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Abstract—Space-time (ST) coding techniques exploit the spatial
diversity afforded by multiple transmit and receive antennas to
achieve reliable transmission in scattering-rich environments.
ST block codes are capable of realizing full diversity and spatial
coding gains at relatively low rates; ST trellis codes can achieve
better rate-diversity tradeoffs at the cost of high complexity. On
the other hand, V-BLAST supports high rates but has no built-in
spatial coding and does not work well with fewer receive than
transmit antennas. We propose a novel linear block-coding scheme
based on the Khatri-Rao matrix product. The proposed scheme
offers flexibility for achieving full-rate or full-diversity, or a
desired rate-diversity tradeoff, and it can handle any transmit/re-
ceive antenna configuration or signal constellation. The proposed
codes are shown to have numerous desirable properties, including
guaranteed unique linear decodability, built-in blind channel
identifiability, and efficient near-maximum likelihood decoding.

Index Terms—Blind channel identifiablilty, fading channels,
multi-antenna systems, receive diversity, space-time codes,
transmit diversity, wireless communications.

I. INTRODUCTION

NEXT-generation wireless systems aim for high rates
to support broadband data access. Existing cellular

standards do not support the high data rates required for
most real-time multimedia services. A new class of wireless
communication methods employing multiple transmit and/or
receive antennas has recently been developed to achieve higher
spectral efficiency in scattering-rich environments. It has been
established that channel capacity grows linearly as the number
of transmit and receive antennas grow simultaneously [12],
[30]. Third-generation cellular standards (e.g., code division
multiple access (CDMA 2000) [1] and wideband CDMA [2],
[21]) have adopted space-time (ST) coding and modulation
techniques that exploit the presence of multiple transmit
antennas.

The rate-performance tradeoff lies at the heart of multi-an-
tenna system design. Additional key issues include transmitter
and receiver complexity and acquiring and tracking channel
state information (CSI) at the receiver. So far, most of the
multi-antenna systems have targeted either high performance
at relatively low rates or high rates with relatively poor per-
formance. Two paradigms have emerged to date on opposite
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ends of this “spectrum”: ST coding and spatial multiplexing.
The latter is best embodied by the Vertical—Bell Labs Layered
ST (V-BLAST) architecture [14]. A variety of ST coding
schemes have been proposed for the quasi-static, flat-fading,
multiple-antenna wireless channel. ST block codes based on
orthogonal designs (OD) [3], [29] and ST trellis codes [28]
are two important classes developed for the case that CSI is
available at the receiver. ST-OD codes suffer rate loss for more
than 2 (50% for more than 4) transmit antennas. ST trellis
codes strike better rate-performance tradeoffs but at the cost
of complexity (exponential in the transmission rate and the
number of antennas). Both OD and trellis codes require CSI at
the receiver. Since neither class of codes is designed to support
blind CSI recovery, it is implicitly assumed that accurate
CSI may be acquired through training. This requires that the
channel remains time-invariant for relatively long transmission
epochs. Differential ST modulation (DSTM) [16], [18], [19]
circumvents the need for channel estimation and is capable of
handling moderate time variation. The drawback is an upfront
differential detection penalty, similar to differential phase-shift
keying (DPSK), and high decoding complexity at higher rates
or with many antennas. Giving up the spatial coding advantage,
V-BLAST can handle high rates with reasonable complexity,
but the decoding scheme in [14] does not work well with fewer
receive than transmit antennas, which is the typical situation in
the downlink.

Recently, a wide class of ST block codes has been proposed in
[15], under the name linear dispersion (LD) codes. Every linear
block code is an LD code. The interest is therefore on the code
design procedure, i.e., the selection of code matrices from the
general class of LD codes. In [15], code design is approached
as an iterative numerical optimization problem with mutual in-
formation as the objective function. Because other design con-
siderations are not explicitly accounted for, LD designs in [15]
do not necessarily provide full diversity and coding benefits. LD
designs also assume that accurate CSI can be acquired through
training. LD codes can support high rates without constraints on
the number of transmit/receive antennas or the signal constella-
tion.

In this paper, we propose a broad new class of ST codes based
on the Khatri–Rao matrix product:Khatri–Rao Space-Time
(KRST) codes. KRST codes are linear block codes designed to
provide the following benefits:

• maximum diversity gain and good coding gain at any
transmission rate (note the difference with LD code
design, which aims for maximum mutual information);

• ability to easily span the range from full diversity to full
transmission rate by simply truncating the code matrix;

• ability to work with any configuration of transmit/receive
antennas and any signal constellation;
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• unique linear decodability for almost every channel ma-
trix, irrespective of statistics;

• built-in blind CSI recoverywithout modifying or inter-
rupting the transmission;

• effective low-complexity channel tracking after initial CSI
has been acquired;

• efficient near maximum likelihood (ML) decoding due to
linearity.

The rest of the paper is organized as follows. In Section II,
the channel and data model are introduced. The encoding and
decoding procedures are presented in Section III, which also
includes necessary background on the Khatri-Rao product and
code design criteria. The unique linear decodability property
of KRST codes is also explained in this section. Blind CSI
recovery is discussed in Section IV, while decision-directed
channel tracking is discussed in Section V. Section VI provides
several examples and comparisons with some competing ST
coding techniques, and the main conclusions are summarized
in Section VII. The proof of a unique linear decodability result
pertaining to our code design is deferred to the Appendix.

II. DATA AND CHANNEL MODEL

Consider the multi-antenna system withtransmit antennas
and receive antennas depicted in Fig. 1. The wireless channel
is assumed to be quasi-static and flat fading. The discrete-time
baseband-equivalent model for the received data is then given
by (cf. e.g., [15])

(1)

Here, denotes the complex transmitted code
signal vector with unit power entries1 ,

denotes zero-mean i.i.d. in space and time circular
Gaussian noise, and denotes the
complex received signal vector during one channel use. The
channel matrix has i.i.d. entries, implying that

trace . , , and are mutually in-
dependent. is the signal-to-noise ratio (SNR) at each receive
antenna. This is ensured by the normalization .

When the channel is constant for at leastchannel uses, we
obtain (dropping the block-time dependence for brevity)

(2)

where is the received signal matrix,
is the transmitted code matrix, is the additive noise
matrix (Fig. 2) and trace .

III. K HATRI–RAO SPACE-TIME CODES

Adapting the symbol constellation is one simple way to con-
trol the transmission rate of linear encoding techniques. Our ap-
proach to transmission rate control relies on adjusting the length
of the codeblock via simple truncation of the code matrices.
With proper code design, this allows us to span the range from

1Note that stands for Hermitian (complex conjugate) transpose,is re-
served for conjugation, and for transpose.

Fig. 1. Wireless channel model.

full rate to full transmit diversity while maintaining maximum
possible diversity order for every in between. The encoding
and decoding schemes are discussed next.

A. Encoding Technique

Consider the model in (2). We will now describe the construc-
tion of the ST code matrix , which is to be transmitted from

antennas over time slots. The symbol stream [com-
plex symbols chosen from an arbitrary, say-phase shift-keying
(PSK)/quadrature amplitude modulation (QAM) constellation
and then scaled by ] is first parsed into
symbol vectors . These vectors satisfy the power constraint

. Each of these symbol vectors is linearly pre-
coded by an matrix , which is a suitably chosen con-
stellation rotation (CR) matrix [4], [10], [13], [32]. Construc-
tion of this will be discussed in Section III-B. The reason for
including this is to load each symbol onto each transmit an-
tenna and time slot. This is necessary for diversity purposes, as
explained in Section III-B. Next, the vector is used
to form the information-bearing matrix , which is a di-
agonal matrix holding the vector on its diagonal. The last
step is to post-multiply by an matrix . The
purpose of is to adjust2 the time span of the code matrix
to within channel slots. The construction of will be ad-
dressed in Section III-B.

The resulting transmitted code matrix is given by

(3)

If the channel is assumed to be constant for block-time, then
the received data can be modeled as

(4)

In our scheme, each linearly precoded symbol (diagonal element
of ) “rides” onto a rank-one matrix factor that is gener-
ated by the outer product of the corresponding column ofand
the associated row of . The rate of transmission is

bits channel use (5)

2Note that, in our construction,K can be� M (compression) or> M (ex-
pansion); we will focus mainly on the caseK �M becauseK > M sacrifices
rate without providing any diversity or identifiability benefits.
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Fig. 2. System model.

B. Performance Analysis and Design Criteria

Recall that the quasi-static flat-fading channelhas been
assumed to have independent entries. Consider the
case where a maximum likelihood (ML) receiver decodes er-
roneously in favor of a signal vector ( code matrix

) when ( code matrix
) was actually transmitted. The receiver is assumed

to have perfect CSI as well as knowledge of and . The con-
ditional pairwise error probability can then be approximated by
[28]

(6)

where

trace (7)

and is the Frobenius norm. Define an matrix as

(8)

The rank of is . is a Hermitian positive
semi-definite matrix with square root

(9)

The eigenvalues of ( ’s) are non-negative real numbers.
Following the analysis given in [28], we obtain the following
upper bound on the average probability of error (averaged over
channel statistics)

(10)

If is the rank of ( rank of ) and are its
nonzero eigenvalues, then at high SNR, (10) reduces to

(11)

Thus, a diversity gain of (rank criterionof ST code design)
and a coding gain of (determinant criterionof ST
code design) are achieved. The diversity gain manifests itself
at high SNR. The maximum diversity of a system with fixed

is , and this is achieved if and only if
has full rank ( if ) for all .

This criterion dictates the choice of and (in part) the choice
of .

1) Choice of : The constellation rotation (CR) matrix ,
which is used to linearly precode the symbol vector, is em-
ployed to take advantage of the transmit diversity in a multi-an-
tenna environment. According to the rank criterion of ST code
design, we are interested in a code structure with the property

full rank (12)

Now, suppose that is chosen to have full rank. Let us also
suppose that is such that contains no zeros for
all . Then, the diagonal matrix is non-
singular, and the desired full rank of follows for all

, implying that the code has maximum diversity advantage
. Hence, the design rule is as follows: For full

diversity gain, should be chosen such that con-
tains no zeros for all , and must have full rank. The
CR matrices discussed in [4], [10], [13], and [32] satisfy this
requirement on . CR matrices are designed using either al-
gebraic number-theoretic constructions or by computer search
over compact parameterizations of unitary matrices.

We restrict ourselves to a complexunitary constellation ro-
tation matrix , as it is worth using complex unitary rotations
when and/or are large, and the constellation size is mod-
erate [32]. The specification of such a, which is suitable for
pulse amplitude modulation (PAM) and QAM constellations
and , can be found in [32]

diag (13)

where is the inverse DFT matrix, and
. For odd , is obtained through

computer search over the unitary parameterization expressed
via Givens rotation matrices. Details of this construction can
be found in [32]. Note that in our context (which includes
post-multiplication by ), the CR designs of in [32]
need not be optimum from a coding gain viewpoint. However,
extensive experimentation has shown that (13) yields good
coding gain relative to randomly sampled, which also meets
the full diversity gain requirement almost surely. This will be
corroborated by simulations in Section VI.

2) Choice of : From here on, we focus on the
case. is chosen to be a Vandermonde matrix with
generators , i.e., ,

. This way, is a scaled semi-unitary matrix
, and it has full row rank, as required for

achieving maximum diversity gain. This gives the flexibility to
go from (full diversity) to (full rate) by simple
truncation of the code matrix while maintaining maximum
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achievable diversity gain anywhere in between. Coupled with
a unitary , this choice of also assures that the transmit
power constraint is satisfied:

trace trace

trace

where is the th row of the unitary matrix , and is the
th column of .
An important consideration behind our choice of is that

this particular Vandermonde structure guarantees that the equiv-
alent channel matrix used in the decoding3 is full rank for almost
every channel matrix (cf. Section III-D and the Appendix).

Note that for and , our scheme reverts to
linear constellation precoding with time-division multiplexing
of the antenna elements across the time slots of one code block
[32]. However, its rate is then only one symbol per channel use.
As the ST-linear constellation precoding (LCP) codes [32] do
not work with , they do not provide the flexibility to
trade off diversity for transmission rate.

C. Decoding Technique

We now discuss the decoding of the received signal matrix.
Assuming that the receiver has perfect CSI, we use a basic prop-
erty of the Khatri–Rao product (KRP) to perform coherent de-
tection of the transmitted symbols.

1) Khatri–Rao Product (KRP):Given two matrices
and with the same number of columns,

the KRP is the matrix defined as

(14)

where is the th column of , similarly for , and de-
notes the Kronecker product of the two column vectors. The
KRP has the following key property [5]:

vec (15)

where is diagonal, vec stacks the columns of its
argument, and extracts the diagonal of its argument and
constructs a column vector out of it.

3As we will shortly see, this is the Khatri–Rao product ofC and the actual
(random) channel matrixH.

2) Vectorized Model:Using (15), we obtain from (4) the fol-
lowing (noiseless) vectorized model:

vec

(16)

In the presence of noise, a number of decoders can be used to
extract the symbols transmitted from the received signal matrix.
This is done by writing the received matrix as

vec vec

vec (17)

An exhaustive search-based ML detection can be prohibitively
complex (exponential in ). An alternative issphere decoding
(SD) [9], [31], which can achieve near ML performance at sig-
nificantly reduced complexity. Block minimum mean square
error–decision feedback equalization (MMSE-DFE) [11], [27]
can also be used if we have to further reduce the complexity at
the expense of performance.

In this paper, we use SD at the receiver end. It has been es-
tablished that complexity of the original SD, for transmit
antennas and a fixed search radius, is [9], [31], inde-
pendent of the constellation size. Efficient implementation re-
duces the average complexity to [17]. In our simula-
tions, we will consider QAM or PSK constellations that are
scaled to maintain the power constraint . Since
SD works for QAM or PAM constellations (which are carved
from the cubic lattice with integer-valued coordinates), we scale
the channel matrix by and by
so that the signal vector now corresponds to a vector consisting
of QAM or PAM symbols carved from this cubic lattice. In our
decoding scheme, since and can be complex, we rewrite
the model in the following real-equivalent form4 :

Real
Imag

Real Imag
Imag Real

Real
Imag

Real vec
Imag vec

(18)

D. Unique Linear Decodability

In the Appendix, we show that the KRST codes have the
unique linear decodability property, i.e., the transmitted sym-
bols are guaranteed to be linearly recoverable in the absence of
noise for almost every channel matrix. In the noiseless case,
the transmitted symbol vector can be recovered by

vec (19)

where denotes the matrix pseudo-inverse, provided
is tall or square and has full column

rank . Since is a unitary matrix, it has full rank

4If x = a+ jb, then Real(x) = a, and Imag(x) = b
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. is an matrix. We prove in the Appendix
that for our particular choice of , this KRP is full column
rank for almost every , provided . Note that KRST
codes can work with as few as 1 receive antenna if .

Unique linear decodability is important for the following two
reasons.

• The SD benefits from, and in fact the original SD al-
gorithm requires, unique linear decodability—that is, a
full column rank equivalent channel matrix
[9], [31]. Briefly, when (and the equiva-
lent channel matrix is full column rank), one works with
an -dimensional lattice embedded in , whereas
when (or the equivalent channel matrix is not
full column rank), one works with aprojectionof this lat-
tice onto . The latter problem is more complex, and it
cannot be handled by the original SD; a conference-paper
generalization of SD for this case appears in [8], but there
are two drawbacks relative to the full column rank case: i)
Complexity increases significantly (this issue is not elabo-
rated in the conference paper [8]); ii) performance is con-
siderably worse compared with the full column rank case.

• Unique linear decodability enables computationally
simpler equalization, like nulling and cancelling, or
zero-forcing linear inverse in case ML or SD becomes
prohibitively complex. This too is a desirable property.

E. Choice of

The choice of in KRST codes is dictated by the desired
rate-performance tradeoff, subject to the constraint .
To be more precise, the desired transmission ratedetermines

through bits/channel use, provided
the desired rate is achievable for integer satisfying

. In case , we are free to choose any positive
integer . Either way, the resulting KRST code will yield full
diversity for the given , , and , equal to .
Alternatively, we may choose for a given diversity order
(slope at high SNR) , again under the constraint

.

IV. BLIND CSI RECOVERY: PARAFAC ANALYSIS

A key benefit of KRST codes is their built-in blind CSI re-
covery capability. It is important to note that the encoding tech-
nique remains the same as in the known CSI case discussed
in Section III-A. The blind-KRST decoding technique makes
use of the blind identifiability properties of the parallel factor
(PARAFAC) model [6], [23], [25], [26].

A. PARAFAC

PARAFAC analysis is a common name for low-rank decom-
position of three- or higher dimensional arrays. Consider an

three-way array with typical element and
the -component trilinear decomposition

(20)

for , , and . The
three-way array is expressed as a sum of rank-one
three-way factors in the above equation. The rank of a
three-way array is defined as the minimum number of
rank-one (three-way) components needed to decompose.
The vectors , , and are often
referred to as loading vectors or score vectors or factor profiles
in the PARAFAC literature, depending on the context.

Define an matrix , matrix , and ma-
trix with typical elements , , and , respectively.
Furthermore, define matrices , matrices ,
and matrices with corresponding typical elements

. Then, the model
in (20) can be written in three equivalent ways:

(21)

(22)

(23)

where is a diagonal matrix constructed out of theth row
of . Stacking the matrices in (21), we obtain

...
...

(24)
where the superscript means that the matrix is of size

, and the -index ( goes first in the product ) runs
faster than the-index along its columns.

Given , rank of iff it contains a
collection of linearly independent columns but no collection
of linearly independent columns. -rank of
if every columns are linearly independent, but either ,
or there exists a collection of linearly dependent columns
in .

A distinguishing feature of the PARAFAC model is its
uniqueness. Under mild conditions, the model parameterization
is essentially unique, that is, , , and are identifiable
without rotational ambiguities. In particular, if

(25)

then , , and are unique up to common permutation and
(complex) scaling–counterscaling of columns [23], [25], [26].
If all three matrices have full -rank,5 then

(26)

is sufficient for identifiability.
When noisy observations are given, the principle of al-

ternating least squares (ALS) can be used to fit the PARAFAC
model in (20). The idea behind ALS is to update one matrix,
using least squares (LS) conditioned on previously obtained in-
terim estimates for the remaining matrices, and then proceed to
update the other matrices. This process is repeated until conver-
gence in least squares fit. A basic trilinear ALS (TALS) algo-

5True with probability 1 if drawn from a continuous distribution.
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rithm is presented in [25]. The TALS method is guaranteed to
converge monotonically. It is conceptually simple and provides
good performance [6]. Least squares fitting of (24) (and ML pa-
rameter estimation when the noise is modeled as i.i.d. Gaussian
and all other parameters are treated as deterministic unknowns)
amounts to

...
... (27)

where , are the noisy slabs. From (27), the con-
ditional least squares update foris

...
... (28)

where and denote the previously obtained estimates of
and , respectively. The complete symmetry of the trilinear

model [cf. (20)] and data reshaping [cf. (21)–(23)] can be used
to figure out corresponding conditional LS updates forand

.

B. Blind-KRST Decoding Technique

The blind-KRST decoding technique is based on the fol-
lowing two-step scheme: First, estimate the channel matrix, and
then, use this estimate to decode the transmitted signals. The
estimation of the channel matrix is done in two stages. First, a
PARAFAC model is fitted to the data , . This
is done as follows. Let be a three-way array of dimensions

, whose “slabs” are given by

(29)

where the matrix , is an matrix
whose columns are the vectors , is the number
of slabs in the PARAFAC model, and we have used MATLAB
notation, where denotes theth slab of per-
pendicular to the first (row) dimension. Then, the uniqueness
condition (25) translates to

(30)

Since the columns of are drawn independently from a
distribution, it has full -rank almost surely, and has -rank
equal to by construction. Since is square and full rank,

[26], provided is full row rank; this is true with
very high probability, provided is large enough. For example,
for , , and a BPSK constellation, where the prob-
ability of the matrix is rank deficient, is roughly .
Substituting in (30) yields

(31)

Note that blind CSI recovery only requires as few as two receive
antennas or as few as two time slots per code block; identifia-

bility can never hold for either or , however.
In addition, note that for small , and depending on the size
of the symbol constellation, there may be non-negligible prob-
ability of rank deficiency of . However, simulations indicate
that uniqueness often holds even with relatively small. This
is likely due to the fact that in our particular context, the matrix

is known, whereas in (25), all three matrices involved are
assumed unknown. Hence, the derivation leading to (31) is, in a
sense, pessimistic, which counteracts the effects of smaller.

The recovery of is actually performed by fitting the model
in an LS sense using TALS. As is known to the receiver,
we only need to estimate and ; hence, the condi-
tional least squares update step (28) is performed only forand

, while keeping fixed during the iterations. This modified
TALS algorithm provides estimates and . The knowledge
of at the receiver takes care of the permutation ambiguity in-
herent in blind estimation. The scaling ambiguity ( ,
where is an arbitrary diagonal scaling matrix) that remains
can be taken care of by transmitting an identity matrix at the be-
ginning of the transmission burst, i.e.,

(32)

Applying the KRP property discussed in Section III-C using the
estimated , we have

vec vec (33)

Now, an estimate of is computed using the pseudo-inverse
of , as discussed for the coherent detection, yielding

; then, the final estimate of the channel is obtained:

(34)

Once the channel matrix is estimated without any scaling
or permutation ambiguity, we can apply the decoding tech-
nique explained in the coherent detection case to estimate the
transmitted symbols. The complexity of PARAFAC (TALS) is

per iteration. The typical number of PARAFAC
iterations as a function of SNR is as follows: When ,

, , and , at SNR 5, 10, and 15, the average
number of iterations is 15, 11, and 7, respectively. Note that
since we fix the matrix , PARAFAC requires considerably
fewer iterations than usual.

V. CHANNEL TRACKING

So far, we have assumed that the channel is time invariant.
In practice, however, the channel is usually slowly varying with
time. After initial blind acquisition using PARAFAC analysis,
it makes sense to revert to computationally simpler decision-
directed channel tracking to follow minor channel variations,
without incurring the computational expense of blind estima-
tion. This computationally attractive approach also serves to
provide an updated scale reference for subsequent periodic blind
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re-estimation of the channel matrix. The PARAFAC analysis de-
scribed in Section IV-A forms the backbone of our proposed
tracking technique.

Let us return to (29) and (32), which are reproduced here for
convenience.

Let be the channel estimate obtained from these equations.
If is the new channel matrix at block time , then
the corresponding received signal matrix is

(35)

At the receiver, we use the old channel estimate to decode
the transmitted symbols by the coherent detection scheme, i.e.,
apply SD to the following model:

vec vec

(36)
This yields an estimate . Next, we update the matrix (cf.
(29)) by shifting up the rows by 1, dropping the former first row
and inserting as the last row, i.e.,

(37)

(38)

then apply PARAFAC analysis to the three-way array, con-
structed as

(39)

Since and the updated are fixed, only the third compo-
nent matrix has to be estimated; therefore, TALS reduces to
a simple LS problem. Recall (23):

The compact model representation discussed in (24) corre-
sponding to the above set of equations is

...
...

(40)
Following this approach of “matricization,” the three-way array

is matricized into a matrix . In the noiseless case,
we obtain

(41)

In the presence of noise, the LS estimate of is given by

(42)

now replaces , and the procedure is repeated again
so that the channel is tracked continuously. Note that
from (42) can now be used in place of in (36) to get
a better estimate of the transmitted symbol vector . This
vector estimate can again be used to update the last row of ma-
trix in (38), which can then be used to get a better estimate
of the channel. This cyclic process can be performed iteratively
until convergence,6 but the main drawback is that SD has to be
performed during each cycle. This makes the overall iterative
process prohibitively complex, especially for real-time applica-
tion; hence, we do not advocate further iteration at this point,
especially for slowly varying channels.

VI. SIMULATION RESULTS AND COMPARISONS

The proposed KRST codes are flexible for going from
full-rate codes to full-diversity codes. The fact that they per-
form well at high rates prompts a comparison with the recently
proposed LD codes [15]. KRST codes are also compared
with ST-LCP codes [32] as both codes employ the CR matrix

. The blind CSI recovery scheme is compared with the
DSTM scheme [18]–[20]. Throughout the simulations, gray
mapping is used to calculate the bit error rate (BER), and SD
is used at the receiver for KRST, LD, and ST-LCP codes. The
enumeration-based differential ML receiver proposed in [18],
[19] is employed for DSTM.

A. KRST: ,

Let us first look at the flexibility that KRST codes offer. We
are interested in producing codes that help in achieving a desired
tradeoff between rate and diversity performance. Consider the
case where we have four transmit and four receive antennas. For

(number of slots per code block) 1, we achieve full-rate,
and for , we achieve full-diversity. The symbols to be
transmitted are chosen from the QPSK constellation. The CR
matrix for is given by [32]:

diag (43)

where . is chosen as described in Sec-
tion III-B2. is the number of rows in . Since the rest of the
design remains the same, rate-diversity control through simple
truncation (selection of ) provides significant code design and
adaptation flexibility.

The SNR versus BER plot for various is given in Fig. 3.
The simulation result is based on 10independent random re-
alizations of the channel matrix , each used for channel
time slots. It is observed that as we go from to

, performance improves as expected. An inter-
esting observation is that instead of using full-rate codes with
poor performance or using full-diversity codes with low rate, it
makes more sense to use codes that offer good performance at
reasonably high rates, like the codes for or in a
practical setting.

6Convergence in LS fit is guaranteed, as this is an ALS procedure; see the
discussion in Section IV-A.
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Fig. 3. Khatri–Rao space-time codes:M = 4,N = 4, QPSK.

B. KRST versus LD: ,

Linear dispersion (LD) codes [15] are linear block codes that
transmit substreams of data in linear combinations over space
and time. LD codes are capable of achieving high rates and are in
fact optimized for maximum information rate. KRST codes are
linear block codes that are also capable of achieving high rates,
but they aim for maximum diversity and blind identifiability.

Consider the case where we have two transmit and two re-
ceive antennas. Two time slots are used per code block, i.e.,

. In order to maintain , the symbols to be trans-
mitted are chosen from a QPSK constellation for the LD code
(code design: [15, p. 31, eqs. (31) and (34)]). For KRST codes,
we use

diag (44)

where . For KRST with , the symbol
constellation is 16QAM, whereas for , we use QPSK.
The comparison between the two KRST codes and the LD code
is given in Fig. 4. It is observed that KRST outperforms the LD
code at high SNR.

C. KRST versus LD: ,

One more comparison between KRST and LD codes is made
here. In this case, we have three transmit antennas and one re-
ceive antenna. The symbols are chosen from QPSK constella-
tion. Since we have an odd number of transmit antennas, we
have to use computer search to obtain the constellation rotation
matrix [32]. This is given by (45), shown at the bottom of

Fig. 4. Comparison of KRST and LD codes:M = 2,N = 2, KRST—K =
1 (QPSK)=K = 2 (16QAM), LD—K = 2 (QPSK),R = 4.

Fig. 5. Comparison of KRST and LD codes:M = 3,N = 1, KRST—K =
3, LD—K = 6, QPSK,R = 2.

the page. KRST uses in order to maintain the rate .
The LD code (code design: [15, p. 38, eq (39)]) with is
used for comparison, as it gives better performance than the LD
code with [15]. The comparison is given in Fig. 5. Again,
at high SNR, the KRST code gives lower BER than the LD code.
The KRST code offers full diversity , whereas it can be
shown that the error matrix [cf. (9)] for the LD code is rank
deficient for

and .

(45)
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Fig. 6. Comparison of KRST and ST-LCP codes:M = 4,N = 4,R = 4.

D. KRST versus ST-LCP: ,

A comparison between KRST codes and ST—linear constel-
lation precoding (ST-LCP) codes [32] is made as both codes
enjoy maximum diversity ( for ST-LCP), and both
employ the CR matrix . If and , ST-LCP codes
can achieve if 16QAM symbols are transmitted. KRST
codes can achieve the same rate using 1, 2, 3, or 4 and
BPSK, QPSK, 8QAM, or 16QAM symbols, respectively. The
CR matrix to be used is the same as the one used in Sec-
tion VI-A. It is observed from Fig. 6 that the KRST code with

outperforms all the other codes and gains about 3 dB
over the ST-LCP code.

E. Blind CSI Recovery vs DSTM: ,

The blind CSI recovery scheme is compared with differen-
tial ST modulation (DSTM) [18]–[20]. In order to have a mean-
ingful comparison, we employ the same number of transmit
and receive antennas and maintain the same rate of transmis-
sion. Since in DSTM, we also use for
the KRST code. In this simulation, 10independent random
realizations of are used, and the channel is assumed to re-
main constant for a duration of 1000 block-time slots. The case
where the channel varies every time slot is considered in Sec-
tion VI-H. Consider the case where we have four transmit and
four receive antennas. In order to maintain a rate , DSTM
has to use 8PSK constellation (code design: [20, table 3, p.
166]), whereas KRST uses BPSK. Thirty slabs are used to fit
the PARAFAC model. A comparison of these two codes and a
training-based scheme is presented in Fig. 7. The training-based
scheme first obtains a LS channel estimate based on training
data of duration 500 block-time slots. This is followed by pay-
load KRST transmission for the remaining 500 block-time slots
where the channel remains constant. In order to maintain
, we transmit QPSK symbols during this time. The receiver

uses the LS channel estimate coupled with SD to detect the
transmitted symbols. Observe that all three designs give sim-
ilar performance, but the training-based scheme assumes that

Fig. 7. Comparison of blind-KRST and DSTM codes:M = 4,N = 4,K =

4, blind-KRST—BPSK, DSTM—8PSK,R = 1.

the channel remains constant for a very long time, which is usu-
ally not the case in a practical setting. The KRST advantage is
that the blind receiver for KRST uses SD, which has lower com-
plexity compared with the enumeration-based differential ML
receiver employed in DSTM. The latter has an estimator-corre-
lator interpretation and its complexity increases exponentially
in and . Blind-KRST can achieve higher rates by simply
selecting 2 or 3, whereas DSTM can achieve higher rates
only by increasing the constellation size, which further increases
the decoding complexity. A simpler near-ML receiver based on
lattice decoding has recently been proposed fordiagonalDSTM
codes in [7]. The performance of this algorithm is quite close to
ML, and its complexity is polynomial in and . However, the
DSTM codes used in this simulation are not diagonal (DSTM
codes are not diagonal in general), and therefore, this simpler
algorithm cannot be used. Note that a constant channel is the
ideal scenario for DSTM; hence, we have the slight advantage
of DSTM over KRST in Fig. 7. When the channel varies con-
tinuously even at a moderate rate (e.g., due to Doppler), the sit-
uation can be reversed; see, e.g., the results in Fig. 11, where
KRST clearly outperforms DSTM.

F. Blind CSI Recovery: Number of Slabs

The accuracy of our blind CSI recovery technique depends
on the number of slabs in the PARAFAC model. Consider the
case , , and . The transmitted symbols
are selected from the BPSK constellation. Fig. 8 illustrates a
comparison between two different slab-sizes and
. Note that is not appreciably worse than in

terms of final BER. This suggests that the algorithm can handle
even moderate mobility without significant degradation. Fig. 9
illustrates the same point for , , , BPSK,
and 5, 10, and 30.

G. Channel Tracking

The performance of the channel tracking scheme for slowly
varying channels, which was discussed in Section V, is now
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Fig. 8. Number of slabs in blind-KRST:M = 4,N = 4,K = 4,T = 5(30),
BPSK.

Fig. 9. Number of slabs in blind-KRST:M = 4, N = 4, K = 3, T =
5(10; 30), BPSK.

compared with that of the coherent detection scheme that as-
sumes perfect CSI at the receiver. Fig. 10 illustrates the compar-
ison for the case where we have , , and .
The transmitted symbols are selected from the QPSK constella-
tion. In this simulation, 10independent random realizations of
the channel matrix are used, and the channel taps are modi-
fied at each block-time instantas

(46)

where is the sum of the carrier frequency offset, and the
Doppler shift at the th receive antenna and is taken to be
0.001. It is observed that the performance of the channel
tracking scheme degrades by only a few decibels relative to the
fully coherent case.

Fig. 10. Channel tracking:M = 4,N = 4,K = 3, QPSK.

Fig. 11. Comparison of KRST channel tracking and DSTM codes:M = 4,
N = 4, K = 4, f = 0:001.

H. Time-Selective Fading Channels ,

Consider the case when frequency-offset induced time-selec-
tive channels are present. These channels are allowed to vary as
fast as one symbol duration. The channel from theth transmit
antenna to the th receive antenna is modeled as (cf. e.g., [24])

(47)

where is the sum of the carrier frequency offset and the
Doppler shift at the th receive antenna. We will employ the
KRST channel tracking scheme in this scenario and compare
the result with that obtained using DSTM. Consider the case
where , , and . Once again, rate
is maintained by using 8PSK for DSTM and BPSK for KRST.
It is observed from Fig. 11 that KRST outperforms DSTM by
about 2 dB in this case.
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VII. CONCLUSIONS

A novel linear space-time block coding technique based on
the Khatri-Rao matrix product has been proposed. It can be
applied to any configuration of transmit and receive antennas
and any symbol constellation. The performance analysis and de-
sign criteria were described, and it has been shown that KRST
codes offer flexibility, which can be used to achieve full-rate or
full-diversity or desired rate-diversity tradeoffs in between these
two extremes. The proposed codes have attractive features like
guaranteed unique linear decodability and built-in blind channel
identifiability. KRST codes were compared with LD codes, and
it has been shown that KRST codes outperform LD codes at
high SNR. From the comparison with ST-LCP codes, it has
been observed that KRST codes achieve the same rate using a
lower order constellation, yielding better performance. The re-
sults show that the performance of the blind-KRST decoding
scheme is comparable with that of DSTM, but KRST is simpler
to decode optimally. The proposed decision-directed channel
tracking procedure offers a simple and effective alternative to
continuous blind channel re-estimation, bringing the complexity
of maintaining CSI well under that of ML block decoding.

APPENDIX

We will need the following well-known Lemma.

A. Lemma 1

Consider an analytic function of several variables
. If is nontrivial in the sense that there

exists such that , then the zero set of

is of measure (Lebesgue measure in) zero. A simple proof
of this lemma is given in [22].

B. Proposition 1

If and is chosen to be a Van-
dermonde matrix with generators , i.e.,

, (as in Sec-
tion III-B2), then for almost every

(where, for any given matrix , rank of , and
-rank of ).

C. Proof

First, note that and are the same modulo
a permutation of rows; hence, . It suffices to
show that the upper square part of is nonsingular, i.e.,
its determinant is nonzero for almost every. This determi-
nant is a polynomial function of the entries ofand, hence, is
analytic. It suffices to show that it is also nontrivial. This only
requires finding a specific for which the said determinant is
nonzero. The key idea is as follows. Selectto be a Vander-
monde matrix with generators , i.e.,

. This yields a Vandermonde Khatri-Rao
product with generators , ,

whose upper square part is nonsingular. Invoking the analytic
function Lemma, for almost every
(i.e., except for a measure zero subset of ).
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