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Khatri-Rao Space-Time Codes
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Abstract—Space-time (ST) coding techniques exploit the spatial ends of this “spectrum”. ST coding and spatial multiplexing.
diversity afforded by multiple transmit and receive antennas to  The latter is best embodied by the Vertical—Bell Labs Layered
achieve reliable transmission in scattering-rich environments. ST (V-BLAST) architecture [14]. A variety of ST coding
ST block codes are capable of realizing full diversity and spatial . . .
coding gains at relatively low rates; ST trellis codes can achieve schgmes have bee_n proposed for the quasi-static, flat-fading,
better rate-diversity tradeoffs at the cost of high complexity. On Multiple-antenna wireless channel. ST block codes based on
the other hand, V-BLAST supports high rates but has no built-in  orthogonal designs (OD) [3], [29] and ST trellis codes [28]
spatial coding and does not work well with fewer receive than are two important classes developed for the case that CSI is
transmit antennas. We propose a novel linear block-coding scheme g 5ijape at the receiver. ST-OD codes suffer rate loss for more
based on the Khatri-Rao matrix product. The proposed scheme than 2 (50% f than 4) t it ant ST trelli
offers flexibility for achieving full-rate or full-diversity, or a an 2 ( U0 or more than 4) transmit antennas. reflis
desired rate-diversity tradeoff, and it can handle any transmit/re- Codes strike better rate-performance tradeoffs but at the cost
ceive antenna configuration or signal constellation. The proposed of complexity (exponential in the transmission rate and the
codes are shown to have numerous desirable properties, including number of antennas). Both OD and trellis codes require CSI at
guaranteed unique linear decodability, built-in blind channel 6 receiver. Since neither class of codes is designed to support
identifiability, and efficient near-maximum likelihood decoding. ) S -

blind CSI recovery, it is implicity assumed that accurate
Index Terms—Blind channel identifiablilty, fading channels, CSI| may be acquired through training. This requires that the
P::rtt;,}iqtghg?s'tsySt'erg::ss rf:neq%e ngg’t‘?éi';y' space-time - codes, cpannel remains time-invariant for relatively long transmission
ftdversity, wi unications. epochs. Differential ST modulation (DSTM) [16], [18], [19]
circumvents the need for channel estimation and is capable of
|. INTRODUCTION handling moderate time variation. The drawback is an upfront

EXT-generation wireless systems aim for high rate%'ffe_rent'al detection penalty, similar to differential phase-shift
I

to support broadband data access. Existing cellu Fy'ng (DPSK), and high decoding complexity at higher rates

standards do not support the high data rates required Prwith many antennas. Giving up the spatial coding advantage,

most real-time multimedia services. A new class of wirele s'?tl;]ASaT Cag. handrlle hlgh rit:,-s dW'th re?sonsble”cor_?rf) IfeX|ty,
communication methods employing multiple transmit and/ e decoding scheme in [14] does not work well with fewer

receive antennas has recently been developed to achieve hi ﬁ‘é?(;ve tr:_arll(transmlt antennas, which is the typical situation in
spectral efficiency in scattering-rich environments. It has be ¢ downiink.

established that channel capacity grows linearly as the num eBecentIy, awide cla§s of ST block codes has been propo_sed n
of transmit and receive antennas grow simultaneously [1 ,5]’ under t_he name Ilneardlspersmn (!‘D) codes. Every linear
[30]. Third-generation cellular standards (e.g., code divisi ock code is an LD code. The interest is therefore on the code

multiple access (CDMA 2000) [1] and wideband CDMA [2]. esign procedure, i.e., the selection of code matrices from the

[21]) have adopted space-time (ST) coding and modulatigr?neral class of LD codes. In [15], code design is approached

techniques that exploit the presence of multiple transnﬁ'? an iterative numerical optimization problem with mutual in-
antennas ormation as the objective function. Because other design con-

The rate-performance tradeoff lies at the heart of multi-a iderations are pot exp'licitly ac'coun'ted for, LD'designs ?n [15]
tenna system design. Additional key issues include transmit qot necessarily provide full diversity and coding bepeﬂts. LD
and receiver complexity and acquiring and tracking chann FSIans also assume that accurgte CS| can be acqwred_through
state information (CSI) at the receiver. So far, most of tHEaining. LD codes can support high rates without constraints on

multi-antenna systems have targeted either high performaﬁ_ gnumber of transmit/receive antennas or the signal constella-

at relatively low rates or high rates with relatively poor per-'on .

formance. Two paradigms have emerged to date on oppositén this paper, we propose a broad new class of ST codes based
on the Khatri-Rao matrix producKhatri-Rao Space-Time

(KRST) codes. KRST codes are linear block codes designed to

provide the following benefits:
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* unique linear decodability for almost every channel mg
trix, irrespective of statistics;
* built-in blind CSI recoverywithout modifying or inter- b
rupting the transmissign
« effective low-complexity channel tracking after initial CSl
has been acquired; = ST Encoder
« efficient near maximum likelihood (ML) decoding due tc
linearity.
The rest of the paper is organized as follows. In Section
the channel and data model are introduced. The encoding and
decoding procedures are presented in Section Ill, which also
includes necessary background on the Khatri-Rao product and
code design criteria. The unique linear decodability properfyll rate to full transmit diversity while maintaining maximum
of KRST codes is also explained in this section. Blind CSiossible diversity order for evety in between. The encoding
recovery is discussed in Section 1V, while decision-directeahd decoding schemes are discussed next.
channel tracking is discussed in Section V. Section VI provides
several examples and comparisons with some competing ATEncoding Technique

coding techniques, and the main conclusions are summarizegonsider the model in (2). We will now describe the construc-
in Section VII. The proof ofa Unique linear decodability rESUIﬁon of the ST code matrixC, which is to be transmitted from
pertaining to our code design is deferred to the Appendix. M antennas ovef time slots. The Symbo] stream) [Com_
plex symbols chosen from an arbitrary, saphase shift-keying
Il. DATA AND CHANNEL MODEL (PSK)/quadrature amplitude modulation (QAM) constellation

Consider the multi-antenna system withtransmit antennas nd then scaled by/(/E[s;s;])] is first parsed intoM x 1
andN receive antennas depicted in Fig. 1. The wireless chanﬁ¥m20| vectorss;. These vectors satisfy the power constraint
is assumed to be quasi-static and flat fading. The discrete-tifie S s¢] = M. Each of these symbol vectors is linearly pre-

baseband-equivalent model for the received data is then gi&§led by al/ x M matrix®, which is a suitably chosen con-
by (cf. e.g., [15]) stellation rotation (CR) matrix [4], [10], [13], [32]. Construc-

tion of this® will be discussed in Section IlI-B. The reason for
P including this® is to load each symbol onto each transmit an-
Xt = \/%Htct t e (@) tenna and time slot. This is necessary for diversity purposes, as
) explained in Section I11-B. Next, th&/ x 1 vector@s;, is used
Here, c, € CM_XI denotes the complex transmitted codg, form the information-bearing matri®(®s, ), which is a di-
signal vector with unit power entries (E [cf'ec] = M), agonal matrix holding the vect®s; on its diagonal. The last
n, € CNV*! denotes zero-mean i.i.d. in space and time circulgfep is to post-multiphD(®s, ) by anM x K matrixCo”. The
Gaussian(CA/(0,1)) noise, andx, € C"** denotes the pmose ofC,? is to adjust the time span of the code matrix
complex received signal vector during one channel use. ithin K channel slots. The construction 4 will be ad-
channel matrixH, has i.i.d.CA/(0,1) entries, implying that yressed in Section 111-B.

E [trace(HtH[’)] = MN. ¢, n, andH, are mutually in-  The resulting transmitted code matrix is given by
dependentp is the signal-to-noise ratio (SNR) at each receive
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Fig. 1. Wireless channel model.

antenna. This is ensured by the normalizatigp/M. C, = D(Os,)Co". (3)
When the channel is constant for at leASthannel uses, we
obtain (dropping the block-time dependence for brevity) If the channel is assumed to be constant for block-timénen

the received data can be modeled as

X=,/2HC+N ) &
M Xt = MHCf + Nt

whereX € CY*¥ is the received signal matrix; € CM*X
is the transmitted code matrid € CV*¥ is the additive noise :\/%HD(GSQCOT +Ny, t=1,....,7. (4
matrix (Fig. 2) andE[trac CC")] = K M.
In our scheme, each linearly precoded symbol (diagonal element
[ll. KHATRI-RAO SPACE-TIME CODES of D(®s;)) “rides” onto a rank-one matrix factor that is gener-

Adapting the symbol constellation is one simple way to cofii€d Py the outer product of the corresponding columH aind

trol the transmission rate of linear encoding techniques. Our a{B—e associated row dfo " The rate of transmission is
proach to transmission rate control relies on adjusting the length M _
of the codeblockK via simple truncation of the code matrices. R= <f) log, (1)bits/channel use 5)
With proper code design, this allows us to span the range from

2Note that, in our constructiody can be< M (compression) o> M (ex-

INote that™ stands for Hermitian (complex conjugate) transpdses re-  pansion); we will focus mainly on the casé < M becausél > M sacrifices
served for conjugation, anf for transpose. rate without providing any diversity or identifiability benefits.
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Fig. 2. System model.

B. Performance Analysis and Design Criteria 1) Choice of®@: The constellation rotation (CR) matri®,
Recall that the quasi-static flat-fading chanii&lhas been Which is used to linearly precode the symbol veatgris em-
assumed to have independeht’(0, 1) entries. Consider the ployed to t_ake advantage of_ the transmit dlve_rsn_y in a multi-an-
case where a maximum likelihood (ML) receiver decodes ege_nna enwronm_ent. Accor_dlng to the rank crlte_rlon of ST code
roneously in favor of a signal vectsf (M x K code matrix design, we are interested in a code structure with the property
E, = D(®5,)Co") whens, (M x K code matrixC, =

— _ a T
D(@®s,)Co”) was actually transmitted. The receiver is assumed B =C;— E, =D (@ (s —5)) Co

to have perfect CSl as well as knowledgd®f and®. The con- =full rank, V's; # s;. (12)
ditional pairwise error probability can then be approximated by )
[28] Now, suppose thaly is chosen to have full rank. Let us also
) suppose tha® is such tha® (s, — ;) contains no zeros for
—d*(Cy, Ey)p all s; # s;. Then, the diagonal matri® (® (s, — §;)) is non-
P(C EH) < _— 6 t t ' t ot
(Ct = EH) < exp < aM © singular, and the desired full rank & follows for all s, #

8¢, implying that the code has maximum diversity advantage
Nmin(M, K). Hence, the design rule is as follows: For full
d2(C,, E,) = |H(C, — Et)”% diyersity gain,® should tie chosen such th@t(s, — s;) con-
HarH tains no zeros for all; # s;, andCg must have full rank. The
:trace[H(Ct —E)(C - E)'H ] @ CR matrices discussed in [4], [10], [13], and [32] satisfy this
requirement or®. CR matrices are designed using either al-
gebraic number-theoretic constructions or by computer search
A =(C, — E))(C, — E))". (8) over compact parameterizations of unitary matrices.
We restrict ourselves to a complexitary constellation ro-
The rank ofA is < min(M, K). A is a Hermitian positive tation matrix®, as it is worth using complex unitary rotations

where

and||-|| - is the Frobenius norm. Define &d x M matrix A as

semi-definite matrix with square root whenM and/orN are large, and the constellation size is mod-
erate [32]. The specification of such@, which is suitable for
B=(C:—E). (9) pulse amplitude modulation (PAM) and QAM constellations

. _ andA = 2™, can be found in [32]
The eigenvalues oA ();'s) are non-negative real numbers.

Following the analysis given in [28], we obtain the following
upper bound on the average probability of error (averaged over
channel statistics)

1
VM

where F;; is the M x M inverse DFT matrix, and
a = exp(j2n/4M). For odd M, © is obtained through
PC,—E)<| —F——— (10) computer search over the unitary parameterization expressed
Hf\il (1 + 275) via Givens rotation matrices. Details of this construction can
be found in [32]. Note that in our context (which includes
If 7 is the rank ofA (= rank of B) and Ay, Az, ..., A are its  post-multiplication byCq?), the CR designs of® in [32]
nonzero eigenvalues, then at high SNR, (10) reducesto  need not be optimum from a coding gain viewpoint. However,
] _N extensive experimentation has shown that (13) yields good
: p \~NT coding gain relative to randomly sampl&j which also meets
P(C: = By < <1:[ Ai) (M) : 1) the ful diversity gain requirement almost surely. This will be
=t corroborated by simulations in Section VI.
Thus, a diversity gain N+ (rank criterionof ST code design)  2) Choice ofCy: From here on, we focus on thg < M
and a coding gain df [} _, )\i)l/” (determinant criteriorof ST case.Cy is chosen to be & x M Vandermonde matrix with
code design) are achieved. The diversity gain manifests itsgtineratorse’2*(m=1/M) je. ¢, = ¢/Zrm=1/M)k=1)
at high SNR. The maximum diversity of a system with fixedn = 1, ..., M. This way,Cy is a scaled semi-unitary matrix
(M, N, K)is N min(M, K), and this is achieved if and only if (CoCo® = MT), and it has full row rank, as required for
B has full rankmin(M, K) (= K if K < M)forall C; # E,. achieving maximum diversity gain. This gives the flexibility to
This criterion dictates the choice @ and (in part) the choice go from K = M (full diversity) to K = 1 (full rate) by simple
of Cp. truncation of the code matrix while maintaining maximum

61\4 = FMdiag(l,a,...,aM_l) (13)

N
1
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achievable diversity gain anywhere in between. Coupled with2) Vectorized Model:Using (15), we obtain from (4) the fol-
a unitary @, this choice ofCq, also assures that the transmitowing (noiseless) vectorized model:
power constraint is satisfied:

X,) =y/ 2 (Co ® H)d(D(®s,
E [trace(CH C,)] =E [trace(CiD*(®s,)D(O®s,)Ch) ] vedXs) \/;( 0 © H)d(D(®s,))

—E [trace(CY C;D*(@s,)D(®s,))] =,/ ﬁ(c0 ®H)®s,, t=1,...,T. (16)
& A 2 H
=K Z 0,.st| cem In the presence of noise, a number of decoders can be used to
m=1 extract the symbols transmitted from the received signal matrix.
M T This is done by writing the received matrix as
=K > E|\0.s
m=1
M Y x; 1= vedX,) = /ﬁ(c0 ®H)Os, + vedN,)
_ T H A
=K nz::l 0L (sisi”) (0’") =H.s, +vedN,), t=1,...,7. (17)
M
—K Z 6T ( gT)H An exhaustive search-based ML detection can be prohibitively
— m MM complex (exponential id?). An alternative issphere decoding
:KM_ (SD) [9], [31], which can achieve near ML performance at sig-

nificantly reduced complexity. Block minimum mean square
hered?. is themth fth ) ®. ande.. isth error—decision feedback equalization (MMSE-DFE) [11], [27]
whered,, is themth row of the unitary matrb®, andc,,, Isthe .5 5150 be used if we have to further reduce the complexity at

mth cplumn 0fCo. . . . , . the expense of performance.
An important consideration behind our choice@; is that In this paper, we use SD at the receiver end. It has been es-

this particular Vandermonde structure guarantees that the eqll.’é\b'lished that complexity of the original SD, fad transmit
alent channel matrix used in the decodifgfull rank foralmost .\ \as and a fixed search radiusOisVI6) [9], [31], inde-

every channel matrifl (cf. Sectg)n I1I-D and the Appendix). pendent of the constellation size. Efficient implementation re-
_ Note that forf_( =M ano_lCO = I our _S(_:h_eme reyerts _to duces the average complexity ¢ M*)[17]. In our simula-
linear constellation precoding with time-division muluplexmglio s, we will consider QAM or PSK constellations that are
of the antenna elements across the time slots of one code blgg Iéd to maintain the power constraEn[sHst] — M. Since
[32]. Howev_er, its rate is thgn only one.symbol per channel US$p works for QAM or PAM constellation; (which are carved
':stt\t‘v?)ri-l\—/\_/lilt?le;r iog;tilﬁlaet;ogop;%iogg\%d(le_(t:hF;) f(;ggebﬁn[;i]) df?om the cubic lattice with integer-valued coordinates), we scale
L ' o the channel matrif., by 1/(\/E[s;sf]) ands, by \/E[s;s}
trade off diversity for transmission rate. so that the signal vegtor no/vsl corr[esp(]))nds toa vector[con]sisting
of QAM or PAM symbols carved from this cubic lattice. In our
decoding scheme, sind#., ands; can be complex, we rewrite
We now discuss the decoding of the received signal matrike model in the following real-equivalent fofm
Assuming that the receiver has perfect CSI, we use a basic prop-
erty of the Khatri—Rao product (KRP) to perform coherent dg- Realx:) } _ [ Rea(H.q) —ImagXHeq)}
tection of the transmitted symbols. Imag(x;) ImagHey) Rea(Heq)
1) Khatri-Rao Product (KRP):Given two matrices [ Reals;) } [ RealveqN;)) } (18)
A(I x I')y andB(J x F) with the same number of columns, Imag(s;) ImagivedIN,)) |
the KRPA ® B is thelJ x F matrix defined as

C. Decoding Technique

AGB b b » D. Unique Linear Decodability
OB:=la@bi---ar @byl (14) In the Appendix, we show that the KRST codes have the

) o unique linear decodability property, i.e., the transmitted sym-
wherea is the fth column of A, similarly for b, and® de- s are guaranteed to be linearly recoverable in the absence of
notes the Kronecker product of the two column vectors. The)ise for aimost every channel matiik In the noiseless case,
KRP has the following key property [5]: the transmitted symbol vectsf can be recovered by

veq ADBT) = (B ® A)d(D) (15) . < \/% (Co 0 H) ®>Tvec X,) a9)

whereD is F' x I’ diagonal, ve¢) stacks the columns of its
argument, andi(-) extracts the diagonal of its argument an
constructs a column vector out of it.

here 1 denotes the matrix pseudo-inverse, provided
Vp/M(Cyq @H)@) is tall or square and has full column

rank M. Since® is a unitaryM x M matrix, it has full rank
3As we will shortly see, this is the Khatri—-Rao product@f§ and the actual
(random) channel matrikl. 4f & = a + jb, then Redlr) = «, and Imagz) = b
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M. (Co®H)isanN K x M matrix. We prove inthe Appendix for ¢ = 1,....I, 5 = 1,...,J,andk = 1,...,K. The
thatfor our particular choice ofCy, this KRP is full column three-way arrayX is expressed as a sum @& rank-one
rank for almost everH, providedNV K > M. Note that KRST three-way factors in the above equation. The rank of a

codes can work with as few as 1 receive antenrga i M. three-way arrayX is defined as the minimum number of
Unique linear decodability is important for the following tworank-one (three-way) components needed to decompase
reasons. The vectorsiy € C'*%, by € C/**, andc; € C**! are often

« The SD benefits from, and in fact the original SD alf€ferred to as loading vectors or score vectors or factor profiles

gorithm requires, unique linear decodability—that is, & the PARAFAC literature, depending on the context.

full column rank N.q x M., equivalent channel matrix ~Definean/ x I" matrixA, J x F'matrixB, andK x I’ ma-
[9], [31]. Briefly, when N., > M., (and the equiva- trix C with typical elementss; ¢, b; ¢, andcy 5, respectively.
lent channel matrix is full column rank), one works with-urthermore, defing x K matricesX;, I x K matricesY;,
an M.,-dimensional lattice embedded R+, whereas and [ x .J matricesZ; with corresponding typical elements
whenN,, < M,, (or the equivalent channel matrix is notX:(J; k) := Y;(i,k) := Zy(é,j) := i ;. Then, the model
full column rank), one works with projectionof this lat-  in (20) can be written in three equivalent ways:

tice ontoR <« The latter problem is more complex, and it

T
cannot be handled by the original SD; a conference-paper X; =BD;(A)C", i=1,....1 (21)
generalization of SD for this case appears in [8], but there Y; =AD;(B)C*, j=1,...,J (22)
are two drawbacks relative to the full column rank case: i) Z, =AD(C)BY, k=1,....K (23)

Complexity increases significantly (this issue is not elabo-
rated in the conference paper [8]); ii) performance is comvhereD;(A) is a diagonal matrix constructed out of ttle row
siderably worse compared with the full column rank casef A. Stacking the matrices in (21), we obtain

e Unique linear decodability enables computationally

simpler equalization, like nulling and cancelling, or Xi=1 BD,(A)
zero-forcing linear inverse in case ML or SD becomesy (srxr) ._ Xi—2 | | BDo(A) CT — (A ®B)CT
prohibitively complex. This too is a desirable property. T : o : o
Xi—r BD;(A)
E. Choice ofk (24)

Jvhere the superscripf 7 * %) means that the matrix is of size
JI x K, and thej-index (J goes first in the producfi) runs
faster than theé-index along its columns.

Given A € C*F r, :=rank of A = r iff it contains a

The choice ofK in KRST codes is dictated by the desire
rate-performance tradeoff, subject to the constrdinf > M.
To be more precise, the desired transmission katietermines

K throughR = (M/K)log, (1) bits/channel useprovided collection ofr linearly independent columns but no collection

the desired rate is achievable for integér > 1 satisfying ) : . o B
NK > M. IncaseN > M, we are free to choose any positiveOh + 1 linearly independent columnky := k-rank of A = k&

integer K. Either way, the resulting KRST code will yield full It every k c_olumns are Illnearly |nerendent, but either I,

. . . . or there exists a collection &f+ 1 linearly dependent columns
diversity for the givenM, N, and K, equal toN min(M, K). in A (ka < ra < min(I,F), ¥ A)
Alternatively, we may choosé for a given diversity order A =TA = 0 '

(slope at high SNR)V min(M, K'), again under the constraint A distinguishing fgature qf. the PARAFAC model 1S |t§
NK > M. unigueness. Under mild conditions, the model parameterization

is essentially unique, that isA, B, and C are identifiable
without rotational ambiguities. In particular, if
IV. BLIND CSI RECOVERY. PARAFAC ANALYSIS

A key benefit of KRST codes is their built-in blind CSI re-
covery capability. It is important to note that the encoding teckhen A, B, andC are unique up to common permutation and

nique remains the same as in the known CSI case discusg&inplex) scaling—counterscaling of columns [23], [25], [26].
in Section llI-A. The blind-KRST decoding technique makeg 5| three matrices have fult-ranks then

use of the blind identifiability properties of the parallel factor
(PARAFAC) model [6], [23], [25], [26]. min (7, F)+ min (J,F) + min (K, F) > 2F+2  (26)

ka+kp+kc>2F+2 (25)

A. PARAFAC is sufficient for identifiability.

When noisy observations ; . are given, the principle of al-
rnating least squares (ALS) can be used to fit the PARAFAC
Model in (20). The idea behind ALS is to update one matrix,
using least squares (LS) conditioned on previously obtained in-
terim estimates for the remaining matrices, and then proceed to
update the other matrices. This process is repeated until conver-
gence in least squares fit. A basic trilinear ALS (TALS) algo-

PARAFAC analysis is a common name for low-rank decon?—
" . . . : e
position of three- or higher dimensional arrays. Consider
I x J x K three-way arrayX with typical elementz; ; ;, and
the F-component trilinear decomposition

F

Tijr =3 i sbj s s (20)

F=1 STrue with probability 1 if drawn from a continuous distribution.
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rithm is presented in [25]. The TALS method is guaranteed tility can never hold for eitheK = 1 or N = 1, however.
converge monotonically. It is conceptually simple and providés addition, note that for small’, and depending on the size
good performance [6]. Least squares fitting of (24) (and ML paf the symbol constellation, there may be non-negligible prob-
rameter estimation when the noise is modeled as i.i.d. Gaussadnility of rank deficiency ofS. However, simulations indicate
and all other parameters are treated as deterministic unknowths) uniqueness often holds even with relatively srallrhis

amounts to is likely due to the fact that in our particular context, the matrix
. 9 Cy is known whereas in (25), all three matrices involved are
X1 BD.(A) assumed unknown. Hence, the derivation leading to (31) is, in a
min N : ct (27) sense, pessimistic, which counteracts the effects of sniller
AB.C : : ) ="
X; BD(A) The recovery oH is actually performed by fitting the model
F in an LS sense using TALS. A€ is known to the receiver,
whereX;, i = 1,..., I are the noisy slabs. From (27), the conWe only need to estimal andA = (®S)T’; hence, the condi-
ditional least squares update #ris tional least squares update step (28) is performed onlHfand
A, while keepingCy fixed during the iterations. This modified
EDl(K) ¥ X, TALS algorithm provides estimatdd and A. The knowledge
or = ) . (28) of Cog atthe receiver takes care of the permutation ambiguity in-
I N : herent in blind estimation. The scaling ambiguilf & HD,,
BD;(A) X1 whereD; is an arbitrary diagonal scaling matrix) that remains

can be taken care of by transmitting an identity matrix at the be-
where A and B denote the previously obtained estimates Qfinning of the transmission burst, i.e.,

A andB, respectively. The complete symmetry of the trilinear

model [cf. (20)] and data reshaping [cf. (21)—(23)] can be used P) T
to figure out corresponding conditional LS updates Aoland X(0;,:) =4/ 77 HCo" + No. (32)
B.
Applying the KRP property discussed in Section I1I-C using the

B. Blind-KRST Decoding Technique estimatedH, we have

The blind-KRST decoding technique is based on the fol-
lowing two-step scheme: First, estimate the channel matrix, agdo, -, I HD 1o + N
then, use this estimate to decode the transmitted signals. The

estimation of the channel matrix is done in two stages. First, a ~ _1
PARAFAC model is fitted to the datX,, ¢t = 1,...,7. This vedX( h1)) = \/ (CO QH)d(DS ) +vedNo).  (33)

is done as follows. LeX be a three-way array of dimensions

T x N x K, whose “slabs” are given by Now, an estimate dD_* is computed using the pseudo-inverse
of (Co ® H), as discussed for the coherent detection, yielding
)= /ﬁHDt(A)COT N, t=1,....T (29) 1; then, the final estimate of the channel is obtained:
H=HD (34)

where thel’ x M matrix A := (©S)?, S isanM x T matrix

whose columns are the vecteyst = 1,..., 7T, T'isthenumber  Once the channel matrix is estimated without any scaling

of slabs in the PARAFAC model, and we have used MATLABr permutation ambiguity, we can apply the decoding tech-

notation, wher&(t, :, :) denotes théth N x K slab ofX per- nique explained in the coherent detection case to estimate the

pendicular to the first (row) dimension. Then, the uniquenegainsmitted symbols. The complexity of PARAFAC (TALS) is

condition (25) translates to O(MNKT) per iteration. The typical number of PARAFAC
iterations as a function of SNR is as follows: Wh&h = 4,

ka +ku + ko, = kes)r +ku+ ko, 22M +2. (30) N =4, K = 4,and?l = 5, at SNR=5, 10, and 15, the average

number of iterations is 15, 11, and 7, respectively. Note that

Since the columns oH are drawn independently from@V  gjnce e fix the matrixCy, PARAFAC requires considerably
distribution, it has fullk-rank almost surely, an@o hask-rank  a\wer iterations than usual.

equal toK by construction. Sinc€® is square and full rank,
k@syr = M [26], providedsS is full row rank; this is true with
very high probability, provided’ is large enough. For example,
for M = 4, T = 30, and a BPSK constellation, where the prob- So far, we have assumed that the channel is time invariant.
ability of the matrix$ is rank deficient, is roughly?(10-). In practice, however, the channel is usually slowly varying with

V. CHANNEL TRACKING

Substituting in (30) yields f[ime. After initial blind acquisition usin_g PARAFAC analy;i;,
it makes sense to revert to computationally simpler decision-
min(N, M)+ K > M + 2. (31) directed channel tracking to follow minor channel variations,

without incurring the computational expense of blind estima-
Note that blind CSI recovery only requires as few as two receitien. This computationally attractive approach also serves to
antennas or as few as two time slots per code block; identifiarovide an updated scale reference for subsequent periodic blind
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re-estimation of the channel matrix. The PARAFAC analysis dﬁnew,Ls now replace# 4, and the procedure is repgated again
scribed in Section 1V-A forms the backbone of our proposesb that the channel is tracked continuously. Note Higt,, r.s

tracking technique. from (42) can now be used in place Bf,4 in (36) to get
Let us return to (29) and (32), which are reproduced here farbetter estimate of the transmitted symbol vestar;. This
convenience. vector estimate can again be used to update the last row of ma-
trix A in (38), which can then be used to get a better estimate
X(¢,:,2) :\/ZHDt(A)COT +N;, t=1,....T of the channel. This cyclic process can be performed iteratively
M until convergencé,but the main drawback is that SD has to be
X(0,:,:) :\/ZHCOT +No. performed dqri_n_g each cycle. This n_1akes the ovgrall iterative
M process prohibitively complex, especially for real-time applica-

) ] _ tion; hence, we do not advocate further iteration at this point,
Let H,q be the channel estimate obtained from these equatioggpecially for slowly varying channels.

If H,. is the new channel matrix at block ting& + 1), then

the corresponding received signal matrix is V1. SIMULATION RESULTS AND COMPARISONS

The proposed KRST codes are flexible for going from
full-rate codes to full-diversity codes. The fact that they per-
) ) form well at high rates prompts a comparison with the recently
At the receiver, we use the old channel estinHtg, to decode proposed LD codes [15]. KRST codes are also compared
the transmitted symbols by the coherent detection scheme, \@th ST-LCP codes [32] as both codes employ the CR matrix
apply SD to the following model: ©. The blind CSI recovery scheme is compared with the

DSTM scheme [18]-[20]. Throughout the simulations, gray
vedX(T+1,:,:) = 4 /ﬁ(co@ﬂold)egpr1 +ved Ny ). mapping is used to calculate the bit error rate (BER), and SD
is used at the receiver for KRST, LD, and ST-LCP codes. The
(36) enumeration-based differential ML receiver proposed in [18
This yields an estimat&r ;. Next, we update the matrik (cf. brop [18],

(29)) by shifting up the rows by 1, dropping the former first roleg] is employed for DSTM.
and inserting @s741)7 as the last row, i.e.,

X(T + 1, :) =4/ ﬁHnewD(GST_Fl)CQT =+ NT+1. (35)

A. KRSTM =4, N =4

Alt,)=At+1,), t=1,....(T-1) (37) Let us first look at the flexibility that KRST codes offer. We
A(T,)) =(®8741)7 (38) areinterested in producing codes that help in achieving a desired
tradeoff between rate and diversity performance. Consider the
then apply PARAFAC analysis to the three-way ar@ycon- case where we have four transmit and four receive antennas. For

structed as K (number of slots per code block) 1, we achieve full-rate,
and for K = 4, we achieve full-diversity. The symbols to be
Q(t,:,:) =X(t+1,:,:), t=1,...,T (39) transmitted are chosen from the QPSK constellation. The CR

matrix ® for M = 4 is given by [32]:
SinceCqy and the updated are fixed, only the third compo-
nent matrixH has to be estimated; therefore, TALS reduces to 1 ) 5 3
a simple LS problem. Recall (23): ©= ﬁF4d'ag(1’ @, a”) (43)

s

_ T
Zy = AD(C)BT, k=1,.. wherea = exp(j27/16). Co is chosen as described in Sec-

The compact model representation discussed in (24) corfen I1l-B2. K is the number of rows i Since the rest ofthe

sponding to the above set of equations is de3|gn_rema|ns tr_le same, rat_e-dlve_rsfc)_/ control through simple
truncation (selection oK) provides significant code design and

Zie1 AD,(C) adaptation flexibility.

Lo AD,(C) The SNR versus BER plot for various is given in Fig. 3.

. . BY =(C®A)B”. The simulation result is based on“lindependent random re-
alizations of the channel matri#d, each used fot0* channel
time slots. It is observed that as we go fréth= 1 (R = 8) to

(40) K = 4 (R = 2), performance improves as expected. An inter-
Following this approach of “matricization,” the three-way arra% t'_ b N t is that instead of using full-rat ' d ith
Q is matricized into & K x N matrix P. In the noiseless case, sting observation 1S that Instead of using fufl-rate codes wi
we obtain poor performance or using full-diversity codes with low rate, it
makes more sense to use codes that offer good performance at
P=(Co®AH". (41) reasonably high rates, like the codes for=2or K = 3ina
practical setting.

Z(IKxT) _ _

Zk:k’ ADK(C)

In the presence of noise, the LS estimatdhyf., is given by

- T 6Convergence in LS fit is guaranteed, as this is an ALS procedure; see the
Hyew s = (Co © A)TP) . (42) discussion in Section IV-A.
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M=4, N=4, QPSK, SD KRST v LD: M=2, N=2, KRST - K=1 (QPSK) / K=2 (16QAM), LD — K=2 (QPSK), SD

- LD
— KRST(K=1)
—% KRST(K=2)

0 2 4 5 3 10 12 14 16 18 20 0, 5 0 s 20

25
SNR [dB] SNR [dB]

Fig. 3. Khatri-Rao space-time codéd: = 4, N = 4, QPSK. Fig. 4. Comparison of KRST and LD code®f = 2, N = 2, KRST—K =
1 (QPSK/K = 2 (16QAM), LD—K = 2 (QPSK),R = 4.

B. KRST versusLDM =2, N =2

Linear dispersion (LD) codes [15] are linear block codes th
transmit substreams of data in linear combinations over spe
andtime. LD codes are capable of achieving high rates and ar ‘
fact optimized for maximum information rate. KRST codes ar 52| ...
linear block codes that are also capable of achieving high rat
but they aim for maximum diversity and blind identifiability. 10° ;:-

Consider the case where we have two transmit and two | :
ceive antennas. Two time slots are used per code block, i &1}
K = 2. In order to maintainR = 4, the symbols to be trans- :
mitted are chosen from a QPSK constellation for the LD coc 0k
(code design: [15, p. 31, egs. (31) and (34)]). For KRST code

we use 0%
® = L F, diag (1, a) @y
=—— iag (1, «
0 0 5 10 15 20 25 30
wherea = exp(j27/8). For KRST withK' = 2, the symbol SNR[dB]

constellation is 16QAM, whereas fd€ = 1, we use QPSK. ;5 comparison of KRST and LD codes = 3, N = 1, KRST—K =
The comparison between the two KRST codes and the LD cagdép—Ki = 6, QPSK,R = 2.
is given in Fig. 4. It is observed that KRST outperforms the LD

code at high SNR. the page. KRST usds = 3 in order to maintain the ratg = 2.

The LD code (code design: [15, p. 38, eq (39)]) with= 6 is
C. KRST versus LDAM = 3, N =1 used for comparison, as it gives better performance than the LD
One more comparison between KRST and LD codes is matiede withK” = 4 [15]. The comparisonis given in Fig. 5. Again,
here. In this case, we have three transmit antennas and oneatétigh SNR, the KRST code gives lower BER than the LD code.
ceive antenna. The symbols are chosen from QPSK constelliie KRST code offers full diversity¥ K = 3, whereas it can be
tion. Since we have an odd number of transmit antennas, sleown that the error matriB [cf. (9)] for the LD code is rank
have to use computer search to obtain the constellation rotat@teficientfors, = /1/2[1—j, —1—j, —1—4, 144, —1—j,—1—
matrix ® [32]. This @ is given by (45), shown at the bottom ofj] ands, = \/1/2[14j, —1—j, —14j, 1+j, =1+, —1—j]7.

0.6867 0.5133 — 0.11255 —0.4275 + 0.2643;
© = | —0.3578 — 0.3076] 0.6962 — 0.1720; —0.0110 — 0.5128; | . (45)
0.1895+0.51955  0.2418 — 0.3891] 0.6959
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=4, N=4, K=4, KRST - BPSK, DSTM - 8PSK

..................

Blind-KRST vs DSTM: M

—*— KRST(K=1)
-5~ KRST(K=2)
—~#%— KRST(K=3)
-6 KRST(K=4) |]

—— DSTM
— Blind-KRST
—©- Training

107 1 I s 1 I ]
0 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4

5
SNR [dB] SNR [dB]

Fig. 6. Comparison of KRST and ST-LCP coda$:= 4, N =4, R =4. Fig. 7. Comparison of blind-KRST and DSTM codé¢: =4, N =4, K =
4, blind-KRST—BPSK, DSTM—8PSKR = 1.

D. KRST versus ST-LCRY = 4, N =4 the channel remains constant for a very long time, which is usu-

A comparison between KRST codes and ST—linear constelly not the case in a practical setting. The KRST advantage is
lation precoding (ST-LCP) codes [32] is made as both cod#sat the blind receiver for KRST uses SD, which has lower com-
enjoy maximum diversity{ NV (K = M for ST-LCP), and both plexity compared with the enumeration-based differential ML
employ the CR matri®. If M = 4 andV =4, ST-LCP codes receiver employed in DSTM. The latter has an estimator-corre-
can achieveR = 4 if 16QAM symbols are transmitted. KRST lator interpretation and its complexity increases exponentially
codes can achieve the same rate udig= 1, 2, 3, or 4 and in M andR. Blind-KRST can achieve higher rates by simply
BPSK, QPSK, 8QAM, or 16QAM symbols, respectively. Thaelectingk = 2 or 3, whereas DSTM can achieve higher rates
CR matrix ® to be used is the same as the one used in Sexly by increasing the constellation size, which further increases
tion VI-A. It is observed from Fig. 6 that the KRST code withthe decoding complexity. A simpler near-ML receiver based on
K = 2 outperforms all the other codes and gains about 3 d&ktice decoding has recently been proposediagonalDSTM

over the ST-LCP code. codes in [7]. The performance of this algorithm is quite close to
ML, and its complexity is polynomial id4 andR. However, the
E. Blind CSI Recovery vs DSTM{ =4, N =4 DSTM codes used in this simulation are not diagonal (DSTM

i i I heref his simpl
The blind CSI recovery scheme is compared with differe c_odes are not diagonal in general), and therefore, this simpler

. : Igorithm cannot be used. Note that a constant channel is the
.t'al ST modulapon (DSTM) [18]-{20]. In order to have a MeaNteal scenario for DSTM; hence, we have the slight advantage
ingful comparison, we employ the same number of trans

d ) ; d maintain th te of t ng% DSTM over KRST in Fig. 7. When the channel varies con-
and receive antennas and maintain the same rate o ransrf?tLﬁiously even at a moderate rate (e.g., due to Doppler), the sit-

sion. SinceK = M in DSTM, we also useK = M for . S
. . - uation can be reversed; see, e.g., the results in Fig. 11, where
the KRST code. In this simulation, 1Gndependent random KRST clearly outperforms DSTM.

realizations ofH are used, and the channel is assumed to re
main constant for a dur.atlon of 1QOO block'-tlme sl.ots. Thg Cage gjind CSI Recovery: Number of Slabs

where the channel varies every time slot is considered in Sec- ] )

tion VI-H. Consider the case where we have four transmit and 1 "€ accuracy of our blind CSI recovery technique depends
four receive antennas. In order to maintain a fate 1, DSTM  ©N the number of slabs in the PARAFAC model. Consider the
has to use 8PSK constellation (code design: [20, table 3,858M = 4, N = 4, andK = 4. The transmitted symbols
166]), whereas KRST uses BPSK. Thirty slabs are used to3f€ selected from the BPSK constellation. Fig. 8 illustrates a
the PARAFAC model. A comparison of these two codes andEQmpa”S()n be“"’f’?” two different slab-sizés- 30 and7" =
training-based scheme is presented in Fig. 7. The training-based\0té thatl” = 5 is not appreciably worse thafi = 30 in
scheme first obtains a LS channel estimate based on trainfRgns of final BER. This suggests that the algorithm can handle
data of duration 500 block-time slots. This is followed by paygVen moderate mob|I|ty without significant degradation. Fig. 9
load KRST transmission for the remaining 500 block-time slotdustrates the same point fav/ = 4, N = 4, K = 3, BPSK,
where the channel remains constant. In order to maiftaia  @nd7?” =5, 10, and 30.

1, we transmit QPSK symbols during this time. The receiver
uses the LS channel estimate coupled with SD to detect fRe
transmitted symbols. Observe that all three designs give sim-The performance of the channel tracking scheme for slowly
ilar performance, but the training-based scheme assumes tlaying channels, which was discussed in Section V, is now

Channel Tracking
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Blind—KRST: M=4, N=4, K=4, BPSK, SD

5
SNR [dB)

Fig.8. Numberofslabsinblind-KRST = 4, N = 4,K = 4,T = 5(30),
BPSK.

Blind-KRST: M=4, N=4, K=3, BPSK
10 T T T T T

107 L L L L L L 1 L L

5 6 7 8 9 10
SNR [dB]

Fig. 9. Number of slabs in blind-KRSTW/ = 4, N = 4, K = 3,T =
5(10, 30), BPSK.
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Channel Tracking: M=4, N=4, K=3, QPSK
R H

£ Cn, Track |
s [ known

-6 1 L o ( L 1 L ! I
10 5 8 7 8 9 10
SNR [dB}

Fig. 10. Channeltracking/ =4, N = 4, K = 3, QPSK.

KRST - Channel Tracking vs DSTM: M
T B

0 1 2 3 4 5
SNR [dB]

Fig. 11. Comparison of KRST channel tracking and DSTM codéds= 4,
N =4, K =4, f; =0.001.

H. Time-Selective Fading Channél$ = 4, N = 4

compared with that of the coherent detection scheme that as€onsider the case when frequency-offset induced time-selec-
sumes perfect CSl at the receiver. Fig. 10 illustrates the compgye channels are present. These channels are allowed to vary as

ison for the case where we hal¢ = 4, N = 4, andK = 3.

fast as one symbol duration. The channel fronvitta transmit

The transmitted symbols are selected from the QPSK consteliatenna to theth receive antenna is modeled as (cf. e.g., [24])
tion. In this simulation, 10independent random realizations of

the channel matri¥l are used, and the channel taps are modi-

fied at each block-time instaptas

hm,,n (p) = hrn,n (p - 1)6j27rfd (46)

Ponn () = B n(0)e? 2 et (47)

where f; is the sum of the carrier frequency offset and the
Doppler shift at thexth receive antenna. We will employ the
KRST channel tracking scheme in this scenario and compare

where f; is the sum of the carrier frequency offset, and ththe result with that obtained using DSTM. Consider the case
Doppler shift at thenth receive antenna and is taken to bahereM =4, N = 4, andf,; = 0.001. Once again, rat& = 1
0.001. It is observed that the performance of the chanriglmaintained by using 8PSK for DSTM and BPSK for KRST.
tracking scheme degrades by only a few decibels relative to thés observed from Fig. 11 that KRST outperforms DSTM by

fully coherent case.

about 2 dB in this case.
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VII. CONCLUSIONS whose upper square part is nonsingular. Invoking the analytic

A novel linear space-time block coding technique based

except for a measure zero subsetdf7). [

the Khatri-Rao matrix product has been proposed. It can &
applied to any configuration of transmit and receive antennas
and any symbol constellation. The performance analysis and de-
sign criteria were described, and it has been shown that KRST
codes offer flexibility, which can be used to achieve full-rate or E%
full-diversity or desired rate-diversity tradeoffs in between these
two extremes. The proposed codes have attractive features like
guaranteed unique linear decodability and built-in blind channel®!
identifiability. KRST codes were compared with LD codes, and

it has been shown that KRST codes outperform LD codes af4]
high SNR. From the comparison with ST-LCP codes, it has
been observed that KRST codes achieve the same rate using[g]
lower order constellation, yielding better performance. The re-
sults show that the performance of the blind-KRST decoding(®!
scheme is comparable with that of DSTM, but KRST is simpler 7]
to decode optimally. The proposed decision-directed channel
tracking procedure offers a simple and effective alternative to[8]
continuous blind channel re-estimation, bringing the complexity

of maintaining CSI well under that of ML block decoding.
[9]

APPENDIX (10]
We will need the following well-known Lemma.
(11]
A. Lemma 1
[12]

Consider an analytic functiofi(x) of several variables =

[z1,-- .,a:n]T € C™. If fis nontrivial in the sense that there
existsxo € C" such thatf(xo) # 0, then the zero set of(x) (13]
Z:={x € C"|f(x) =0} [14]
is of measure (Lebesgue measureih) zero. A simple proof [15]
of this lemma is given in [22].
B. Proposition 1 [16]
If KN > M andC, is chosen to be & x M Van- [17]
dermonde matrix with generatorse?2=(m—1/M)  je
Chom = ¥ U/ME=1) oy — 1. M (as in Sec-
tion 11I-B2), thenrc,on = kc,om = M for almost every  [18]
H (where, for any given matriA, r4 = rank of A, and |1
ka = k-rank of A).
[20]
C. Proof
First, note thatCq ©® H andH & Cy are the same modulo [21]
a permutation of rows; henceg,on = THeC, - It SUffices to
show that the upper square partlf® Cy is nonsingular, i.e., [22]
its determinant is nonzero for almost evdidy This determi-
nant is a polynomial function of the entriesHfand, hence, is  [23]

analytic. It suffices to show that it is also nontrivial. This only
requires finding a specifi#l for which the said determinantis |5,
nonzero. The key idea is as follows. Sel&Etto be a Vander-
monde matrix with generatorg?~(K(m=L/M) ‘je h . =

2 (K(m—1)/M)(n—1) Thjs yields a Vandermonde Khatri-Rao [25]
productH ® Cg with generatorg’ 2~ =1/M) iy =1, ... M,

%%nction Lemmayc,ou = kco,ou = M for almost everyH
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