms the two-swap root-MUSIC, two-step root-MUSIC
and ESPRIT algorithms by a considerable margin. When SNR

dB, the EPUMA and ML schemes almost attain the CRB.
We can also observe that the two-step root-MUSIC improves
the threshold performance a lot, while the ESPRIT suffers se-
vere performance degradation for SNR dB. Although the
FBSS helps to remove the coherency, due to the loss of DOF,
the root-MUSIC and ESPRIT methods are still inferior to the
proposed one. Furthermore, it should be noted that although the
ML estimator provides the optimal performance, it is typically
computationally very intensive because of the need to solve
a hard nonconvex multidimensional optimization problem (in
fact obtaining the ML solution cannot be guaranteed). Among
the four competitors, the ML is the most computationally inten-
sive method5, while the ESPRIT is the fastest one but with the
worst performance. The CPU times of the EPUMA, two-swap
and two-step root-MUSIC algorithms are 0.0042 s, 0.0022 s and
0.0061 s, respectively. It is obvious that the EPUMA is compu-
tationally simpler than the two-step root-MUSIC but a little bit
intensive than the two-swap root-MUSIC. In Fig. 5, we find that
the ML followed by the EPUMA feature the highest probability
of resolution when SNR is lower than dB, and the four al-
gorithms can resolve all the DOAs with probability 100% when
SNR is higher than 0 dB. Although the estimation accuracy of
the two-step root-MUSIC is a little bit inferior to that of the

5The computational complexity of the ML estimator is about
, which is typically a multidimensional searching

procedure and thus is much more computationally intensive than most of the
subspace based algorithms.
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(47)

Fig. 4. RMSE performance versus SNR when and three coherent
signals with .

Fig. 5. Probability of resolution versus SNR when and three coherent
signals with .

two-swap root-MUSIC when SNR dB, the former has a
higher probability of resolution than the latter.
We next study the performance as a function of . Here, the

number of samples is varied from 10 to 1000. All the parameters
are the same as Fig. 4 except that the SNR is fixed at a relatively
low value of dB. It is seen in Fig. 6 that when , the
ML has the best threshold performance, while the EPUMA is
somewhat inferior to theMLmethod.With increasing, our al-
gorithm converges to its theoretical performance. However, the
RMSEs of ESPRIT, root-swap and two-step root-MUSIC esti-
mators cannot reach the CRB even for . Fig. 7 shows
the corresponding results as Fig. 6.
We now consider a special case where there is only one signal

with . The sample size is . Since there is no co-
herent signal, for the two-step root-MUSIC and ESPRIT, we
employ the SCM for DOA estimation. As is shown in Fig. 8,
the EPUMA has better threshold performance than the root-

7

Fig. 6. RMSE performance versus when SNR dB and three coherent
signals with .

Fig. 7. Probability of resolution versus when SNR dB and three
coherent signals with .

swap and two-step root-MUSIC, and its theoretical RMSE curve
aligns with the CRB, which verifies the correctness of our anal-
ysis in Section IV.B.
Finally, Fig. 9 shows the computational time of EPUMA,

root-swap root-MUSIC, two-step root-MUSIC and ESPRIT
as a function of . It is seen that the ESPRIT is the com-
putationally simplest one among the four competitors. Note
that the CPU time of EPUMA is almost independent of ,
while the computational time of the two root-MUSIC al-
gorithms increases as increasing. Specifically, when

, the EPUMA becomes much faster than the root-swap
root-MUSIC. This is because the latter determines final DOA
estimates by dividing DOA candidates into

different possible combinations and
then picking up one that minimizes the stochastic ML cost func-
tion. Thus, the complexity of root-swap root-MUSIC is about

. When
is large, we have
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Fig. 8. RMSE performance versus SNR when and one source with
.

Fig. 9. Computational time versus when and .

, whichmeans that the computational complexity of root-swap
root-MUSIC is higher than that of the EPUMA.

VI. CONCLUSION
An EPUMA algorithm for DOA estimation has been devised

here, along with its asymptotic performance analysis leading to
closed-form mean square error expressions in the large sample
regime. The EPUMA technique provides reliable performance
when the number of samples is small, even for . More-
over, the EPUMA can deal with coherent signals. Computer
simulations confirm our theoretical derivations, indicating that
the EPUMA approach outperforms many other subspace based
DOA estimators, especially for small sample scenarios.

APPENDIX A
PROOF OF PROPOSITION 1

As the quantity of interest is , we need to find the relation-
ship between the error in and the error in . Noticing that

and performing the first-order Taylor series
expansion, we have

(70)

To ensure a real quantity, we set

(71)

After some algebraic manipulations, we obtain

(72)

Expanding (7) yields

(73)

All the corresponding to the true DOAs should satisfy (73).
Thus, by using the first-order approximation, we have

(74)

where

(75)
(76)
(77)

Then we get

(78)

The variance of can be expressed as

(79)

Let
(80)

For sufficiently high SNR, we are able to approximate the
derivative of using the first- and second-order terms in its
Taylor series expansion about the true value as [35]

(81)

where . The first and second derivatives of
with respective to are

(82)

(83)

Thus, we have

(84)
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where

(85)
(86)

Plugging (84) into (79) produces

(87)

The next step is to compute . It follows from (78)
that

(88)

where

(89)

With the results in [29]–[31], and we have

(90)

which results in

...
...

. . .
...

(91)

Utilizing again, we find that
(89) is reduced to be a zero matrix, such that

(92)

Therefore, (72) is then simplified as

(93)

Substituting (87) into (93) proves Proposition 1.
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