Frugal Sensing Spectral Analysis from Power Inequalities

Nikos Sidiropoulos

Joint work with Omar Mehanna

IEEE SPAWC 2013 Plenary, June 17, 2013, Darmstadt, Germany

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Wideband Spectrum Sensing (for CR/DSM)

- Split in narrowband channels + channel-by-channel sensing
 ↔ Filterbank / frequency sweeping (hardware / delay), correlation ignored
- Wideband scanning with high-rate ADC
 - Hard to implement, expensive, high power consumption
- Compressive sampling
 - Requires frequency-domain sparsity for sub-Nyquist sampling
- [Leus et al, '11]: no need to reconstruct received signal spectrum; power spectrum sufficient / more relevant for CR, certain other applications (e.g., radio astronomy)
- Can estimate from FT of truncated autocorrelation → finite parameterization

- Power spectrum sensing [Leus et al, '11]
 - Neither Nyquist-rate sampling nor full-band scanning is necessary
 - Signal passed through bank of filters → Cross-correlations of outputs are used to build an over-determined system of linear equations in the signal autocorrelation for a finite number of lags
 - Analog amplitude samples not suitable in network sensing setting using low-end sensors with limited communication capabilities
- One-bit compressed sensing [Boufounos et al, '08]
 - Signal recovered (within scaling factor) from sign info of compressed measurements
 - Does not exploit additional autocorrelation-specific constraints
 - Requires signal sparsity

Frugal Sensing

Estimate of the power spectrum using few bits Spectral estimation from inequalities instead of equalities

Outline

- 1. Problem Formulation
- 2. Nonparametric Estimation
 - Error-free case
 - Gaussian errors
- 3. Parametric Estimation (Line Spectra)
- 4. Adaptive Thresholding (Active FC)
- 5. Summary

Sensor Measurement Chain

Equivalent analog measurement

Fading (1)

Received (discrete-time) signal

$$\tilde{y}_m(n) = \gamma_m \sum_{\ell=0}^{L-1} h_m(\ell) x(n-\ell) \quad \stackrel{\text{AGC}}{\longrightarrow} \quad y_m(n) = \tilde{y}_m(n) / \gamma_m$$

Sensor-specific loss

 Assumption: L-tap channel is random, time-invariant, correlation between taps is only function of ordinal distance

$$\mathbb{E}[h_m(\ell_1)h_m^*(\ell_2)] = r_{h_m}(\ell_1 - \ell_2)$$

• Frequency response $H_m(\omega) = \sum_{m=1}^{\infty} h_m(\ell) e^{-j\omega\ell}$

• Power $\mathbb{E}[|H_m(\omega)|^2] = \sum_{\ell_1=0}^{L-1} \sum_{\ell_2=0}^{L-1} \mathbb{E}[h_m(\ell_1)h_m^*(\ell_2)]e^{-j\omega(\ell_1-\ell_2)}$ $= \sum_{\ell_1=0}^{L-1} (L-|\ell|)r_{h_m}(\ell)e^{-j\omega\ell}$

 $\ell = -L + 1$

Fading (2)

Received signal autocorrelation $\mathbb{E}[y_m(n)y_m^*(n-k)] = \mathbb{E}\left[\sum_{\ell=0}^{L-1} h_m(\ell_1)x(n-\ell_1)\sum_{\ell=0}^{L-1} h_m^*(\ell_2)x^*(n-k-\ell_2)\right]$ $L - 1 \ L - 1$ $= \sum \sum r_{h_m} (\ell_1 - \ell_2) r_x (k + \ell_2 - \ell_1)$ $= \sum_{l=0}^{L-1} \sum_{(L-|\ell|)r_{h_m}(\ell)r_x(k-\ell)} \tilde{r}_x(k) := \mathbb{E}[x(n)x^*(n-k)]$ $\ell = -L + 1$ **PS** $S_{y_m}(\omega) = \sum \mathbb{E}[y_m(n)y_m^*(n-k)]e^{-j\omega k}$ $k = -\infty$ $= \sum_{k=1}^{\infty} (L - |\ell|) r_{h_m}(\ell) \sum_{k=1}^{\infty} r_x(k - \ell) e^{-j\omega k}$ $\ell = -L + 1$ $= \sum_{k=1}^{L-1} (L-|\ell|)r_{h_m}(\ell)e^{-j\omega\ell} \sum_{k=1}^{\infty} r_x(\bar{k})e^{-j\omega\bar{k}}$ $\underbrace{\ell = -L+1}_{\left(\mathbb{E}[|H_m(\omega)|^2]\right)} \underbrace{\bar{k} = -\infty}_{\left(\mathbb{E}[|H_m(\omega)|^2]\right)}$ $S_x(\omega)$

Fading (3)

- Consistent power spectrum measurements if
 - $\mathbb{E}[|H_m(\omega)|^2]$ same across all sensors
 - Sensors acquire sufficient samples with different channel realizations
- In practice
 - Sensor periodically senses spectrum encountering new channel realization each time (drift and carrier/phase lock)
 - Reported measurements reflect averaging over many epochs

Power Measurement

- Signal autocorrelation $r_x(\ell) := \mathbb{E}[x(n)x^*(n-\ell)]$
- Deterministic filter autocorrelation $q_m(\ell) = \sum g_m(n)g_m^*(n+\ell)$
- Power measurement $\alpha_m = r_{z_m}(0) = \sum_{\ell=1-K}^{K-1} r_x(\ell) q_m^*(\ell) = \mathbf{q}_m^T \tilde{\mathbf{r}}_x$
- $\tilde{\mathbf{r}}_x := [r_x(0), \operatorname{Re}\{r_x(1)\}, \dots, \operatorname{Re}\{r_x(K-1)\}, \operatorname{Im}\{r_x(1)\}, \dots, \operatorname{Im}\{r_x(K-1)\}]^T$
- $\mathbf{q}_m := [q_m(0), 2 \operatorname{Re}\{q_m(1)\}, \dots, 2 \operatorname{Re}\{q_m(K-1)\}, 2 \operatorname{Im}\{q_m(1)\}, \dots, 2 \operatorname{Im}\{q_m(K-1)\}]^T$
- Power spectrum estimate ŝ

$$\mathbf{\hat{s}}_x = \mathbf{\tilde{F}}\mathbf{\tilde{r}}_x$$

FC Goal: Estimate the real vector $\tilde{\mathbf{r}}_x$ from $\{b_m\}_{m=1}^M$

Nonparametric Estimation (Passive FC)

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Autocorrelation Reconstruction

Constraints:

- 1. The bounds $0 \le r_x(0) \le P_{\max}$, $|r_x(\ell)| \le r_x(0)$, $\ell = 1, ..., K-1$ define a bounded \mathcal{P}_0 as the initial feasible region for $\tilde{\mathbf{r}}_x$
- 2. Receiving $\{b_m\}_{m=1}^M \Longrightarrow b_m(\mathbf{q}_m^T \tilde{\mathbf{r}}_x t_m) \ge 0$, $m = 1, \dots, M$ (ignoring α estimation errors)

3.
$$\mathbf{R}_x = \text{Toeplitz}(\mathbf{r}_x) \succeq 0 \text{ and } \hat{\mathbf{s}}_x = \tilde{\mathbf{F}}\hat{\mathbf{r}}_x \ge 0$$

Proposition: $\tilde{\mathbf{F}}\hat{\mathbf{r}}_x \ge 0 \Rightarrow \mathbf{R}_x \succeq 0$

Cost Function:

Cost Function: Minimize total signal power $E[|x(n)|^2] = r_x(0) = \frac{1}{N_F} \sum_{\ell=0}^{N_F-1} \hat{s}_x(f) = \frac{1}{N_F} ||\hat{\mathbf{s}}_x||_1$

Linear **Program**: $\min_{\tilde{\mathbf{r}}_x \in \mathcal{P}_0} \quad r_x(0)$ s.t.: $b_m(\mathbf{q}_m^T \tilde{\mathbf{r}}_x - t_m) \ge 0,$ $\tilde{\mathbf{F}} \tilde{\mathbf{r}}_x \ge 0, \quad m = 1, \dots, M.$

Simulations

Threshold Selection & Filter Length

 Threshold should be tuned such that number of sensors reporting b_m=1 (above threshold) decreases as the power spectrum becomes more sparse

(b) NMSE_s vs. K for different M.

• Small $K \rightarrow$ smeared power spectrum estimate

- Large K → more unknowns vs.
 inequality constraints (more underdetermined) → high uncertainty
- More $M \rightarrow$ optimal K^* increases
- Binary PN simpler than Gaussian

Gaussian Errors – ML

$$\begin{split} \hat{\alpha}_{m} &= \mathbf{q}_{m}^{T} \tilde{\mathbf{r}}_{x} + e_{m} \\ Frequency-selective fading \\ + insufficient sample averaging \\ \mathcal{M}_{+} &:= \{m|b_{m} = 1\} \\ \mathcal{M}_{-} &:= \{m|b_{m} = -1\} \\ \mathcal{M}_{-} &:=$$

$$L(\tilde{\mathbf{r}}_x) := \log f(b_1, \dots, b_M | \tilde{\mathbf{r}}_x) = \sum_{m=1}^M \log \Phi\left(\frac{b_m(\mathbf{q}_m^T \tilde{\mathbf{r}}_x - t_m)}{\sigma_m}\right)$$

• Constrained ML - Convex optimization problem:

$$\max_{\tilde{\mathbf{r}}_x \in \mathcal{P}_0} L(\tilde{\mathbf{r}}_x) \quad \text{s.t.} : \quad \tilde{\mathbf{F}}\tilde{\mathbf{r}}_x \ge \mathbf{0}$$

Parametric Estimation (Line Spectra)

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Line spectrum

Line spectrum estimation from few bits → Estimation from inequalities (instead of equalities)

1) Nonparametric LP + MUSIC

1. Nonparametric estimation of autocorrelation

$$\min_{\tilde{\mathbf{r}}_x \in \mathcal{P}_0} \quad r_x(0)$$
s.t.: $b_m(\mathbf{q}_m^T \tilde{\mathbf{r}}_x - t_m) \ge 0,$
 $\tilde{\mathbf{F}} \tilde{\mathbf{r}}_x \ge 0, \quad m = 1, \dots, M.$

2. Parametric estimation of frequencies using MUSIC (MUltiple SIgnal Classification)

L strongest peaks of: $\hat{S}_{\text{MUSIC}}(\omega) = \frac{1}{\sum_{i=L+1}^{K} |\mathbf{e}(\omega)^H \mathbf{u}_i|^2}$ \mathbf{u}_i eigenvector corresponding to ith strongest eigenvalue of autocorrelation matrix and $\mathbf{e}(\omega) := [1, e^{j\omega}, \dots, e^{j(K-1)\omega}]^T$

3. LS for powers: $\{\hat{p}_{\ell}\}_{\ell=1}^{L} = \arg \min_{\{p_{\ell}\}_{\ell=1}^{L}} \sum_{k=0}^{K-1} \left| \hat{r}(k) - \sum_{\ell=1}^{L} p_{\ell} e^{jk\hat{\omega}_{\ell}} \right|^{2}$

2) Nonparametric ML + MUSIC

1. Exploit Gaussian distribution of errors $\{e_m\}_{m=1}^M$

$$\max_{\tilde{\mathbf{r}}\in\mathcal{P}_0}\sum_{m=1}^M\log\Phi\left(\frac{b_m(\mathbf{q}_m^T\tilde{\mathbf{r}}-t_m)}{\sigma_m}\right)\qquad\text{s.t.}:\quad\tilde{\mathbf{F}}\tilde{\mathbf{r}}\geq\mathbf{0}$$

2. MUSIC for $\{\omega_{\ell}\}_{\ell=1}^{L}$ then LS for $\{p_{\ell}\}_{\ell=1}^{L}$

3) Parametric ML

$$\alpha_m = \mathbf{q}_m^T \mathbf{r} = \sum_{\ell=1}^L \sum_{k=1-K}^{K-1} p_\ell e^{jk\omega_\ell} q_m(k)$$

• Estimate $\{\omega_{\ell}, p_{\ell}\}_{\ell=1}^{L}$ directly by maximizing the log-likelihood:

$$\sum_{m=1}^{M} \log \Phi \left(b_m \left(\sum_{\ell=1}^{L} \sum_{k=1-K}^{K-1} p_\ell e^{jk\omega_\ell} q_m(k) - t_m \right) \middle/ \sigma_m \right)$$

• Nonconvex in $\{\omega_{\ell}\}_{\ell=1}^{L}$ Solve with Coordinate Descent Grid Search (CDGS)

Numerical Results

- Parametric ML (solved with CDGS) outperforms other techniques and meets the CRLB for large *M*
- Nonparametric ML + MUSIC can do better for small M when tones are very close

Adaptive Thresholding (Active FC)

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Adaptive Thresholding Algorithm

The volume of *P_M* = *P*₀ ∩ {y | *b_m*(q^T_my − *t_m*) ≥ 0, *m* = 1,...,*M*} gives a measure of ignorance / uncertainty about *r̃*_x
 ⇒ adaptively select {*t_m*}^M_{m=1} to ensure *P_M* is as small as possible

CCAT Algorithm:

Given \mathcal{P}_0 , its Chebyshev center (CC), $\mathbf{y}_{cc}^{(0)}$, and $\{\mathbf{q}_m\}_{m=1}^M$

For m=1,...*M*, *d*0

- **1.** Set $t_m = \mathbf{q}_m^T \mathbf{y}_{cc}^{(m-1)}$, send it to senor *m*
- **2.** Upon receiving b_m update:

$$\mathcal{P}_m := \begin{cases} \mathcal{P}_{m-1} \cap \{ \mathbf{y} \mid \mathbf{q}_m^T \mathbf{y} \ge t_m \} & \text{if } b_m = 1 \\ \mathcal{P}_{m-1} \cap \{ \mathbf{y} \mid \mathbf{q}_m^T \mathbf{y} < t_m \} & \text{if } b_m = -1 \end{cases}$$

3. Compute the CC, $\mathbf{y}_{cc}^{(m)}$, of \mathcal{P}_m

2-D Example

Significant portion of the feasible region is cut-off after each iteration

CC Computation and Convergence

• For $\mathcal{P} := \{\mathbf{y} \mid \mathbf{a}_i^T \mathbf{y} \le d_i, i = 1, \dots, L\}$ the CC is computed by solving the LP:

 $\max_{\substack{R \ge 0, \mathbf{y} \\ \text{s.t.}: \quad \mathbf{a}_i^T \mathbf{y} + R ||\mathbf{a}_i||_2 \le d_i, \ i = 1, \dots, L }$

- Convergence: $\mathbf{y}_{cc}^{(M)}
 ightarrow \tilde{\mathbf{r}}_x$ as $M
 ightarrow \infty$
 - Radius of largest inscribed ball at each iteration goes to zero
 - Convergence with independence conditions across $\{\mathbf{q}_m\}_{m=1}^M$
- Dropping Constraints
 - Linear inequalities increase with each iteration \rightarrow complexity increases
 - Drop redundant constraints, or keep fixed number of most relevant ones
 - Sensor 1 is redundant in example

Positivity Constraints

- Spectrum positivity constraints
 - For truncated K-lag autocorrelation $\hat{\mathbf{s}}_x = \tilde{\mathbf{F}}\tilde{\mathbf{r}}_x \not\geq 0$
 - Can prevent convergence to true autocorrelation vector
 - Beneficial with small M
- Relaxed positivity constraints Define $\mathbf{v}(\omega) := [1, e^{j\omega}, \dots, e^{j\omega(K-1)}]^T$ $\mathbf{R}_x \succeq 0 \implies \mathbf{v}(\omega)^H \mathbf{R}_x \mathbf{v}(\omega) \ge 0, \forall \omega \in [0, 2\pi]$ $\Longrightarrow \sum_{\ell=-K+1}^{K-1} (K - |\ell|) r(\ell) e^{-j\omega\ell} \ge 0, \forall \omega \in [0, 2\pi]$ $\Longrightarrow \quad \tilde{\mathbf{FD}} \tilde{\mathbf{r}}_x \ge 0$

Numerical Results

Sensor Polling Algorithm

- Avoid downlink threshold communication overhead
- Each sensor pseudo-randomly chooses its threshold

CCSP Algorithm:

Given
$$\mathcal{P}_0$$
 , $\mathbf{y}_{\mathrm{cc}}{}^{(0)}$, $\{\mathbf{q}_m\}_{m=1}^M$, $\{t_m\}_{m=1}^M$, $k{=}l$

While $k \leq M$, do

- 1. For each $m \in \overline{\mathcal{J}}$, find the distance between $\{\mathbf{y} \mid \mathbf{q}_m^T \mathbf{y} - t_m = 0\}$ and $\mathbf{y}_{cc}^{(k-1)}$: $d_m = \frac{|\mathbf{q}_m^T \mathbf{y}_{cc}^{(k-1)} - t_m|}{||\mathbf{q}_m||}$
- 2. Poll sensor $m^* = \arg \min d_m$
- **3**. Upon receiving b_m , delete m^* from $\overline{\mathcal{J}}$, and update

$$\mathcal{P}_k := \begin{cases} \mathcal{P}_{k-1} \cap \{ \mathbf{y} \mid \mathbf{q}_{m^*}^T \mathbf{y} \ge t_{m^*} \} & \text{if } b_{m^*} = 1 \\ \mathcal{P}_{k-1} \cap \{ \mathbf{y} \mid \mathbf{q}_{m^*}^T \mathbf{y} < t_{m^*} \} & \text{if } b_{m^*} = 0 \end{cases}$$

4. Compute the CC, $\mathbf{y}_{cc}^{(k)}$

5. Increment k and repeat, or terminate

Numerical Results

Summary

Adequate power spectrum sensing is possible from few bits

Nonparametric estimation

K-lag autocorrelation reconstruction

- LP formulation with perfect sensor power measurement s
- Constrained ML formulation exploiting Gaussian errors
- Parametric line spectrum estimation
 - Parametric ML solved with CDGS meets the CRLB for large M
- Adaptive thresholding (active FC)
 - FC adaptively picks the threshold so as to cut off a half-space from the feasible region along its Chebyshev center
 - FC judiciously polls sensors with pseudo-random thresholds

Thank You !

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Proposition $\mathbf{Fr}_x \ge 0 \Rightarrow \mathbf{R}_x \succeq 0$

$$\bar{\mathbf{r}}_{x} := \begin{bmatrix} \underbrace{0 \dots 0}_{N_{F}-2K+1} & \mathbf{r}_{x}^{T} & \underbrace{0 \dots 0}_{N_{F}-2K+1} \end{bmatrix}^{T} \implies \bar{\mathbf{F}}_{\mathbf{n}} \bar{\mathbf{r}}_{x} = \mathbf{F} \mathbf{r}_{x} = \mathbf{s}_{x}$$
Square DFT matrix
$$\mathbf{R}_{c} = \begin{bmatrix} r(0) & r(-1) & 0 & 0 & r(1) \\ r(1) & r(0) & r(-1) & 0 & 0 \\ 0 & r(1) & r(0) & r(-1) & 0 \\ 0 & 0 & r(1) & r(0) & r(-1) \\ r(-1) & 0 & 0 & r(1) & r(0) \end{bmatrix} K = 2 \text{ and } N_{F} = 5$$

Circulant matrices are diagonalized by a DFT: $\mathbf{R}_c = \frac{1}{N_F} \mathbf{W}^H \mathbf{\Lambda} \mathbf{W}$ $\bar{\mathbf{F}} \bar{\mathbf{r}}_x = \mathbf{s}_x \ge 0 \implies \mathbf{R}_c$ is positive semidefinite

 \mathbf{R}_x is the K-th order leading principal submatrix of $\mathbf{R}_c \implies \mathbf{R}_x \succeq 0$