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Kruskal’s Permutation Lemma and the Identification
of CANDECOMP/PARAFAC and Bilinear Models

with Constant Modulus Constraints
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Abstract—CANDECOMP/PARAFAC (CP) analysis is an
extension of low-rank matrix decomposition to higher-way arrays,
which are also referred to as tensors. CP extends and unifies
several array signal processing tools and has found applications
ranging from multidimensional harmonic retrieval and angle-car-
rier estimation to blind multiuser detection. The uniqueness of CP
decomposition is not fully understood yet, despite its theoretical
and practical significance. Toward this end, we first revisit
Kruskal’s Permutation Lemma, which is a cornerstone result in
the area, using an accessible basic linear algebra and induction
approach. The new proof highlights the nature and limits of the
identification process. We then derive two equivalent necessary
and sufficient uniqueness conditions for the case where one of the
component matrices involved in the decomposition is full column
rank. These new conditions explain a curious example provided
recently in a previous paper by Sidiropoulos, who showed that
Kruskal’s condition is in general sufficient but not necessary for
uniqueness and that uniqueness depends on the particular joint
pattern of zeros in the (possibly pretransformed) component
matrices. As another interesting application of the Permutation
Lemma, we derive a similar necessary and sufficient condition
for unique bilinear factorization under constant modulus (CM)
constraints, thus providing an interesting link to (and unification
with) CP.

Index Terms—CANDECOMP, constant modulus, identifiablity,
PARAFAC, SVD, three-way array analysis, uniqueness.

I. INTRODUCTION

L INEAR algebra plays an important role in modern
signal processing, as evidenced by recent issues of this

TRANSACTIONS. Various matrix decompositions are routinely
used to prove results and as building blocks in the construction
of signal processing algorithms. In many signal processing
applications of linear algebra tools, the signal part of a postu-
lated model lies in a so-called signal subspace, whereas the
parameters of interest are in one-to-one correspondence with a
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certain basis of this subspace. The signal subspace can often be
reliably estimated from measured data, but the particular basis
of interest cannot be identified without additional problem-spe-
cific structure.

Consider a matrix of rank . By definition of matrix
rank, can be decomposed as a sum of rank one matrices

(1)

Let ( ) be the th column of (resp. ). can then be
written as . An equivalent scalar view of (1) is given
by the bilinear decomposition

(2)

where ( ) denotes the th (resp. ,
) entry of (resp. , ). Clearly, the decompo-

sition in (1) [or, equivalently, (2)] is not unique because
for any invertible . The only

notable exception is when is of rank one, in which case,
only the trivial scaling ambiguity remains. In applications,
the typical way around nonuniqueness is the imposition of
application-specific structural properties on the matrix factors.
Common examples include orthogonality (as in SVD), Van-
dermonde, Toeplitz, constant modulus (CM), or finite-alphabet
(FA) constraints.

In sharp contrast to the case of matrices (also known as
two-way arrays because they are indexed by two independent
variables), low-rank decomposition of three-way arrays (also
known as tensors) is unique under certain relatively mild
conditions [8]. Let be a rank- three way array of order

with typical element , and consider the
component trilinear decomposition

(3)

Let ( ) be the typical element of matrix (resp. ,
). It has been shown by Kruskal [8] that, under certain con-

ditions, the component matrices , , and can be uniquely
identified from up to column permutation and scaling.

The model in (3) was independently introduced in 1970 by two
different groups as CANonical DECOMPosition [3] (CAN-
DECOMP) and PARAllel FACtor analysis [4](PARAFAC),
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respectively. Nowadays, the term CANDECOMP/PARAFAC
(CP) is often used and will be adopted in this paper. The CP
model is a cornerstone of three-way analysis, which deals with
algebraic and numerical aspects of tensorial decomposition.
Three-way analysis was first introduced in psychometrics and
has gradually found many applications in diverse disciplines,
including arithmetic complexity, statistics, chemometrics, and,
more recently, signal processing for communications.

Three-way methods are often naturally applicable for the
analysis of multidimensional data sets encountered in blind
identification [13], multiuser signal separation [6], [11], [14],
and diversity systems [7]. For example, in the context of uplink
reception for narrowband cellular DS-CDMA systems with
symbol-periodic spreading and a base station antenna array,
the received baseband-equivalent data constitutes a three-way
data array indexed by antenna element, symbol epoch, and
chip. The signal part of this data array can be modeled by
a three-way array [as in (3)] of rank equal to the number
of users in the system [14]. In this application of CP,
corresponds to the channel gain between user and antenna
, is the th symbol of user , and is the th

chip of user . Likewise, stands for the number of receive
antennas, for the number of symbol snapshots, and for the
spreading gain. In this context, the uniqueness properties of
CP imply, e.g., that blind identification is possible with more
users than spreading, antennas, and symbols simultaneously
[14]. Another interesting signal processing application of CP
appears in the context of multiple invariance antenna array
processing. Therein, is the displacement-induced phase
shift for user when “hopping” from the th element of the
reference subarray to the corresponding element in the th
displaced but otherwise identical subarray. In this context,
the application of CP ideas pinned down a long-standing
identifiability issue [13].

The usefulness of the CP model is mainly due to its ubiq-
uitous uniqueness properties and its direct link to low-rank
decomposition. The uniqueness of CP decomposition enables
unambiguous interpretation of the estimated model parameters,
which is crucial in many applications. Theoretical interests
aside, deeper understanding of CP uniqueness issues could
pave the way for more general algebraic decomposition and
improved iterative fitting algorithms.

The in-depth study of uniqueness of CP decomposition en-
tails technical challenges. In seminal work back in 1977 [8],
Kruskal proved that uniqueness is guaranteed, provided that the
sum of -ranks of the three component matrices1 is no less than
twice the rank of the CP model plus 2. In [16], ten Berge and
Sidiropoulos have shown that Kruskal’s sufficient condition is
not necessary in general and that uniqueness may still hold even
if Kruskal’s condition is violated. Surprisingly, they have also
found out via simple examples that the uniqueness of CP de-
composition depends on the particular joint pattern of zeros in
the (possibly pretransformed) component matrices. These cu-
rious examples may lead one to believe that pursuing a neces-
sary and sufficient condition for uniqueness of CP decomposi-
tion is probably hopeless.

1For a definition of k-rank, see subsection A (Notation) of this Section.

This unusual phenomenon will be understood in this paper.
In fact, when one of the component matrices involved in the de-
composition is full column rank, two equivalent necessary and
sufficient uniqueness conditions are derived herein. One helps
us understand the nature of identification in very intuitive terms.
The other provides the means to check if a given decomposition
is unique. With the aid of these necessary and sufficient unique-
ness conditions, the explanation of the seemingly mysterious ex-
amples in [16] is straightforward.

Assuming that at least one of , or is full column rank
is typically not restrictive in applications, usually, the sample
size and distribution along at least one dimension are adequate
to guarantee this with very high probability. The methodology
developed herein can be also extended to general CP models and
offers the possibility to examine uniqueness of CP solutions, al-
beit the associated necessary and sufficient uniqueness condi-
tions appear too complicated to verify in practice. We will see
that the uniqueness of CP decomposition is “nonlinear” in na-
ture,2 whereas Kruskal’s condition is probably the best “linear”
sufficient condition for uniqueness.

In addition to algebraic structure, communications signals
often exhibit FA or CM properties. As mentioned earlier, al-
though bilinear decomposition is not unique in general, bilinear
decomposition under FA/CM constraints can be unique [9],
[15], [17]. We show that the necessary and sufficient condition
for unique bilinear decomposition under CM constraints is
strikingly similar to the one for uniqueness of certain CP
models. The impact of additional diversity dimensions (i.e.,
three-way data) on FA/CM separation has yet to be addressed
in the literature; all previous works dealt with a bilinear
problem. We therefore also consider uniqueness for CP models
under CM constraints. These developments open a path for
cross-fertilization and unification of the literature on CP and
CM models.

The rest of this paper is structured as follows. Section II lays
out the model and problem statement. Section III provides a
starting point and road map for proving CP uniqueness. The
main new results are presented in Section IV. Explanation of
the mysterious examples in [16] is given in Section V, which
also establishes the promised link between the conditions for
unique decomposition of certain restricted CP models on one
hand and bilinear models subject to CM constraints on the other.
In particular, we focus on CP models with at least one of the
three component matrices being full column rank. We use the
term restricted CP to refer to these models for brevity, but note
again that one matrix being full column rank is typically not
restrictive in practice. A new self-contained and intuitive proof
of Kruskal’s Permutation Lemma can be found in the Appendix .
Conclusions are drawn in Section VI.

A. Notation

is the Hermitian (conjugate) transpose,3 and is the
number of nonzero elements of . Given matrices

2Uniqueness cannot be assessed by individual properties of the matrices
A;B, orC but only by joint properties of the ensemble (A;B,C).

3For brevity, we use the same notation for Hermitian transposition of matrices
(and vectors) and conjugation of scalar quantities.



JIANG AND SIDIROPOULOS: KRUSKAL’S PERMUTATION LEMMA AND IDENTIFICATION OF CP AND BILINEAR MODELS 2627

and , their Khatri–Rao product
is the matrix whose th column is the Kronecker product of
the respective columns of and . is the rank of ;
is the Kruskal-rank of , the maximum number of linearly in-
dependent columns that can be drawn from in an arbitrary
fashion; is the determinant of matrix ; diag is a di-
agonal matrix containing the elements of vector . Among the
various equivalent definitions of the rank of a matrix , we pay
particular attention to the one given by Sylvester in 1851 (e.g.,
[2, p. 215]): The rank of is equal to the maximum order of
nonzero minors of . A th-order minor of is the determi-
nant of a submatrix of . Throughout, Null means
left null, i.e., Null . Span denotes
the linear space spanned by the columns of . In the Appendix ,
we will make extensive use of the equivalence

Span Span Null Null

II. CANDECOMP/PARAFAC (CP) MODEL

AND PROBLEM STATEMENT

Let be a rank- three-way array of order .
The CP model decomposes into a sum of triads (rank-one
three-way factors), as in (3), which is reproduced here for ease
of exposition:

(4)

The focus of this paper is the identification of the CP model pa-
rameters from the data . More specifically,
we are interested in conditions under which these parameters
are identifiable from the data.

In the signal processing community, it is customary to ignore
noise-induced model errors when studying identifiability. The
reason is that identifiability is mostly appreciated as a sanity
check for the high signal-to-noise ratio (SNR) regime. A dif-
ferent viewpoint is often taken in the data analysis community.
Given a decomposition (obtained, e.g., through alternating least
squares optimization [4], [14] in the case of CP)

where denotes modeling errors, and bringing the error
term to the left

the following question is often of interest: When is the signal
part of the fitted model unique (conditioned on model errors)?
Both viewpoints are valid and boil down to the same mathemat-
ical problem statement.

Define an matrix with typical element
, matrix with , matrix with

, and matrices with .
The model in (4) can be written as

diag (5)

where stands for the th row of . If we stack the one
over another, a compact matrix representation of the model in
(4) is possible by employing the Khatri–Rao (column-wise Kro-
necker) product

...

diag

diag
...

diag
(6)

By symmetry, may switch their places in (6) if the
modes of the array are switched accordingly.

Suppose we have two different decompositions of the
same array , namely, there is a triple other than

such that . Note that if
is a permutation matrix and are diagonal matrices
such that , then will
yield the same array given by . A CP decomposition
of the data in (6) is therefore said to be unique if for every
other decomposition of (6), which is ,
we have for some
permutation matrix and diagonal matrices with

.
Kruskal has shown [8] that if ,

then CP decomposition is unique. A conjecture that Kruskal’s
condition is necessary and sufficient has been upheld until the
recent work [16]. An approach to finding alternative CP decom-
positions for any given CP model has been developed in [16] to
study the uniqueness of CP decomposition, and Kruskal’s con-
jecture was failed by simple counterexample. However, [16] did
not further qualify the uniqueness conditions. In what follows,
we will derive two equivalent necessary and sufficient unique-
ness conditions when one of the component matrices involved in
the decomposition is full column rank and explain the examples
in [16]. As a bonus, we will establish a link to uniqueness of bi-
linear factorization under CM constraints. Last, but not least, we
will provide a more palatable proof of the Permutation Lemma,
which, at least, we would have appreciated being readily avail-
able several years ago.

III. ROADMAP OF UNIQUENESS RESULTS

Recall that CP decomposition, when unique, is unique up to
a common permutation and nonsingular scaling/counter-scaling
of columns of the component matrices. In hindsight, it is there-
fore natural to ask under what conditions two matrices are the
same up to permutation and scaling of columns. This is precisely
the subject of Kruskal’s Permutation Lemma [8]:

Lemma 1: [8] Suppose we are given two matrices and ,
which are and . Suppose has no zero columns.
If for any vector such that

(7)
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we have

then ; if also , then , and there exist
a permutation matrix and a nonsingular diagonal matrix
such that .

This lemma is the key tool in the area of CP analysis and
the cornerstone for Kruskal’s proof of uniqueness of CP de-
composition. Since the statement reads as a sufficient condi-
tion, it is tempting to attempt to improve on Kruskal’s condition
for uniqueness of CP decomposition by sharpening the condi-
tion in the permutation lemma. However, Kruskal’s proof of the
permutation lemma is ingenious but also largely inaccessible.
We managed to reprove Kruskal’s Permutation Lemma using
a systematic basic linear algebra and induction approach (see
the Appendix ). The new proof suggests that the condition in
Kruskal’s Permutation Lemma is sharp; hence, the aforemen-
tioned attempt is unlikely to succeed.

Necessary conditions for CP uniqueness are worth recounting
at this point. One is that neither , nor , nor has a pair
of proportional columns [5]. Another is that the Khatri–Rao
product of any two component matrices must be full column
rank [10].

In hindsight, the proof for uniqueness of CP decomposition
can be decoupled into three separate steps. Given

, the first step is to show that
, the second step is to show that , and

the last step is to show . This
last step is straightforward once the previous steps are finished:

and since is full column rank (recall that this is one of
the necessary conditions for uniqueness), we have

or

When one of the component matrices, say , is full column
rank, the aforementioned procedure can be further simplified.
One can first show that and then obtain

and since is full column rank

it then follows that for some
and , such that . Therefore, when is full
column rank, showing is the key step. In Sec-
tion IV, we will derive conditions under which this step can be

accomplished. When those conditions do not hold, alternative
CP decompositions will be constructed.

IV. MAIN RESULTS

We now focus on proving uniqueness for restricted CP
models, meaning those with full column rank . As we
have seen in the previous section, one way to show that the
decomposition of restricted CP models is unique is to prove
that the full column rank component matrix is unique up
to permutation and column scaling. This entails conditions on
both and . , as a special case of Kruskal’s
conditions [8], can achieve the goal, but as shown in [16], this
condition is not necessary.

The following condition will be proven to be necessary
and sufficient to show that is unique up to permutation and
column scaling:

Condition A: None of the nontrivial linear combinations of
columns of can be written as a tensor product of two
vectors.

By nontrivial linear combinations, we mean those involving
at least two columns of .

Clearly, Condition A implies that is full column rank,
since if is rank deficient, a nontrivial linear combination
of columns of would constitute a zero vector, and this
zero vector can be given in the form of tensor product of a zero
vector and another vector.

Condition A also implies that neither nor has a pair of
proportional columns. Otherwise, one can arrange a nontrivial
linear combination of columns of such that the resulting
vector is in the form of tensor product of two vectors.

Now, let us see why this condition is sufficient for the identi-
fication of restricted CP models. Suppose we have another de-
composition of the same array , , such that

. Thanks to the nonsingularity of
implied by Condition A, it can be seen that for all

such that . This implies that . Since is
assumed full column rank, has to be full column rank as well.

To further proceed to show that is the same as up to
permutation and column scaling, we resort to Kruskal’s Lemma.
It suffices to show that for all

. Clearly, we only need to verify that
holds for all .

From , it follows that

When is such that , is
nothing but a scaled tensor product of a column of and the
corresponding column of . Therefore, must be less
than or equal to 1; otherwise, Condition A will be violated. In-
voking Lemma 1, and are the same up to permutation and
column scaling. The result, therefore, follows.

To show necessity, we proceed by contradiction. Without loss
of generality, we assume that is an identity matrix,4 ,

, , and a linear combination of

4Under our working assumption of full column rank C, this is without loss
of generality in so far as uniqueness is concerned. This has been shown by ten
Berge via suitable pretransformation of the data; see, e.g., [16].
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the first two columns of constitutes a vector in the form
of a tensor product of and , i.e.,

It is easy to see that

(8)

where

(9)

Hence, constitutes an alternative decomposition.
This completes the necessity part for Condition A.

Although Condition A has helped us intuitively understand
the nature of the identification of restricted CP models, it has
two limitations. The first is that Condition A is not easily verifi-
able. Second, and more important, is that the techniques used
in the proof do not readily generalize to general CP models
(rank-deficient ). In the following, we will derive an alterna-
tive equivalent condition that is often better suited for verifica-
tion and can be extended to cover general CP models.

We first define a set of symmetric matrices
determined by the second-order minors of and as follows:

(10)
for , , , and

.
We are now ready to derive the equivalent condition for iden-

tification of restricted CP models. As discussed before, it suf-
fices that for all . In partic-
ular, for .

Since

invoking the identity [1] vec diag , we
have

diag diag

Since , we know

diag (11)

for some , where is a nonzero constant, and
therefore

which is equivalent to all the second-order minors of
diag being zero.
Let ; all second-order minors of

diag

must be equal to 0; equivalently

(12)

for , , and ,
.

Equation (12) can be written as

which is nothing but

(13)
Further simplifying (13), we obtain (14), shown at the bottom

of the page.
Equation (14) can be written as

(15)

Each quadruple , ,
, , gives

(14)
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rise to an equation as in (15). Each such equation can be put in
bilinear form5

... (16)

for , , , and
.

We are now ready to state the equivalent necessary and suffi-
cient condition on identification of restricted CP models.

Condition B: The set of equations in (16) only admits solu-
tions satisfying .

Note that any with will automatically
satisfy the equations in (16).

When Condition B holds, it is easily seen that
for all . Using Kruskal’s Permutation

Lemma, it follows that is the same as up to permuta-
tion and column scaling, and therefore, CP decomposition is
unique. When Condition B fails, there exists a vector having
weight greater than or equal to 2, such that the matrix
diag is of rank at most 1. When , then

for certain (possibly zero) and . Invoking the iden-
tity vec diag , we conclude that a non-
trivial linear combination of columns of can be written
in the form of a tensor product of two vectors. The necessity of
Condition B now follows from the earlier proof of necessity of
Condition A.

Sometimes, solving a system of bilinear equations such as
(16) is not as complicated as it appears. If all are real
positive semi-definite matrices, then the solutions to the system
of bilinear equations can be obtained by solving a suitable linear
equation. Unfortunately, this is not the case for our problem.
More often than not, are in-definite complex ma-
trices. This poses difficulties in checking whether solutions to
(16) adhere to the constraint in Condition B. We do not have
a general tool for handling this verification yet, but, as will be
shown shortly, some instructive simple cases can be worked out
by hand, and the issue is currently under investigation.

It is also worth mentioning that instead of casting (15) into
(16), we can “linearize” (15) as follows:

...

...

(17)

where the entries of are determined by (15).
In this way, we deal with a linear equation that involves a

structured vector. Note that is equivalent
to . being full column
rank guarantees that . However, a rank-
deficient does not necessarily imply that
since is a structured vector. In particular,
simulations show that can be rank-deficient even when and

5Note that since W = 0 if i = i or j = j , the number of
active bilinear equations can be reduced.

are drawn from a continuous distribution (e.g., the entries of
and are independent and identically distributed Gaussian

random variables).

V. DISCUSSION

A. ten Berge’s Example and Counter-Example

One of the motivations of this paper is to explain the puzzle
brought by the counterexample to necessity of Kruskal’s condi-
tion given in [16]. In [16], two simple examples illustrate that
the uniqueness of CP decomposition depends on the particular
joint pattern of zeros in the component matrices. The first ex-
ample is

with , , and nonzero, and . The second ex-
ample in [16] is given by changing the first example slightly to
have the zero entry in the last columns of and in the same
place as follows:

with , , , and nonzero, and a common . It has been
proven in [16] that the decomposition of the array given by

in the first example is unique, whereas alternative de-
compositions arise in the second example. However, no expla-
nation on this interesting phenomenon was provided. Equipped
with the main results of the previous Section, we are now in po-
sition to offer such explanation.

In the first example, we know that

(18)

Therefore, following (15), we have

(19)

Equation (19) can be written as , with being 5 6
and . Equation (19)
admits a solution of weight larger than 1 if and only if there is
a nonzero orthogonal to the five rows of . For the partic-
ular in (16), the only possibility for this is to have pro-
portional to with , , and nonzero.
Because , this is not possible, and is the zero
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vector after all. Therefore, (19) does not admit a solution with
.

On the other hand, in the second example, we have

(20)

It is easy to see that (20) admits the solution
, , , , where we

assume . If , we can modify the
values of and accordingly and still have a solution with

. As it has been shown in [16], the
number of such solutions is infinite.

Furthermore, in the second example

we can see that a linear combination of the first, the second, and
the forth columns of constitutes a vector in the form of
tensor product of two vectors as follows:

(21)

B. Bilinear Decomposition Under CM Constraints

Although bilinear decomposition is not unique in general, bi-
linear decomposition with CM constraints can be unique [9],
[15], [17]. Interestingly, as pointed out next, the identification
condition on bilinear decomposition with CM constraints is very
similar to Condition B derived herein for the identification of
restricted CP models. Any progress on the identification of bi-
linear decomposition with CM constraints might be beneficial
to better understand Condition B and vice versa.

Let , with full column rank and a CM constraint
on , that is, without loss of generality, .
Note that , , and play the roles of , , and

in (6), respectively.
Like CP decomposition, bilinear decomposition with CM

constraints, when unique, it is unique up to column permutation
and scaling. Therefore, Kruskal’s Permutation Lemma can
again be taken as the cornerstone for uniqueness. Earlier work
on the identification of bilinear mixtures under CM constraints
[9], [15] has yielded sufficient conditions, but necessity has
been left open to the best of our knowledge. Equipped with
Kruskal’s Permutation Lemma, we are ready to give a neces-
sary and sufficient condition for unique bilinear decomposition
under CM constraints. In this context, uniqueness means that
if there is another pair , with having CM elements
such that , then there exists a permutation
matrix and two nonsingular diagonal matrices , with

such that , . Note that the
scaling indeterminacy remains despite the CM constraint, due
to the possibility of rotation in the complex plane. In addition,
since we have assumed a full column rank , it suffices to show
that for a permutation matrix and a diagonal
matrix ; the result for then follows by simple inversion.
This is the usual route taken to show uniqueness in this context.

Note that

(22)

or

...

for , . Equation (22) follows from the
CM constraints: . The necessary and sufficient con-
dition for unique bilinear decomposition under CM constraints
can now be stated:

Condition C: The Set of equations in (22) only admits solu-
tions satisfying .

Let us show that Condition C guarantees for
a permutation matrix and a diagonal matrix . Invoking
the Permutation Lemma 1 , it suffices to show that

for all . To see this, note that Condition
C guarantees being full rank. This is because Condition C
is equivalent to none of the nontrivial linear combinations of
columns of that can be written as a vector comprising CM
entries, and a zero vector is a CM vector. This can be easily seen
from the left side of (22). Then, from the hypothesis

and the assumption that is full column rank, it follows
using Sylvester’s inequality that is full column rank as well, in
which case (cf. statement of Lemma 1 ), we only need to verify
that holds for all .
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From the hypothesis , we have

for all . In particular, for all those such that ,
the left-hand side is a column drawn from and, thus, a vector
comprised of CM entries. The first element of the right-hand
side is a linear combination of the elements in the first row of ,
the second is a linear combination of the elements in the second
row of , and so on. All these row combinations should have
equal modulus. If the only way for this to happen is that a single
column is selected from , as per Condition C, then it must be
that . This shows that Condition C is sufficient
for uniqueness. For the converse, suppose that Condition C is
violated. Without loss of generality, we may assume that is
an identity matrix and that a linear combination of the first
two columns of constitutes a constant modulus vector , i.e.,

and the modulus of each entry of is equal to , which is a
constant that is not necessarily equal to one.

If is zero, we know is rank deficient. Then, adding any
nonzero null vectors of to the first column of preserves

but generates a different solution for .
If is not zero, it is easy to see that

(23)

where

(24)

Clearly, the modulus of each entry of is one. Hence,
constitutes an alternative decomposition. This completes the ne-
cessity part for Condition C.

We now can see that Condition B for the identification of re-
stricted CP models and Condition C for the identification of bi-
linear models subject to CM constraints are very similar. While
both have been derived using Kruskal’s Permutation Lemma,
they stem from conceptually very different structural constraints
on the equivalent bilinear models. More specifically, CP can be
viewed as a bilinear model with Khatri–Rao product structure
along the row dimension, whereas CM is a bilinear model with
a modulus constraint on the elements of one matrix factor.

When the CM constraint is imposed along one or more
modes of CP, identifiability naturally improves in terms of the
number of available equations. For instance, given a CP model

with full column rank and CM constraints on

both and , the following is a necessary and sufficient set
of uniqueness conditions:

Both

and

with , , ,
only admit joint solutions with

.
A concise unifying treatment of necessary and sufficient

uniqueness conditions for the identification of general6 CP
models subject to CM constraints along one or more modes is
not available at this point. Nevertheless, individual cases can be
dealt with, given the tools developed herein. Even discarding
CM constraints, stating and checking necessary and sufficient
uniqueness conditions for unrestricted CP models is possible
but cumbersome. When none of the component matrices is full
column rank and following the roadmap provided in Section III,
one has to show that and sepa-
rately. High-order minors of , , and must be exploited,
and the condition for the identification of general CP models
boils down to a number of multilinear equations with particular
constraints on common solutions. We defer this pursuit at this
point, pending further understanding of Condition B, which we
hope to develop in on-going work.

VI. CONCLUSIONS

Two equivalent necessary and sufficient conditions for
unique decomposition of restricted CP models where at least
one of the component matrices is full column rank have been
derived. These conditions explain the puzzle in [16]. A strong
similarity between the conditions for unique decomposition of
bilinear models subject to CM constraints and certain restricted
CP models has been pointed out. It is hoped that this link
will facilitate cross-fertilization and unification of associated
uniqueness results. Last but not least, Kruskal’s Permutation
Lemma has been demystified. The new proof should be acces-
sible to a much wider readership than Kruskal’s original proof.

APPENDIX

KRUSKAL’S PERMUTATION LEMMA: REDUX

Kruskal’s Permutation Lemma 1: We are given two matrices
and , which are and . Suppose has no zero

columns. If for any vector such that

we have

6This means without the full column rank restriction along one mode.
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then ; in addition, if , then , and there exist
a permutation matrix and a nonsingular matrix such that

.
Remark 1: Kruskal’s condition is equivalent to the first equa-

tion at the bottom of the page, which implies the second equa-
tion at the bottom of the page. To show why the first statement
implies the second statement, we proceed by contradiction. Sup-
pose that there is a collection of columns of ,
say, , and there are only columns of ,
say, , such that

(25)

where .
Note the each of the remaining columns of , i.e.,

, is linearly independent with the column
set ; otherwise, can be reduced by 1; this
implies that for every , there exists a
certain nonzero vector such that

Otherwise, if for every ,
for a certain ,

this implies

Null

i.e.,

Span

which means that can be reduced by 1 as well.
Let us assume that is an -di-

mensional linear subspace . means that
; this further implies that all

columns of belong to .
Now, consider

for each . Due to the existence of aforementioned ,
is a proper linear subspace of

with dimension . Since the union of
a countable number of -dimensional linear subspaces
of cannot cover an -dimensional linear subspace of ,

we are able to find a nonzero vector
such that

The existence of such contradicts the first statement.
Unlike the statement of Lemma 1, where the column sizes

of and might be different, we assume that both and
are matrices; furthermore, without loss of generality, we
assume both do not contain zero columns.

Remark 2: Given two nontrivial vectors and , they are
linearly dependent if and only if for all satis-
fying . This can be easily checked using the testing
vector with , chosen such that

.
Lemma 2: Given and ,

if and only if for all .
Proof of Lemma 2: It suffices to prove the “if” part, and

we will prove this by the induction on the number of columns
of , namely .

When , the condition in Lemma 2 implies that
for all satisfying . From Remark

2, this implies that and are linearly dependent.
Assume that Lemma 2 holds true for all . Now, con-

sider . Let denote the th column of , and let
denote the th column of .

We claim that under the condition in Lemma 2, there must
exist at least one column of , , which is linearly dependent
with . We will prove this by contradiction. Suppose that this
claim is not true; then, based on Remark 2 and the assumption
that does not contain zero columns, we know that for every
, there exists a such that

(26)

Then, we will show that in fact there exists a common such
that

(27)

; hence, the null space of , is an
-dimensional linear space.
Now, consider for all . Clearly, all

are covered by . It is clearly
seen that the existence of in (27) is equivalent to

.

If a certain vector is orthogonal to columns o then it must
be orthogonal to at least columns of

For every collection of columns of there exists a collection
of at least columns of such that

Span these columns of Span or more columns of
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Recall that for every , there exists a such that

which implies that cannot be the same as
, but rather a proper linear subspace of

with dimension . Furthermore, the union of a countable
number of -dimensional linear subspaces of cannot
cover an -dimensional subspace of ; see also Fig. 1.
Therefore, does not cover , and
hence, we have a such that (27) holds.

This implies that

which contradicts the condition in Lemma 2. Therefore, we can
claim there exists at least one column of , which is linearly
dependent with . Without loss generality, we say this column
is . Clearly

(28)

Now, construct a submatrix of by removing column
from , and denote this matrix ; similarly construct a sub-
matrix of by removing column from , and denote this
matrix .

From for all (condition in statement
of Lemma 2) and (28), it follows that

However, and are -column matrices; the result
then follows from the induction hypothesis. That is, the

-column matrices , are the same up to permutation
and scaling of columns. This completes the proof.

Remark 3: The proof of Lemma 2 can be also applied to the
following corollary.

Corollary 1: Given and ,
if and only if for any such that

Compared with Kruskal’s result, the conditions in both
Lemma 2 and Corollary 1 appear more restrictive. There is a
gap between the results presented in this Appendix so far and
Kruskal’s result. If , this gap has been filled by Corol-
lary 1. For the general case, we have the following Lemma.

Lemma 3: Given and ,
for all if and only if for any

vector such that .
The interesting case occurs when is strictly less than .

Without loss of generality, we assume .
With an additional condition, namely, , where

stands for Kruskal rank of , a relatively simpler proof can be
obtained as follows.

Proof of Lemma 3 – Case of : It suffices to prove
the “if” part, and we prove it by contradiction. Suppose there
exists a nonzero vector , such that ,
and , and suppose that is

Fig. 1. Geometric illustration.

the smallest number bigger than in the sense that
for any vector such that

Without loss of generality, we assume

where , and

where .
With such , we know that there exist columns of
, say, , and columns of , say,

, such that

Since , are
the only columns of that can possibly belong to

; otherwise, if there is one more
column, say , belonging to , then

, which implies that
and contradicts .

The remaining columns of are
.

Recall that by definition of

s.t.

(29)

Similar to Remark 1, we can show that (29) implies that for
every or more columns chosen from , there must
exist at least as many columns from , such that each of those
from is a linear combination of the said columns of .

Now, consider the following column sets drawn
from

where . Each of them has
distinct columns of .

According to (29), for each column set ,
there exist at least columns such
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that each column from the latter set is a linear combination of
those in the former set.

Recall that except for , there is no other
column of , which belongs to . This
implies that at least
columns from , other than those in

, must be such that each is a linear com-
bination of and some or all of . Let
denote the column set consisting of those columns from

.
We claim that every two and are disjoint for ; if

there exists a common element between and , say
, then

which in turn implies that the column set

is a linearly dependent set of columns with distinct indices.
Since and , we have a contradiction. There-
fore, every two and are disjoint for . In addition, it is
easily seen that is disjoint with as well.

The remainder is a counting problem. The number of all
columns of should not be less than the number of columns
in all the above disjoint column subsets of . However, from

, we have columns, from each
, we have at least columns, and we have

such ; therefore, the total number of columns from all disjoint
column subsets of is not less then

which is strictly greater than for , and , whereas
has columns only. We have a contradiction.
The above proof of the special case of Lemma 3 provides

helpful intuition. Armed with this insight, the following proof
of Lemma 3 becomes natural.

Proof of Lemma 3—General Case: The spirit of the proof
follows the earlier argument for the special case. In particular,
we argue by contradiction.

Suppose that there exists a , such that
, and , i.e.,

and suppose is the smallest number
bigger than in the sense that
for any vector such that

which implies that for every or more columns chosen
from , there must exist at least as many columns from , such

that each of those from is a linear combination of the said
columns of .

As before, with such , we know that there exist
columns of , say, , and columns
of , say, , such that

and since ,
are the only columns of that can possibly belong to

.
What we are going to do next is different from the previous

proof. We are going to partition the remaining
columns of , namely, . Notice that none
of those remaining columns of is going to be linearly de-
pendent with ; otherwise, can be reduced
by 1. We will partition those remaining columns
into7 nonempty disjoint subsets in the sense that each
subset contains one particular remaining column and all the
other columns that are the linear combinations of this particular
remaining column and . Let denote the
number of columns in the th partition set. Clearly

Now, add each partition set to to form a con-
catenated set. Each concatenated column set of has

columns. Recall that for every or
more columns chosen from , there must exist at least as many
columns from , such that each of those from is a linear com-
bination of the said columns of . Then, there must exist at least

columns of such that each of those from is a
linear combination of those columns of the concatenated set. We
already know that are the only columns of

that can possibly belong to ; there-
fore, every such -column subset of must have at
least columns, other than
those in , such that each column is a linear
combination of at least one column from the th partition set and

.
Let denote the column set consisting of those

columns of .
We claim that all and are mutually dis-

joint.
Suppose this is not true. Recall that no element of belongs

to ; hence, there is no common element be-
tween and any particular ; meanwhile, if
there is a column belonging to two different , this will contra-
dict the way we partition the remaining columns of .

7M can be equal to 1 only if r = 2; however, the case r = 2 has been
solved by Corollary 1. For r � 3, M cannot be 1. Suppose M = 1; then,
according to the definition of our partition, each remaining column of �A is the
linear combination of �a and f�a ; . . . ; �a g. Therefore, adding all
remaining columns of �A to f�a ; . . . ; �a g could only increase the rank of
[�a ; . . . ; �a ] by at most one. This implies the rank of �A is bounded by
r � k + 1, which is less than r since k � 2. Hence, M � 2.



2636 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 9, SEPTEMBER 2004

The remainder is again a counting problem. Each con-
tributes at least columns. also con-
tributes columns. Summing up, we know should
have at least

columns. Since and

whereas only has columns. Hence, we have a contradiction.

One natural question that arises at this point is whether one
can further improve Lemma 1 in the sense that Lemma 1 can
be viewed as an improved version of Lemma 2. Does the con-
clusion of Lemma 1 hold if we pose a smaller bound on the
right-hand side of (7)? The answer is no in general. It is known
that almost surely when is drawn from a contin-
uous distribution. With the aid of Remark 1, it can be seen that
given a matrix with , even if
for any vectors with , and are not nec-
essarily equivalent up to permutation and scaling. The Lemma
can be relaxed when , but this is not the case of interest.

ACKNOWLEDGMENT

The authors would like to thank J. M. F. ten Berge for his
critical reading and helpful comments on an earlier draft of this
paper.

REFERENCES

[1] J. W. Brewer, “Kronecker products and matrix calculus in system
theory,” IEEE Trans. Circuits Syst., vol. CAS-25, no. 9, pp. 772–781,
Sept. 1978.

[2] C. D. Meyer, Matrix Analysis and Applied Linear
Algebra Philadelphia, PA, 2000.

[3] J. D. Carrol and J. J. Chang, “Analysis of individual differences in multi-
dimensional scaling via an N-way generalization of “Eckardt-Young”
decomposition,” Psychometrika, vol. 35, pp. 283–319, 1970.

[4] R. Harshman, “Foundations of PARAFAC procedure: Models and condi-
tions for an ’Explanatory’ multi-mode factor analysis,” UCLA Working
Papers Phonetics, vol. 16, pp. 1–84, 1970.

[5] W. P. Krjnen, The Analysis of Three-Way Arrays by Constrained
PARAFAC Methods. Leiden, Germany: DSWO, 1993.

[6] T. Jiang and N. D. Sidropoulos, “Blind identification of out-of-cell users
in DS-CDMA: An algebraic approach,” in Proc. ICASSP, Orlando, FL,
May 13–17, 2002.

[7] , “A direct semi-blind receiver for SIMO and MIMO OFDM sys-
tems subject to frequency offset,” in Proc. SPAWC, Rome, Italy, June 15
– 18, 2003.

[8] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics,”
Linear Algebra Applications, vol. 18, pp. 95–138, 1977.

[9] A. Leshem, N. Petrochilos, and A. van der Veen, “Finite sample iden-
tifiability of multiple constant modulus sources,” in Proc. IEEE Sensor
Array Multichannel Signal Process. Workshop, 2002, pp. 408–412.

[10] X. Liu and N. D. Sidiropoulos, “Cramer-Rao lower bounds for low-rank
decomposition of multidimensional arrays,” IEEE Trans. Signal Pro-
cessing, vol. 49, pp. 2074–2086, Sept. 2001.

[11] X. Liu, N. D. Sidiropoulos, and A. Swami, “High resolution localization
and tracking of multiple frequency hopped signals,” IEEE Trans. Signal
Processing, vol. 50, pp. 891–901, Apr. 2002.

[12] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear de-
composition of N-way arrays,” J. Chemometrics, Special Cross-Disci-
plinary Issue Multi-Way Anal., vol. 14, no. 3, pp. 229–239, May 2000.

[13] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis
in sensor array processing,” IEEE Trans. Signal Processing, vol. 48, pp.
2377–2388, Aug. 2000.

[14] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC
receivers for DS-CDMA systems,” IEEE Trans. Signal Processing, vol.
48, pp. 810–823, Mar. 2000.

[15] S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of synchronous
co-channel digital signals using an antenna array – Part I: Algorithms,”
IEEE Trans. Signal Processing., vol. 44, pp. 1184–1196, May 1996.

[16] J. M. F. ten Berge and N. D. Sidiropoulos, “On uniqueness in CANDE-
COMP/PARAFAC,” Psychometrika, vol. 67, 2002.

[17] A. van der Veen, “Asymptotic properties of the algebraic constant
modulus algorithm,” IEEE Trans. Signal Processing., vol. 49, pp.
1796–1807, Aug. 2001.

Tao Jiang (S’01) received the B.S. degree from
Peking University, Beijing, China, in 1997 and the
M.S. degree from the University of Minnesota,
Minneapolis, in 2000, both in mathematics. He
is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Minnesota.

His research interests are in the area of signal
processing for communications, focusing on wireless
communications.

Nicholas D. Sidiropoulos (M’92–SM’99) received
the Diploma in electrical engineering from the Aris-
totelian University of Thessaloniki, Thessaloniki,
Greece, and the M.S. and Ph.D. degrees in electrical
engineering from the University of Maryland,
College Park (UMCP), in 1988, 1990 and 1992,
respectively.

From 1988 to 1992, he was a Fulbright Fellow and
a Research Assistant at the Institute for Systems Re-
search (ISR), UMCP. From September 1992 to June
1994, he served his military service as a Lecturer in

the Hellenic Air Force Academy. From October 1993 to June 1994, he also was
a member of the technical staff, Systems Integration Division, G-Systems Ltd.,
Athens, Greece. He was a Postdoctoral Fellow (1994 to 1995) and Research Sci-
entist (1996 to 1997) at ISR-UMCP, an Assistant Professor with the Department
of Electrical Engineering, University of Virginia, Charlottesville, from 1997 to
1999, and an Associate Professor with the Department of Electrical and Com-
puter Engineering, University of Minnesota, Minneapolis, from 2000 to 2002.
He is currently a Professor with the Telecommunications Division of the Depart-
ment of Electronic and Computer Engineering, Technical University of Crete,
Chania, Crete, Greece, and Adjunct Professor at the University of Minnesota.
His current research interests are primarily in signal processing for communi-
cations, and multi-way analysis. He is an active consultant for industry in the
areas of frequency hopping systems and signal processing for xDSL modems.

Dr. Sidiropoulos is a member of the Signal Processing for Communications
Technical Committee (SPCOM-TC) of the IEEE SP Society and currently
serves as an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING. From 2000 to 2002, he also served as Associate Editor for the
IEEE SIGNAL PROCESSING LETTERS. He received the NSF/CAREER award
(Signal Processing Systems Program) in June 1998 and an IEEE Signal
Processing Society Best Paper Award in 2001.


