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Wideband Spectrum Sensing (for CR/DSM) 

• Split in narrowband channels + channel-by-channel sensing  
↔ Filterbank / frequency sweeping (hardware / delay), correlation ignored   

 

• Wideband scanning with high-rate ADC 
– Hard to implement, expensive, high power consumption 
 

• Compressive sampling 
– Requires frequency-domain sparsity for sub-Nyquist sampling 

 

• [Leus et al, ‘11]: no need to reconstruct received signal 
spectrum; power spectrum sufficient / more relevant for CR, 
certain other applications (e.g., radio astronomy) 

• Can estimate from FT of truncated autocorrelation  finite 
parameterization 

Presenter
Presentation Notes
While most work focus on spectral estimation and intend to obtain perfect reconstruction of the original signal, only the power needs to be reconstructed for spectrum sensing applications 




State-of-the-art 

• Power spectrum sensing [Leus et al, ’11] 
– Neither Nyquist-rate sampling nor full-band scanning is necessary 
– Signal passed through bank of filters  Cross-correlations of outputs 

are used to build an over-determined system of linear equations in 
the signal autocorrelation for a finite number of lags 

– Analog amplitude samples not suitable in network sensing setting 
using low-end sensors with limited communication capabilities 

 

• One-bit compressed sensing [Boufounos et al, ‘08] 
– Signal recovered (within scaling factor) from sign info of compressed 

measurements 
– Does not exploit additional autocorrelation-specific constraints 
– Requires signal sparsity 



Frugal Sensing 

Primary User   Fusion Center (FC) 

Estimate of the power spectrum using few bits  
Spectral estimation from inequalities instead of equalities 

M sensors 

Presenter
Presentation Notes
In this work, we consider a network sensing setting comprised of M sensors that are reporting to a Fusion center.
It is now widely accepted that effective spectrum sensing must be a done in a  distributed and collaborative manner, 
This opens the door for crowdsourcing spectrum sensing, using smart phones and other wireless devices. 
We consider a very simple sensor architecture: each sensor passes the received signal through a random wideband filter, measures the output power, then sends a single measurement bit to the FC according to the power level.
The challenge at the FC is how to estimate the ambient power spectrum from the collected bits.



Outline 

1. Problem Formulation 
 

2. Nonparametric Estimation 
– Error-free case 
– Gaussian errors 

 

3. Parametric Estimation (Line Spectra) 
 

4. Adaptive Thresholding (Active FC) 
 

5. Summary 
 



Sensor Measurement Chain 
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Presenter
Presentation Notes
We assume that the received signal is scaled with a sensor-specific constant, gamma_m, which models losses such as path-loss and shadowing
frequency-selective fading can be mitigated by averaging the measurements over a long period of time,



Fading (1) 

• Received (discrete-time) signal 
 

 
 
 

• Assumption: L-tap channel is random, time-invariant, correlation 
between taps is only function of ordinal distance 
 
 

• Frequency response 
 

• Power 
 
 

Sensor-specific loss 

AGC 



Fading (2) 

• Received signal autocorrelation 
 
 
 
 
 
 

• PS 



Fading (3) 

• Consistent power spectrum measurements if 
–                       same across all sensors  
– Sensors acquire sufficient samples with different channel 

realizations 
 

• In practice 
– Sensor periodically senses spectrum encountering new 

channel realization each time (drift and carrier/phase lock) 
– Reported measurements reflect averaging over many epochs 



Power Measurement 

• Signal autocorrelation 
 

• Deterministic filter autocorrelation 
 
 

• Power measurement  
 
 

 
 

• Power spectrum estimate  
 

Permuted DFT 

FC Goal: Estimate the real vector     from   



Nonparametric Estimation 
(Passive FC) 

Presenter
Presentation Notes
Assume a pre-assigned thresholds and passive FC; each sensor sends the binary signal to the fusion center (containing the sensor’s identity code), which can be done using a random access protocol such as ALOHA, without any intervention from the FC



Autocorrelation Reconstruction 
• Constraints: 

1. The bounds                           ,                         ,                          
define a bounded       as the initial feasible region for  

2. Receiving                                                       , 
                (ignoring    estimation errors) 
3.         and                                       

  Proposition:  
 

• Cost Function:  
Minimize total signal power  

 
 

• Linear                                                                        
Program: 

Presenter
Presentation Notes
The setup is heavily under-determined, we need to employ all available structural properties and prior information to obtain a meaningful estimate of the power spectrum, and reduce the under-determinacy
For a cost function, we consider minimizing the total signal power which is consistent with the premise of cognitive radio that most of the spectrum is unused in most places, most of the time. 
Interestingly, since we enforce spectrum positivity, this implicitly encourages sparsity in the reconstructed power spectrum
The preposition transforms SDP to LP



Simulations 

M=100, K=24, tm=t, 30 sensors send bm=1 
 

100 bits equivalent to 3 single precision 
IEEE floats (r(0) and r(1)) 

M=100, K=10, tm=t, 50 sensors send bm=1 

Presenter
Presentation Notes
Considered same threshold for simplicity



Threshold Selection & Filter Length 

• Threshold should be tuned such 
that number of sensors reporting 
bm=1 (above threshold) decreases 
as the power spectrum becomes 
more sparse 
 

• Small K  smeared power 
spectrum estimate 

• Large K  more unknowns vs. 
inequality constraints (more under-
determined)  high uncertainty  

• More M  optimal K* increases 
• Binary PN simpler than Gaussian 

Sparsity  
ratio 

K=20, M=60 
25% send bm=1 

Presenter
Presentation Notes
Roughly speaking, we need the sensors with magnitude frequency response of the filters matching the power spectrum to be reporting. 
For example, if the power spectrum includes a single tone, then you only need the very few sensors with peaks of the magnitude frequency response of the filters that match the power spectrum to report positive reports; a more smeared power spectrum estimate results if more sensors report positive reports. For 2 tones, you want all sensors with matching filters to report bm=1, and so on



Gaussian Errors – ML   

 

• Log-likelihood function: 
 

 

• Constrained ML - Convex optimization problem:  

Frequency-selective fading  
+ insufficient sample averaging 

Gaussian CDF 



Parametric Estimation 
(Line Spectra) 

 



Line spectrum 

• L tones (spectral components) 
 

• Estimate frequencies and powers 
 

 Line spectrum estimation from few bits  
 Estimation from inequalities (instead of equalities) 



1) Nonparametric LP + MUSIC 

1. Nonparametric estimation of autocorrelation 
 
 
 
 

2. Parametric estimation of frequencies using MUSIC (MUltiple 
SIgnal Classification) 
  L strongest peaks of: 
 

 ui eigenvector corresponding to ith strongest eigenvalue of 
autocorrelation matrix and 

 

3. LS for powers:  



2) Nonparametric ML + MUSIC 

1. Exploit Gaussian distribution of errors 
 
 
 
 
 

2. MUSIC for                 then LS for    



3) Parametric ML  

• Estimate                  directly by maximizing the log-likelihood: 
 
 
 

• Nonconvex in  
 Solve with Coordinate  
 Descent Grid Search  
 (CDGS) 



Numerical Results 

2 far-apart tones 
K=25, tm=t, 2=1  

2 close tones (                        <                       ) 

• Parametric ML (solved with CDGS) outperforms other 
techniques and meets the CRLB for large M 
 

• Nonparametric ML + MUSIC can do better for small M when 
tones are very close 



Adaptive Thresholding 
(Active FC) 

 

Presenter
Presentation Notes
In the previous section, we assumed a passive FC with no downlink communication between the FC and the sensors; each sensor sends the binary signal to the fusion center containing the sensor’s identity code, which can be done using a random access protocol such as ALOHA. In this section, we consider two scenarios for an active FC. In the first scenario, the FC sends the threshold tm to each sensor at each time, whereas the FC polls a specific sensor at each time in the second scenario without sending the threshold. In both scenarios, each sensor replies only with its binary signal in an allocated slot.



CCAT Algorithm: 
Given     , its Chebyshev center (CC), ycc

(0), 
and              

Adaptive Thresholding Algorithm 

• The volume of         
   gives a measure of ignorance / uncertainty about               
   adaptively select              to ensure       is as small as possible 

FC 
For m=1,…M, do 

1. Set tm = qm
Tycc

(m-1) , send it to senor m 
2. Upon receiving bm update: 

 
 

3. Compute the CC, ycc
(m), of  

1 
2 

M 
… 

Presenter
Presentation Notes
a small PM implies that rx is localized to within a small set, whereas a large PM means that there is still much uncertainty about rx.
Similar to CPM



2-D Example 
q1

Ty-t1= q1
T(y-ycc

(0)) 

q3
Ty-t3 

q2
Ty-t2 

q4
Ty-t4 

ycc
(0) 

ycc
(1) 

ycc
(2) 

ycc
(3) 

ycc
(4) 

Significant portion of the feasible region is cut-off after each iteration 

Presenter
Presentation Notes
Relation to convex optimization




CC Computation and Convergence 

• For                                                           , the CC is computed 
by solving the LP: 
 
 

 
 

• Convergence:                    as   
– Radius of largest inscribed ball at each iteration goes to zero 
– Convergence with independence conditions across 

 

• Dropping Constraints 
– Linear inequalities increase with each iteration  complexity increases 
– Drop redundant constraints, or keep fixed number of most relevant ones 
– Sensor 1 is redundant in example 

Presenter
Presentation Notes
The Chebyshev center is the point inside P that has the maximum distance to the closest point in the boundary hyperplanes defining P (i.e., the exterior of P), and it is also the center of the largest ball that lies inside P
Convergence: This has been established for 
Dropping constraints: distance between center and the closest point on each plane may be used as a relevance measure



Positivity Constraints  

• Spectrum positivity constraints 
– For truncated K-lag autocorrelation 
– Can prevent convergence to true autocorrelation vector 
– Beneficial with small M 
 

• Relaxed positivity constraints 
Define                                                     
                                                
                       



Numerical Results 

Default K=12 

Presenter
Presentation Notes
Linear convergence, faster than ACAT, saturation w pos cnstr 1 but good for small M, faster convergence w pos constr 2, larger K, equal thresholds w pos constr
Research Outlook - Choice of filters for faster convergence, exploiting prior info on r



CCSP Algorithm: 
Given     , ycc

(0),               ,              , k=1             

Sensor Polling Algorithm 

FC 
bm 

While k ≤ M, do  

1. For each              , find the distance between 
                                    and ycc

(k-1) : 
 

2. Poll sensor  
3. Upon receiving bm , delete m* from     , and update 

 
 

4. Compute the CC, ycc
(k) 

5. Increment k and repeat, or terminate 

1 2 

M 

m* 

• Avoid downlink threshold communication overhead 
• Each sensor pseudo-randomly chooses its threshold 

m* 

Presenter
Presentation Notes
Same as CCAT for large M and good choice of threshold distribution that covers the values of alpha
Threshold and filter distributions that minimize NMSE will be considered



Numerical Results 

Presenter
Presentation Notes
Normal, pos constr., CCAT, Larger M



Summary 

Adequate power spectrum sensing is possible from few bits 
 

• Nonparametric estimation  
 K-lag autocorrelation reconstruction  

– LP formulation with perfect sensor power measurement s 
– Constrained ML formulation exploiting Gaussian errors 

 

• Parametric line spectrum estimation  
– Parametric ML solved with CDGS meets the CRLB for large M 
 

• Adaptive thresholding (active FC) 
– FC adaptively picks the threshold so as to cut off a half-space 

from the feasible region along its Chebyshev center 
– FC judiciously polls sensors with pseudo-random thresholds 

 



Thank You ! 



Proposition 

 
 

Square DFT matrix 
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