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Abstract—With the rapid growth of frequency-hopped (FH)
wireless networks, interference due to frequency collisions has
become one of the main performance-limiting challenges. This
paper proposes a novel multiuser detection method for joint hop
timing and frequency estimation, which is capable of unraveling
and demodulating multiple FH transmissions in the presence of
collisions and unknown hop patterns without retransmission. The
method is based on the principle of dynamic programming (DP)
coupled with two-dimensional harmonic retrieval (2-D HR) or
low-rank trilinear decomposition, and it remains operational even
with multiple unknown hop rates, frequency offsets, and asyn-
chronism. The model is based on frequency-shift keying (FSK)
and phase-shift keying (PSK) modulation, but the algorithms
are also evaluated with Gaussian minimum-shift keying (GMSK)
modulation and shown to be robust.

Index Terms—Collision resolution, frequency hopping, har-
monic retrieval (HR), multiuser detection, timing estimation.

I. INTRODUCTION

FREQUENCY-HOPPED spread spectrum (FHSS) has been
widely studied and mainly used for military applications,

such as in the single-channel ground and airborne radio system
(SINCGARS), due to its low probability of detection and
interception, power-control issues in a peer-to-peer setting, and
its inherent robustness to near–far effects [26]. Recently, it
has been adopted in various types of wireless networks, for
example, in home area network (HAN) and Bluetooth personal
area network (PAN). With the increasing popularity of wireless
networking, multiple networks are likely to coexist in a phys-
ical environment, especially in dense business and financial
districts. Without coordination among coexisting FH networks,
interference due to frequency collisions can become a major
performance-limiting factor [13]. Interference also comes from
other legitimate users in the 2.4-GHz band, such as cordless
telephones and microwave ovens. When collisions occur, the

Manuscript received April 19, 2004; revised September 9, 2004; accepted
October 22, 2004. The editor coordinating the review of this paper and
approving it for publication is V. K. Bhargava. This work was supported by
Army Research Office (ARO) DAAD19-03-1-0228 and the Army Research
Laboratory (ARL) Communications & Networks Collaborative Technology
Alliance (CTA). Earlier versions of parts of this paper appeared in Proceedings
of the ICASSP 2003 and Proceedings of the SPAWC 2003.

X. Liu is with the Department of Electrical and Computer Engineering,
University of Louisville, Louisville, KY 40292 USA (e-mail: x.liu@louisville.
edu).

N. D. Sidiropoulos is with the Department of Electronic and Computer
Engineering, Technical University of Crete, 73100 Chania—Crete, Greece
(e-mail: nikos@telecom.tuc.gr).

A. Swami is with the Army Research Lab, AMSRD-ARL-CI-CN, Adelphi,
MD 20783 USA (e-mail: a.swami@ieee.org).

Digital Object Identifier 10.1109/TWC.2005.858006

received packets need to be discarded without recovering data.
Subsequent retransmissions possibly induce new collisions,
hence, throughput decreases and delay can become excessive.
Relying on recent advances in the theory of multidimensional
harmonic and low-rank analysis, and its successful applications
in signal processing [15], [21], this paper develops a new
approach to jointly estimate hop timing and frequencies of
multiple FH signals in the presence of collisions, without the
knowledge of their hop sequences or hop rates, and thus resolve
collisions without retransmission.

Partial collisions can be overcome to a certain extent, using
forward error correction (FEC) and interleaving (albeit at the
cost of complexity, latency, and rate). Our approach is comple-
mentary to the traditional FEC schemes in that it addresses a
more challenging problem wherein FEC is not viable. In the
intercept mode, the receiver does not have knowledge of hop
codes (or even synchronization), and FEC (even if the FEC code
is assumed to be known) is useless. If the hop code and timing
of a user of interest are known, and the system is lightly loaded
(collisions are rare), FEC may be sufficient. However, FEC
protection has been shown to break down in moderately loaded
systems [28], whereas the proposed approach can resolve full
collisions.

A rotational-invariance approach to collision resolution has
been proposed in [31] for random access networks. The ap-
proach relies on simultaneous retransmission of collided pack-
ets. Hence, it is impossible to implement across uncoordinated
FH networks. Several papers have been published on the subject
of (joint) multiuser detection for FH systems, e.g., [6] and [17].
These assume, among other things, that the hop patterns of all
users are known to the receiver, hence clearly are not applicable
in the context of multiple noncooperative FH networks where
hop patterns and timing of interfering users are unknown. An
algorithm is proposed in [30] for blind estimation of the hop
pattern of a single user, treating the remaining users as white
Gaussian interference. This technique is conceptually simple,
but stakes no identifiability claims. In addition, the method in
[30] assumes perfect channel knowledge and only addresses the
case of slow FH systems.

Without assuming knowledge of the hop patterns, several
methods have been proposed for blind or semi-blind hop timing
and frequency estimation. For example, assuming known hop
rate, channelized receivers have been proposed for semi-blind
hop-timing estimation (knowledge of frequency channelization
is required), e.g., in [2] and [22]. However, the performance
of those receivers degrades rapidly if the channelization is
imperfect, or users have different hop rates. In [16], a two-step
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scheme was developed for blind direction-of-arrival (DOA),
hop timing, and frequency estimation of multiple FH signals.
It does not rely on channelization and hence, is robust to
frequency offset. However, it involves first detecting a hop-free
data subset, and achieves single-user tracking after multiuser
separation through beamforming. Detecting such a hop-free
subset is difficult and unreliable at high hop rates, in the
presence of collisions, under low signal-to-noise ratio (SNR),
or combinations thereof. For this reason, it is also of interest
to directly solve the joint multiuser hop-timing detection and
carrier-estimation problem.

The multiuser detection method proposed in this paper is
based on the principle of dynamic programming (DP) coupled
with two-dimensional harmonic retrieval (2-D HR). If a hop-
free dataset were available, one could model the signal as a mix-
ture of (modulated) complex harmonics. Cast in matrix form,
such a signal has a Vandermonde structure in the time domain.
In addition, the use of a uniform linear array (ULA) induces
the Vandermonde structure in the spatial domain (assuming
no mutual coupling of the antenna elements). Joint DOA and
hop-frequency estimation has been proposed before, e.g., in
[11] and [29]. Here, we exploit the Vandermonde structure as
well; more importantly, we use a 2-D HR algorithm that draws
upon the rich identifiability and near-optimality results in [14],
and without assuming a hop-free subset of data. We develop a
DP algorithm to implement a joint maximum-likelihood (ML)
estimator that yields estimates of hop timing as well. Each user
may have different hop timing and rate, and frequencies may be
chosen from different candidate sets.

The paper is organized as follows. We formulate the prob-
lem in Section II. In Section III, we describe the joint
timing-and-frequency estimation method, i.e., DP and 2-D HR
(DP-2DHR). Extensions to the cases of multipath and 2-D
antenna arrays are treated in Section IV. Simulation results
are given in Section V. Some notational conventions used in
this paper: AT, A∗, AH, and A† are the transpose, complex
conjugate, conjugate transpose, and pseudoinverse of matrix A;
A � B is the Khatri–Rao (columnwise Kronecker) product of
A ∈ C

I×F and B ∈ C
J×F ; and ‖ · ‖F is the Frobenius norm.

II. PROBLEM FORMULATION

The scenario under consideration is shown in Fig. 1. Multiple
uncoordinated FH networks are closely located with overlapped
basic service areas (BSAs). Each network consists of one
(or more) access points (APs) and associated wireless stations.
Suppose AP1 is the receiver under study, and signals from d
users are received at AP1, each from a nominal DOA with
negligible angle spread. Some of the users are associated with
networks of AP2 and AP3 though they are within the BSA of
AP1, for example, the (d − 1)th and dth users in Fig. 1. AP1
does not have knowledge of the hop pattern and timing of these
users.

The AP is assumed to be equipped with a ULA of M anten-
nas with baseline separation ∆ wavelengths. The array steering
vector in response to a signal from direction α is a(θ) =
[1 θ · · · θM−1]T, where θ = ej2π∆sin(α). The received signal
is sampled at a sampling rate of 1/T (T is normalized to 1),

Fig. 1. Multiple coexisting FH wireless networks.

and the M × 1 signal vector collected at the ULA output at
sampling time n can be expressed as

x(n) =
d∑

r=1

a
(
θ(p)

r

)
β(p)

r sr(n) + w(n) (1)

where sr(n) = ejω
(p)
r n, and ω

(p)
r is the frequency of the trans-

mitted signal from the rth user during its pth hop. Note that
the baseline separation ∆ (measured in wavelength units) is
frequency dependent, hence so are the steering vectors. For
notational clarity, sometimes we do not explicitly denote this
dependence as long as it is clear from the context. The trans-
mitted signals can be fast frequency hopping (FSH) or slow
(SFH), with frequency-shift keying (FSK) or linear modulation
[e.g., phase-shift keying (PSK) or quadratic-amplitude modula-
tion (QAM) can also be accommodated]. β

(p)
r is the complex

path loss for the rth user during its pth hop that collects the
(frequency-dependent) channel attenuation; the signal’s initial
phase φ

(p)
r is also absorbed into β

(p)
r . Here, the carrier shifts due

to hopping or symbol modulation are treated as conceptually
equivalent, albeit of different magnitude. w(n) is complex
white Gaussian noise with variance σ2. Suppose N samples
(snapshots) are collected at the array output, then the received
data matrix can be written as X = [x(0) · · · x(N − 1)].

Our objective is to estimate hop timing (i.e., hop instants)
and hop-frequency sequences of all transmitted signals from X,
in the presence of possible collisions in some time segments,
without the knowledge of users’ hop patterns or hop rates;
thus, collisions may be resolved and symbols may be demodu-
lated correctly without retransmission.

In model (1), we assume a single-path transmitter–receiver
propagation for each user. In Section IV, the model is gen-
eralized to incorporate multipath propagations with small de-
lay spread, as encountered in indoor wireless environments
[5], [20], [23]. It will also be shown that the algorithm de-
veloped in Section III is able to cope with the generalized
multipath model. We further assume that the number of users
(and, in a multipath scenario, the total number of paths for all
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Fig. 2. FH signals transmitted from two users.

users) has already been estimated by an appropriate detection
method, such as rank (see e.g., [9]) or information-theoretic
criteria (e.g., Akaike Information Criterion (AIC) [1], minimum
description length (MDL) [18], and MDL for coherent signals
[27]). The effect of model-order mismatch will be explored in
the simulations.

III. JOINT HOP TIMING AND FREQUENCY ESTIMATION

For simplicity of exposition, let us focus on an FH system
where there are two active users. As shown in Fig. 2, the
transmitted signals s1 and s2 may have different hop rates
and hop timing, and ni, i = 0, . . . , K − 1, are the hop instants
(n0 = 0 and nK = N by convention). We assume that within
one received data block, the total number of hops for both users
is bounded above by K − 1 (such a bound could be deduced
from the spectrogram of the data, and need not be tight).

Between any two systemwide consecutive hop instants, e.g.,
ni and ni+1, there are only two temporal frequencies in-
volved. During such a time segment, the received data may be
written as

Xi = [x(ni) · · · x(ni+1 − 1)] = AiBiST
i + Wi (2)

where Ai = [a(θ(p)
1 ) a(θ(q)

2 )], Bi = diag(β(p)
1 β

(q)
2 ), and the

subscript i is a time index indicating that the time segment is
delimited between ni and ni+1 − 1, i.e., the ith systemwide
dwell. In (2), the signal matrix Si is defined as

Si =
[

ejω
(p)
1 ni ejω

(p)
1 (ni+1) · · · ejω

(p)
1 (ni+1−1)

ejω
(q)
2 ni ejω

(q)
2 (ni+1) · · · ejω

(q)
2 (ni+1−1)

]T

and Wi is the corresponding noise matrix. Here, we assume
users 1 and 2 are in their pth and qth hops, respectively, during
this time segment, and a(θ(p)

1 ) and a(θ(q)
2 ) are the antenna steer-

ing vectors corresponding to ω
(p)
1 and ω

(q)
2 , respectively. Since

both Ai and Si are Vandermonde matrices, the estimation of
DOAs and frequencies from Xi in (2) is, in fact, a 2-D constant-
modulus HR problem, and there are two frequency components
along each of the spatial and temporal dimensions. If d users are
active in the system, a similar 2-D harmonic-mixture model can
be obtained except that the number of frequency components
in such a time segment along each dimension is d. Recently,
improved identifiability results and algorithms regarding 2-D
HR have been developed [14], [15]. These are summarized
as follows.

A. 2-D Harmonic Retrieval (2-D HR)

Constant-modulus 2-D HR has a wide range of applications,
e.g., in sensor-array processing, wireless communications, and
radar. In general terms, the 2-D constant-modulus HR prob-
lem can be stated as follows: Given a mixture of F 2-D
exponentials

xg,l =
F∑

f=1

cfejωf (g−1)ejνf (l−1) (3)

for g = 1, . . . , G, and l = 1, . . . , L, where ωf , νf ∈ Π
with Π := (−π, π], and cf ∈ C, find the parameter triples
(ωf , νf , cf ), for f = 1, . . . , F . An important problem associ-
ated with 2-D HR is the determination of the maximum number
of harmonics that can be resolved from a given G × L sample
in the noiseless case, which is an identifiability issue. The
following statistical result is the most relaxed identifiability
condition for 2-D HR to date [15].
Theorem 1: Given a sum of F 2-D undamped exponen-

tials as in (3), for g = 1, . . . , G ≥ 3, and l = 1, . . . , L ≥ 3,
the parameter triples (ωf , νf , cf ), f = 1, . . . , F , are PL(Π2F )
almost surely unique, where PL(Π2F ), the distribution used to
draw the 2F frequencies (ωf , νf ), f = 1, . . . , F , is assumed to
be continuous with respect to the Lebesgue measure in Π2F ,
provided that F ≤ �G/2��L/2� [15].

In the context of our model in (2), Theorem 1 implies that
for the given data block, if d ≤ �M/2��(ni+1 − ni)/2�, then
DOAs and carrier frequencies of the d users can be uniquely
recovered from Xi. Note that according to the identifiability
theorem, it is possible to uniquely recover the parameters even
when the number of users is much larger than the number
of antenna elements. Further note that Theorem 1 demands
M ≥ 3 antennas, and at least three samples per hop-free seg-
ment, thus, at least three samples per symbol for SFH, or three
samples per hop for FFH. We remark that, for a single 2-D
harmonic, it is possible to recover the associated parameters
even with two samples per dimension. In certain cases, it is
also possible to recover the parameters of a mixture of several
2-D harmonics with only two samples along one dimension;
however, proving a general identifiability result for this case is
complicated, and this is the reason for the restriction of at least
three samples along both dimensions in Theorem 1. We refer
the reader to [15] and references therein for further information
on this issue. Finally, note that, since the receiver needs to cover
the entire band, the sampling rate should satisfy the Nyquist
condition for the entire system bandwidth rather than the (much
narrower) bandwidth of a single frequency-hop bin.

B. The Multidimensional-Folding (MDF) Algorithm

A variety of techniques have been developed for 2-D HR,
e.g., in [4], [8], [12], and [14]. Among them, the MDF algorithm
[14] can achieve the identifiability bound given by Theorem 1.
For F small relative to the identifiability bound in Theorem 1,
and moderate SNR and above, its performance is near-optimal,
i.e., the covariance of the MDF estimates is close to the
Cramér–Rao bound (CRB). Furthermore, MDF can resolve 2-D
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harmonic mixtures containing identical frequencies along one
dimension [14]; hence, it can deal with frequency collisions.

Given (3), we may define X ∈ C
G×L with X(g, l) =

xg,l, A ∈ C
G×F with A(g, f) = ejωf (g−1), B ∈ C

L×F with
B(l, f) = ejνf (l−1), and a diagonal matrix C ∈ C

F×F with
C(f, f) = cf . Then, the 2-D harmonic mixture in (3) can be
written in matrix form (in the noisy case): X = ACBT + W,
where W is a white complex Gaussian-noise matrix. It is
clear that (2) is of this form. The procedure for estimating
(ωf , νf , cf ), f = 1, . . . , F , from X by the MDF algorithm is
summarized below [14]

1) Let G1 = G2 = (G + 1)/2 if G is odd, or G1 = G/2 and
G2 = (G + 2)/2 if G is even, and similarly choose L1

and L2 from L. Given X, define a 2-D smoothed data
matrix X̃ ∈ C

G1L1×G2L2 with typical element

x̃u,v = xn1+n2−1,m1+m2−1 (4)

for 1 ≤ ni ≤ Gi, 1 ≤ mi ≤ Li, and i = 1, 2, where
u = (n1 − 1)L1 + m1, and v = (n2 − 1)L2 + m2. It
can be shown that the resulting matrix is X̃ = (A1 �
B1)C(A2 � B2)T + W̃, where Ai is a submatrix of A
consisting of its first Gi rows, and similar for Bi, with i =
1, 2 [15]. W̃ is the corresponding 2-D smoothed noise
matrix. The Khatri–Rao product of two Vandermonde
matrices has the property of almost-sure full rank. Hence,
under the identifiability condition in Theorem 1, X̃ is of
rank F almost surely, even if G < F or L < F [15].

2) Let Y = JX∗J, where J is the permutation matrix with
1’s on its main antidiagonal. Next, we construct a matrix
Ỹ ∈ C

G1L1×G2L2 from Y, following the same procedure
used for the construction of X̃ from X. This is also known
as “forward–backward averaging.”

3) Compute the following singular value decomposition:

[
X̃
Ỹ

]
=

[
UG1L1×F

1

UG1L1×F
2

]
ΣF×F (VG2L2×F )H. (5)

4) Compute the eigenvectors T of (U1)†U2. In the noiseless
case, U1T = (A1 � B1)Π, where Π is a nonsingular
(column) permutation and scaling matrix that carries over
from the solution of the eigenvalue problem (one can
clearly reorder and scale the eigenvectors) [15]. This
is not an issue, however, because ωf and νf appear in
the same column of (A1 � B1)Π (albeit not necessarily
in column f , due to the arbitrary permutation) and are
thus automatically paired; and arbitrary nonzero column
scaling is immaterial, because the sought frequencies can
be obtained by dividing suitably chosen elements of the
said column. In the noisy case, the rich structure of the
Khatri–Rao product of Vandermonde matrices can be
exploited to average several point estimates of (ωf , νf ).
After the 2-D frequencies are estimated, estimates of
the associated complex amplitudes can be obtained by
solving a simple linear least squares problem.

C. Joint Timing and Frequency Estimation: DP-2DHR

The key idea behind our proposed method of joint hop timing
and frequency estimation is that between any two hypothesized
systemwide hops, the data follow a 2-D harmonic model.
Hence, for a hypothesized set of hops (that is, including all
hops of all users in the system), 2-D HR methods can be used
to estimate model parameters, and subsequently, model fit can
be calculated. Best estimates are obtained when model fit is
maximized. If one operates under an upper bound on the total
(systemwide) number of hops, then system stage can be defined
as the number of allowable hops, and state can be defined as
the hop instant, hence, DP can be used to find the optimal
hop sequence and associated model parameters per dwell. Note
that this is different from assuming a bound on the number of
hops on a per-user basis. The reason is that the computational
complexity associated with the latter approach is exponential in
the number of cochannel users. With d users and a budget of
K − 1 hops, define

n = [n1 · · · nK−1]

α =
[
α

(0)
1 · · · α

(K−1)
1 · · · α

(0)
d . . . α

(K−1)
d

]

β =
[
β

(0)
1 · · · β

(K−1)
1 . . . β

(0)
d . . . β

(K−1)
d

]

ω =
[
ω

(0)
1 . . . ω

(K−1)
1 . . . ω

(0)
d . . . ω

(K−1)
d

]

to be the vectors of hop timing, DOAs, complex frequency-
dependent attenuations, and hop frequencies. Joint ML estima-
tion of n, α, β, and ω from X amounts to minimizing

J(n̂, α̂, β̂, ω̂) =
K−1∑
i=0

‖Xi − X̂i‖
2

F (6)

over n̂, α̂, β̂, ω̂, where X̂i is the reconstructed 2-D harmonic
mixture based on ML parameter estimates (DOAs, complex
amplitudes, and carrier frequencies), obtained in each time
segment defined by hypothesized n̂i and n̂i+1, assuming a
2-D harmonic-mixture model for the received data during this
segment. Since K will typically be higher than the true number
of hops in the available samples, we include a “parking stage” in
the DP program to account for the possibility of unused hops.
In the presence of noise, however, DP will typically use any
extra hops available to track minor noise-induced variations.
Such variations can be relatively easily detected after DP, for
frequencies before and after such hops will be approximately
equal.

In practice, the ML estimates are approximated by applying
the MDF algorithm to (2). The performance of the MDF
algorithm is close to the CRB (and thus close to ML) only at
relatively high SNR, and small rank relative to identifiability
conditions. Thus, MDF only approximates the ML estimates,
and the degree of approximation depends on the temporal sam-
ple length between two systemwide hops. The reasons that we
use MDF are many: computational-complexity considerations
(ML requires iterations and perhaps several initializations to
avoid local minima), ability to resolve the signal parameters



LIU et al.: HOP TIMING AND FREQUENCY ESTIMATION FOR COLLISION RESOLUTION IN FH NETWORKS 3067

when there are identical frequencies along one dimension, and
good performance. However, MDF is not ML; for this reason,
the DP-MDF algorithm is not ML, but an approximation of ML.

From the MDF estimates, we form

x̂(n) =
d∑

r=1

a(θ̂r)β̂rejω̂rn (7)

for ni ≤ n < ni+1; here, θ̂r = ej2π∆sin(α̂r), and the matrix X̂i

is constructed from x̂(n) in the same way that we constructed
Xi in (2). Define Λi[ni, ni+1 − 1], for 0 ≤ i ≤ K − 1, as the
cost function for the time segment ni ≤ n < ni+1

Λi[ni, ni+1 − 1] = ‖Xi − X̂i‖
2

F. (8)

Furthermore, to solve the minimization problem in (6) by DP,
we define

Γk(L) = min
n1,...,nk−1

n0=0,nk=L+1

k−1∑
i=0

Λi[ni, ni+1 − 1] (9)

where 0 < n1 < · · · < nk−1 < L. Equation (9) can be viewed
as the minimization problem of finding the best fit for a subset
of the data of size M × (L + 1) when a total number of
k − 1 hops is allowed. Hence, ΓK(N − 1) is the minimum of
J(n̂, α̂, ω̂, φ̂). From (9), a recursion for the minimum can be
developed as

Γk(L) = min
nk−1

(Γk−1(nk−1 − 1) + Λk−1[nk−1, L]) . (10)

This says that for a data matrix of size M × (L + 1), the
minimum error for k segments (i.e., k − 1 hop instants) is the
minimum error for the first k − 1 segments that end at n =
nk−1 − 1, and the error contributed by the last segment from
n = nk−1 to n = L. The solution of the minimization of (6) is
for k = K and L = N − 1, which yields the joint estimates of
hop timing, DOAs, frequencies, and amplitudes of all users.

Assuming that the minimum length of a segment is three
samples (since it is impossible to obtain valid frequency esti-
mates from less than three samples using the MDF algorithm;
see also Theorem 1), the procedure to compute the solution
by the DP-2DHR algorithm is summarized in Table I. Note
that frequencies and complex amplitudes of different segments
pertaining to a particular user can be associated via their cor-
responding DOA parameters, since, for a single segment, fre-
quency and DOA parameters pertaining to one user are paired
up automatically by the MDF algorithm. Depending on dif-
ferent transmission schemes, the application of the DP-2DHR
method may slightly vary as described in the following cases.

1) SFH with M -ary FSK modulation: Frequency changes
due to baseband modulation are usually much smaller
than those due to carrier hopping. Hence, symbol rate
and hop rate can be obtained from the result of DP, and
consequently, symbol recovery is possible.

2) SFH with M -ary PSK or M -ary QAM modulation: Dur-
ing one hop dwell, frequency is constant, but the complex
amplitudes are different from symbol to symbol due to
modulation (recall that for one hop dwell, the effect of

TABLE I
THE DP-2DHR ALGORITHM

channel on the complex amplitudes is constant). Hop
timing can be detected from frequency change. Hence,
symbol rate and hop rate are distinguishable from the
result of DP.

3) SFH with GMSK modulation: A GMSK signal is not a
pure exponential in one symbol period. However, nar-
rowband GMSK can be well approximated by a pure
exponential for our purpose. The robustness of the DP-
2DHR method is tested for this case in Section V.

4) FFH: The DP-2DHR method is applicable for hop timing
and hop-frequency-sequence estimation. However, addi-
tional information is needed for symbol detection, e.g.,
symbol period and symbol synchronization are required
since the DP-2DHR can only provide chip synchroniza-
tion in this case.

In practical systems, the number of users is much less
than the number of time samples, and the number of antenna
elements usually ranges from 3 to 8. It can be shown that a
good estimate of the complexity of the DP-2DHR algorithm
is O(KN5). There are several ways that this complexity can
be reduced: 1) It is only during the initial acquisition period
that the full complexity of the blind algorithm is needed. If
frequencies hop at a regular rate, hop timing and hop period
can be estimated by applying the DP-2DHR algorithm to a
relatively short portion of a long data record, while frequency
estimation for the remaining data can be accomplished by
applying the MDF algorithm to predecided hop-free data blocks
delimited by systemwide adjacent hop instants. This will reduce
the complexity significantly. 2) The DP-2DHR algorithm may
be simplified using standard approaches of reduced-complexity
Viterbi decoding, such as path pruning based on metric thresh-
olding, early path merging, etc. These will of course incur
a performance loss, but if, e.g., the truncation parameter is
appropriately chosen, the loss will be small. 3) If one has a
reasonably good idea about the hop rates, the problem can be
much simplified. If the hop code and hop timing of a user of
interest are known, then one can dehop and obtain a model with
much reduced noise and interference, since only interferers
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who collided with the particular user of interest within the
observation interval will remain in the dehopped signal; and
the receiver can cut down its bandwidth to the hopping-bin
bandwidth in this case. 4) As a further alternative, simpler
frequency-estimation techniques can be used in place of 2-D
MDF. Clearly, there are many tradeoffs one may pursue.

In the development of the DP-2DHR, signal bandwidth is
assumed to be known. In a practical blind-estimation scenario,
the receiver may also lack knowledge of the signal bandwidth.
Relative to the other unknowns (hop patterns, timing, and
rates), it is simpler for the receiver to estimate the compound
signal bandwidth, e.g., via energy detection. However, due
to sampling-rate and noise-power considerations, an intercept
receiver may only observe part of the spread bandwidth. In
this case, the performance of DP-2DHR will be degraded
due to bandwidth mismatch because users may hop in and
out of the observed band, making it difficult to track across
hops. Identifiability issues also become much more complicated
in the presence of bandwidth mismatch, due to model-order
variations.

IV. EXTENSION OF DP-2DHR

We now consider two interesting extensions of the results of
Section III: First, the scenario where the signals are subject to
multipath fading, and next, a case where multiple invariance
(MI) arrays are available.

A. Multipath Channels With Small Delay Spread

The DP-2DHR method developed in Section III assumes
single-path transmitter–receiver propagation for each FH user.
When the signal bandwidth is greater than the channel-
coherence bandwidth, channel effects due to multipath propa-
gation cannot be ignored. Multipath reflections create fictitious
sources in the spatial dimension, as well as unknown delay
spread in the temporal dimension. Few techniques can be found
in the literature on blind parameter estimation for FH signals
in multipath channels, e.g., [7], which assumes a fixed but
unknown header in each packet of the single FH user. In this
section, we show that the DP-2DHR method can be extended to
blindly estimate hop timing and frequency of multiple FH users
in multipath channels with unknown but small delay spread.

Consider again the scenario shown in Fig. 1, where signals
from d users are received at AP1. Suppose the signal of the rth
user arrives at the ULA from Lr distinct paths due to multi-
path propagation, each with DOA αrl (correspondingly, spatial
frequency θrl), path attenuation βrl, and time delay τrl, where
l = 1, . . . , Lr. At sampling time nT (T is normalized to 1),
the baseband representation of the M × 1 received-signal vec-
tor at the ULA output is

x(n) =
d∑

r=1

Lr∑
l=1

a
(
θ
(p)
rl

)
β

(p)
rl sr(n − τrl) + w(n)

=
d∑

r=1

Lr∑
l=1

a
(
θ
(p)
rl

)
β̃

(p)
rl ejω

(p)
r n + w(n) (11)

for n = 0, . . . , N − 1, where β̃
(p)
rl = β

(p)
rl ejω

(p)
r τrl . Here, we

assume that the delay spread for a given user is small so that
time delay can be approximated by phase shift. Various channel
measurements have shown that in an indoor environment the
root mean square (rms) delay spread usually ranges from 20
to 50 ns [5], [20], compared to a maximum symbol rate of
2 Msps in 802.11 FHSS or Bluetooth. It has also been observed
that the multipath arrivals group in clusters not only in time
(e.g., one or two clusters as measured in an office building [20])
but also in angle (e.g., two to five clusters as measured in two
university buildings [23]). Therefore, if we use the maximum-
power multipath in each cluster to represent that cluster, then
(11) incorporates a “specular” multipath model (few paths,
parameterized by DOA and path loss with small delay spread),
and is reasonable for an indoor environment.

Between any two systemwide consecutive hop instants, e.g.,
ni and ni+1, the received data can be expressed in matrix form
Xi = AiBiST

i + Wi, which is a 2-D harmonic-mixture model
that is essentially the same as (2), with the difference that
the number of frequency components in such a time segment
along each dimension is

∑
Lr. Some frequency components

in the time dimension are identical due to multipath reflection,
but they can be dealt with by the MDF algorithm. Hence,
DP-2DHR can be applied as before for joint hop timing and
frequency estimation.

Note that frequencies and complex amplitudes of different
segments pertaining to a particular path can be associated
via their corresponding DOA parameters, since for a single
segment, frequency, amplitude, and DOA parameters pertaining
to one path are paired up automatically by the MDF algorithm.
In addition, different paths pertaining to a particular user will
result in different DOAs but identical hop-frequency sequence
and hop timing (recall that time delay is treated as phase shift),
hence, paths can be associated with users by hop sequences,
which is a clustering problem and can be solved, e.g., by calcu-
lating the pairwise distance among all recovered hop sequences.

Notice that blind multiuser detection and identifiability
analysis is more complicated in the presence of multipath with
large delay spread.

B. MI Sensor Arrays

The principle of DP-2DHR can be extended to jointly es-
timate 2-D DOA (azimuth and elevation angles), hop timing,
and frequency of multiple FH transmissions using an antenna
array possessing MIs. An MI sensor array is composed of
multiple identical subarrays displaced in the same or different
directions. Several methods have been proposed for direction
finding and/or other parameter estimation using MI sensor ar-
rays, e.g., in [21], [24], [25], and [32]. An important assumption
of these methods is that the incoming signals are narrowband,
so that the propagation delay of the signals from one subarray
to another can be approximated by phase shift. However, if
the FH system under consideration is a wideband system, then
the inherent frequency variability poses special difficulties for
signal-parameter estimation, due to the fact that the phase
shifts among subarrays are (wideband) frequency dependent.
Nevertheless, these methods can still be applied to individual
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Fig. 3. A sensor array composed of overlapping subarrays.

Fig. 4. DP-2DHR: hop timing, frequency, and DOA estimation of two
collided FH-FSK users (SNR = 10 dB).

hop-free segments if hop timing is known, since for a hop-free
data segment, each of the signals impinging on the sensor array
can be modeled as a narrowband signal. The direction find-
ing and beamforming method proposed in [29] bypasses this
problem by using a spatially colocated electromagnetic vector
sensor. A single-user parameter-estimation method based on
time-frequency distribution is proposed in [3].

Here, we extend the idea of DP-2DHR by coupling the
DP principle with low-rank three-way decomposition of data
collected from an MI sensor array. Suppose AP1 shown in
Fig. 1 utilizes a 2-D antenna array, which is composed of H
identical subarrays of m sensors, each displaced in different
directions. An example of such an array is shown in Fig. 3. The
total number of sensors is M , and, in general, m + H − 1 ≤
M ≤ mH . The left bound is met for subarrays that share m − 1
elements, and the right bound is met for subarrays that have

Fig. 5. DP-2DHR: hop timing, frequency, and DOA estimation of two col-
lided FH-GMSK users (SNR = 10 dB).

no overlap. Though users’ carrier frequencies are hopped over a
wide frequency band, between any two systemwide consecutive
hop instants, e.g., ni and ni+1, the discrete-time baseband
equivalent model for the array output can still be written as an
M × (ni+1 − ni) matrix

Xi = AiST
i + Wi (12)

where Ai = [a(α1, ψ1) · · · a(αd, ψd)], and αr, ψr are azimuth
and elevation angles. The frequency-dependent complex am-
plitude (due to path attenuation) is absorbed into Ai. Let Jh

denote the m × M selection matrix that extracts the m rows
corresponding to the hth subarray; then, it holds that [25]

Yi =




J1
...

JH


Xi =




AiΦ
(1)
i

...
AiΦ

(H)
i


ST

i + Vi (13)

where the m × d matrix Ai is the response of subarray 1
(reference), and Φ(h)

i is a d × d diagonal matrix of phase shifts,
which is a function of signal parameters (DOA and frequency)
and the displacement of the hth subarray relative to the ref-
erence, with Φ(1)

i = I. Vi is the corresponding noise matrix.
Define an H × d matrix Φi such that its hth row consists of the
diagonal elements of Φ(h)

i ; then, (13) can be rewritten as

Yi = (Φi � Ai)ST
i + Vi. (14)

For given ni and ni+1, the objective is to blindly estimate
2-D directions αr and θr, as well as frequency ω

(p)
r from

Yi, for r = 1, . . . , d. This problem can be solved by several
techniques, e.g., in [21], [24], and [25]. A key observation
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Fig. 6. DP-2DHR: rmse of hop timing and frequency estimation versus SNR in the presence of collisions.

is that with proper dimensioning and under certain relatively
mild conditions, (14) is in fact a low-rank trilinear (three-way)
model that exhibits strong identifiability properties and can be
estimated via well-established iterative least squares algorithms
[21]. Low-rank three-way array decomposition is unique under
a relatively mild ranklike condition [10]. The identifiability of
model (14) is established in [21].

In particular, trilinear alternating least squares (TALS) can
be used to estimate Ai, Φi, and Si from the noisy observations
Yi. The basic idea of ALS is to update matrices one by one
in an alternating fashion during each iteration, conditioned on
previously obtained estimates for the remaining matrices [21].
Upon convergence of TALS, Ai, Φi, and Si are estimated up
to scaling and common permutation of columns. The azimuth
and elevation angles can then be estimated via simple division
from Φi, and the temporal frequencies can be estimated from
Si via single one-dimensional (1-D) HR techniques (e.g., peri-
odogram) or simple division. Since the permutation of columns
is common to all three matrices, (αr, ψr, ω

(p)
r ) will be paired

up automatically by TALS.
Notice that both Ai and Si in (14) are Vandermonde. This

constraint can be incorporated into the iteration process of
TALS to expedite convergence and improve estimation perfor-
mance. Joint timing and frequency estimation is achieved by
coupling DP with TALS (DP-TALS).
Remark 1: There are other possible extensions of the pro-

posed algorithms. For example, the DP principle can also be
used to cope with uncalibrated array manifolds by replacing
MDF with estimation of signal parameters via rotational invari-
ance techniques (ESPRIT) [19], but then, association of dwells
is an issue.

V. SIMULATION RESULTS

A. The DP-2DHR Algorithm for Collision Resolution

In this section, we present the simulation results to demon-
strate the proposed DP-2DHR for joint hop timing and fre-
quency estimation in the presence of frequency collisions.
Unless otherwise stated, two FH users with DOAs [12◦, 17◦]

are simulated, each hopping with different hop timing. The
receiver array has M = 6 antennas, with baseline separation
of λ/2 at fc = 1 GHz. With M = 6, the array has a 3-dB
beamwidth of about 28◦ so that the two sources, separated by
5◦, are not directly resolvable. A hopping frequency band of
bandwidth 8 MHz is occupied by 32 frequency channels with
0.25-MHz channel spacing. The received signal is well modeled
as narrowband. For simplicity of illustration, hop rate is set the
same as symbol rate (125 Kb/s). At the receiver, the complex
antenna outputs are sampled at a rate of 8 MHz after down
conversion, and N = 48 complex samples are collected at each
antenna, resulting in a 6-µs-long analysis window, hence, each
user hops at most once within this window. Throughout the
simulation, SNR is defined as [cf., (1)]

SNR := 10 log10

(
‖X − W‖2

F

MNσ2

)
(15)

where the noise variance σ2 = N0B, and B is the processing
signal bandwidth.

Test A1 (FH-FSK, SNR = 10 dB): An example for the
FH-FSK case is shown in Fig. 4. In this example, two binary
FSK (BFSK) users begin in different bins; then, user 1 hops
to the same bin as user 2; later, user 2 hops out of his original
bin and into a new bin. This gives three segments: the first
and the third without collision, and the second with collisions.
Fig. 4 gives the DP-2DHR results of DOA estimation for those
three segments, and the corresponding results of hop timing
and frequency estimation for the two users. SNR is 10 dB.
We assume that any mobility-induced changes in DOA are
negligible within the analysis window. Thus, varying hop
frequencies are associated with different users via their
corresponding window-invariant DOA parameters. The results
show that DOA, hop timing, and frequency estimates are close
to the respective true values even in the presence of collisions.
They also demonstrate that good estimates can be obtained,
based on measurements of duration less than one symbol
period; this implies that the algorithm is capable of collision
resolution at moderate to heavy loads.
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Fig. 7. DP-2DHR: collision resolution in the presence of model-order mismatch at SNR = 10 dB. (a) The number of users is overestimated (estimated value
3 versus true value 2); (b) The number of users is underestimated (estimated value 2 versus true value 3). In both cases, the number of systemwide hops is assumed
to be correctly estimated.

Test A2 (FH-GMSK, SNR = 10 dB): Another case of inter-
est is FH-GMSK, which is used in IEEE 802.11. GMSK is a
special case of continuous phase modulation (CPM), and does
not adhere to the harmonic model that we have assumed here,
which is valid for FSK and PSK. We test the robustness of
the DP-2DHR algorithm by applying it to track two collided
FH-GMSK signals. We set BT = 0.5, where B is the Gaussian
filter bandwidth, and T is the symbol period. An example is
shown in Fig. 5, where SNR is 10 dB. The center segment
indicates a frequency collision. Notice that the original GMSK
signal’s frequency is changing continuously (with a shape
similar to the Gaussian pulse), but it can be approximated by an
exponential since it is a narrowband signal. As can be seen from
Fig. 5, the DP-2DHR algorithm is able to resolve collisions with
GMSK modulations.

Test A3: Fig. 6 depicts the empirical root mean square error
(rmse) of DP-2DHR hop timing and frequency estimates in the
presence of collisions. For each realization, each of the two
FH-FSK users hops once within the observation window. Hop
timing is randomly generated, and frequencies are also ran-
domly selected from the 32 candidate bins with the constraint
that there is always one collision in the three hop-free segments.
The rmse-versus-SNR performance shown in Fig. 6 indicates
that the DP-2DHR algorithm performs quite well even in the
low-SNR regime, given the fact that the signals are tracked in a
situation where hop pattern, rate, and timing are all unknown.

Test A4: In this example, we illustrate the DP-2DHR for
collision resolution in case of model-order overestimation and
underestimation. Differences in signal power may induce errors
in model-order estimation. In Fig. 7(a), DP-2DHR is applied
assuming that three users are detected while two FH-FSK users
with DOA = [12◦ 17◦] are actually present (the two users have
a 10-dB difference in power). In Fig. 7(b), DP-2DHR is applied
assuming that two users are detected while three FH-FSK users
from DOA = [12◦ 40◦ 17◦] are actually present, with the power

Fig. 8. DP-2DHR: hop timing, frequency, and DOA estimation of two
FH-FSK users in the presence of multipath.

of the third user being 10-dB less than that of user 1 (users 1 and
2 have equal powers). In both cases, the number of systemwide
hops is assumed to be correctly estimated. It can be seen
from Fig. 7 that the result is very good in the underestimated
case, and even in the overestimated case, the hop instants are
correctly detected and all but one frequencies are correctly
estimated for users 1 and 2. Similar results are obtained even
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Fig. 9. DP-2DHR: rmse of hop timing and frequency estimation versus SNR in the presence of multipath.

Fig. 10. DP-TALS: rmse of hop timing and frequency estimation versus SNR using a 2-D antenna array.

for moderately overestimated hop budgets (e.g., twice the actual
number of hops).

B. DP-2DHR in the Presence of Multipath Channels

We also tested the DP-2DHR algorithm for hop timing and
frequency estimation in multipath channels. Suppose the signal
of one user propagates through two paths with DOA = [6◦, 14◦]
with the second path delayed 0.2 µs, and the other user has
a single path at DOA = 25◦. Other parameters are similar to
those in Section V-A. For every realization of the Monte Carlo
simulation, hop timing and frequencies are randomly generated,
while no specific collision is introduced since “self-collisions”
are inherent in this multipath scenario. Here, the delay spread
is much less than the symbol period (8 µs), as assumed in the
preceding derivation.

Test B1 (FH-FSK, SNR = 10 dB): Fig. 8 is an example of
the hop timing, frequency, and DOA estimation for the three
paths, where “Path 1–2” denotes the second path of user 1.
Again, varying hop frequencies are associated with different

paths via their corresponding window-invariant DOA parame-
ters. The results show that hop timing and frequency estimates
are close to their respective true values. Fig. 8 also indicates that
paths 1 and 2 pertain to the same user since they have essentially
the same hop timing and frequency sequence. Similar results
have been obtained for GMSK-modulated signals, which are
omitted here.

Test B2: Fig. 9 plots the rmse of hop timing and frequency
estimation of DP-2DHR in the presence of multipath propaga-
tion. The results indicate that the DP-2DHR algorithm performs
well in multipath channels, given the fact that the signals
are tracked in a situation where hop code, rate, timing, and
multipath delay are all unknown.

C. DP-TALS With MI Arrays

Test C1: A rectangular array of size 2 × 6 is used in this
test, comprising four overlapping uniform linear subarrays of
five sensors each. The spacing ∆ is half wavelength at fc =
2 GHz. Two BFSK modulated users with 2-D DOA (elevation
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α, azimuth ψ) angles of (10◦, 6◦) and (17◦, 12◦), hop at
different timing. The hopping bandwidth is 80 MHz with
1-MHz channel spacing. Both symbol period and hop dwell are
0.8 µs. The received signal is sampled at 80 MHz after down
conversion, and N = 48 samples are collected at each sensor.
For each realization of the Monte Carlo simulation, each of the
two FH-FSK users hops once within the observation window.
Hop timing and frequencies are randomly generated. The rmse
of DP-TALS versus SNR curves in Fig. 10 demonstrate that
the algorithm performs quite well for a wide range of SNRs.
However, we note that the complexity of DP-TALS is higher
than that of DP-2DHR due to the iterative nature of TALS.

VI. CONCLUSION

We proposed a joint hop-timing-and-frequency-estimation
method based on the principle of DP coupled with 2-D HR
or low-rank trilinear decomposition. The multiuser detection
method is capable of unraveling multiple FH signals in the pres-
ence of collisions and unknown hop patterns without retrans-
mission. It remains operational even with multiple (unknown)
hop rates, frequency offsets, and asynchronism. Simulation
results show that it is also robust to model mismatch with
respect to modulation techniques.
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