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Multidimensional Orthogonal FM Transforms
Marios S. Pattichis, Alan C. Bovik, Fellow, IEEE, John W. Havlicek, and

Nicholas D. Sidiropoulos, Senior Member, IEEE

Abstract—We present a novel class of multidimensional orthog-
onal FM transforms. The analysis suggests a novel signal-adaptive
FM transform possessing interesting energy compaction proper-
ties. We show that the proposed signal-adaptive FM transform pro-
duces point spectra for multidimensional signals with uniformly
distributed samples. This suggests that the proposed transform is
suitable for energy compaction and subsequent coding of broad-
band signals and images that locally exhibit significant level diver-
sity. We illustrate these concepts with simulation experiments.

Index Terms—AM-FM, orthogonal transforms.

I. INTRODUCTION

I T IS very difficult to describe nonstationary signals by
expansions of stationary signals. Even wavelet expansions

suffer since wavelet functions assume stationarity over the
support of the function. To avoid such limitations, a mul-
tidimensional discrete amplitude and frequency-modulated
(AM-FM) series expansion was first proposed in [1], where an
arbitrary image is expressed as

(1)

The amplitude functions are assumed to be
slowly-varying, and the phase functions are as-
sumed to have slowly-varying instantaneous frequency vectors

.
For modeling nonstationary images, AM-FM expansions of

the form (1) have great potential since the amplitude and phase
functions are allowed to vary continuously over the image plane.
In this paper, we study a discrete version of the continuous
AM-FM transform representation that was introduced in [2].
The work that we present here is a continuation of the research
results in [3].

In this paper, we consider an interesting class of orthogonal
FM transforms, derived from using a permutation of the signal
samples followed by the DFT. In the forward transform domain,
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the transform is equivalent to 1) a permutation on the image
samples, followed by 2) a DFT (or DCT) of the permuted sam-
ples. In the inverse transform domain, we first apply 1) a DFT
(or DCT), followed by 2) the inverse permutation (the inverse
of the permutation in Step 1) of the forward transform).

One-dimensional AM-FM expansions have also been studied
in [4], [5] and [6], where one-dimensional AM-FM expansions
were expressed in terms of frequency-amplitude modulated
(FAM) complex exponentials. The class of FAM functions is
indexed by a parameter , and the FAM functions are expressed
as: . When the FAM
set is designed in the frequency domain, the set of functions is
called FAMlets. FAM functions have also found applications
in signal compression. The FAM functions have the limitation,
however, that the AM and FM terms are coupled.

More general classes of one-dimensional (1-D) AM-FM ex-
pansions are also presented in [7]. The authors suggest that a
large class of signal processing algorithms can be thought of as
being composed of three general steps: 1) applying a unitary
transformation to the signal or image, 2) processing the trans-
formed signal or image, and possibly 3) transforming the result
back. In this general scheme, our method considers permuta-
tions as the unitary transformation. The authors of [7] have also
presented a variety of important time-warping functions that are
associated with 1-D FM signals that have been studied in the lit-
erature.

The multidimensional FM expansions that we present
here are fundamentally different from those in other studies:
since permutations have no continuous-space analogue, our
expansions have no continuous counterpart. Hence, this class
of FM transforms provides a novel approach to the problem
of expanding signals as a sum of multidimensional FM series.
The analysis suggests a novel signal-adaptive FM transform
possessing interesting energy compaction properties. We show
that the proposed signal-adaptive FM transform produces point
spectra for multidimensional signals with uniformly distributed
samples, and very narrowband spectra for signals with approx-
imately uniformly distributed samples. These results suggest
that the proposed transform is suitable for energy compaction
and subsequent coding of broadband, noise-like signals and im-
ages. We illustrate these concepts with simulation experiments.

We organize the rest of the paper in four sections. In Sec-
tion II, we derive the general conditions for designing multidi-
mensional, orthogonal FM transforms. We also consider some
classes of FM transforms that are of special interest. We present
examples of two dimensional FM transforms in Section V. In
Section VI, we describe an example where a two dimensional
FM transform is implemented, and then compare the perfor-
mance to JPEG. In Section VII, we summarize our description
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for the FM transform coding example, and briefly comment on
future research on FM transforms.

II. FM TRANSFORMS

Let be a bounded -dimensional signal with domain
the discrete hypercube . This means
that is a function such that, for every is a
complex number. Later, we will understand that ,
where denotes the ring of integers modulo . Motivated
by coding applications, we are interested in expressing as
a sum of FM components

(2)

such that the FM spectrum can be computed using

(3)

Here, and de-
note elements of . We understand that the FM phase function

takes values in ,
where is the real line. Also, we use “ ” to denote the stan-
dard inner product reduced

In (2), the th FM component is
weighted by the corresponding FM spectral coefficient ,
and the sum of these contributions over all synthe-
sizes the original signal . The FM spectrum depends
on the choice of . Thus, the FM transform is actually a
class of transforms; a particular instance is specified by se-
lecting an -valued phase function and kernel con-
stant such that the synthesis formula (2) and the anal-
ysis formula (3) hold for an arbitrary bounded signal . The
dependence of on should be understood and is not
generally written explicitly.

The following proposition clarifies the dependence of the FM
transform on the choices of and .

Proposition 1 (Uniqueness): Let ,
and let denote associated FM transforms. Then

if and only if and .
Proof: Suppose . Applying both transforms to

gives

for all . Putting , we conclude that ,
and so

for all . Now put , the th standard unit vector,
to get

for all and all . This implies that
.

The converse is obvious. Q.E.D.
Next, we derive a general orthonormality condition.
Proposition 2 (Orthonormality Condition): Assume that

satisfies

(4)

for all , where denotes the Kronecker delta func-
tion. Then any bounded signal on is given by

(5)

where the FM spectrum is given by

(6)

Proof: The proof follows after using (6) to substitute for
, in the right-hand side of (5).

For 1-D FM transforms, the form of is determined by the
following proposition.

Proposition 3 (Orthonormal FM Transforms in One Dimen-
sion): Let . Then the orthonormal condition (4) is satis-
fied if and only if for some permutation

of and some real number . Furthermore,
the kernel constant is given by .

Proof: The proof is straightforward and has been
omitted.

Proposition 4: If is a permutation of ,
then the associated one-dimensional FM transform is equiva-
lent to a permutation of signal samples followed by the ordinary
DFT.

Proof: The proof is straightforward and has been omitted.
We now generalize Proposition 3 to multiple dimensions.
Theorem 1 (Multidimensional Orthonormal FM Trans-

forms): Let , where is the number of spatial
dimensions. Let . Then satisfies the
orthonormal condition (4) if and only if there is a symmetric
function such that

is a nonzero integer whenever . [By symmetric,
we mean that for all .]
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Proof: Since , (4) is satisfied whenever
. For , (4) is satisfied if and only if

This last expression is zero if and only if a factor

(7)

for some index , which may depend on .
But, as we have seen, (7) holds if and only if
is a nonzero integer . The relation defines
the function for can be defined arbitrarily.
Since is a nonzero integer if and only if

is a nonzero integer , the existence of
is equivalent to the existence of a symmetric . Q.E.D.

Remark 1: Note that the existence of implies that is
one-to-one.

As in the 1-D case, choosing to be a permutation of
ensures that the orthonormal condition is satisfied.

Proposition 5: If is a permutation of , then the -di-
mensional FM transform is equivalent to a permutation of signal
samples followed by the -dimensional DFT.

Proof: Similar to the proof for the one-dimensional
case. Q.E.D.

III. FM TRANSFORMS FROM PERMUTATIONS

For the remainder of this paper, we focus on FM transforms
built from phase functions that are permutations of . We also
identify with . According to Proposition 5, such a
transform is equivalent to permuting the input signal and then
applying the ordinary DFT. Thus, it is of interest to identify sig-
nals whose DFT spectra are sparse to serve as targets for signal
permutation. Once a collection of target signals is chosen, a
general signal-adaptive transform strategy is to match an input
signal via permutation to a target signal that is “close” and then
apply the DFT. This strategy was introduced in [3] for one-di-
mensional signals.

We begin by identifying a family of signals on whose
DFT spectra are sparse. It will be convenient to write

and .

Definition 1 (Unidirectional Periodic Signal): A unidirec-
tional periodic signal is any signal on that satisfies

1) depends only on the first coordinate of , i.e.,
if . We will abuse notation in this

case and write .
2) For some positive integer dividing is -peri-

odic in its first coordinate: .
If, in addition to 1 and 2, are distinct,
then is said to be a proper unidirectional periodic signal.

To emphasize the period, we may say that a signal is
unidirectional -periodic. In two-dimensions, if denotes
the column coordinate, we note that target signals remain
invariant throughout a column. Hence, as we shall see, for
the least-squares optimal permutation, we will permute image
samples with similar intensity to the same column, allowing
sequential memory accesses to the target signal.

Proposition 6 (Spectrum of Unidirectional Periodic Sig-
nals): Let be a unidirectional -periodic signal on .
Then, the DFT of satisfies if either
does not divide or (i.e., at least one of is
nonzero).

Proof: Since depends only on the first coordinate, it
is clear that if . Now, assume does not
divide . Then

Consider the terms in the last sum. Since does not divide
, the integers

are all distinct . Applying yields

where we have written for . These num-
bers are the complex th roots of unity, whose sum is
zero. Q.E.D.

Proposition 7 (Uniformly Distributed Signals): Let divide
. A signal on can be permuted to a unidirectional (re-

spectively, proper unidirectional) -periodic signal if and only
if assumes at most (respectively, exactly) distinct values,
each with multiplicity a positive multiple of .

Proof: Let be a proper unidirectional periodic signal.
Let be a particular sample of . that assumes
distinct values with multiplicity . Let be one of the
values. We can place at

. Similarly, we can place all
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distict values, and the resulting signal will be proper unidirec-
tional periodic.

Next we consider the case when assumes at-most dis-
tinct values. Let be a value repeating times where

is a positive integer. Then, we think of as copies of a
value that repeats times, and proceed in the same way
as we have just described for the proper case. Q.E.D.

Propositions 7 and 6 imply that signals with uniformly
distributed samples can be represented using very few coeffi-
cients in a suitable FM transform domain, namely, using the FM
transform associated to the permutation that makes the signal
unidirectional. This permutation and its inverse are easy to find,
as shown in [3]. This observation suggests the use of a signal-
adaptive FM transform, in which is a function of the input.
In practice, of course, the matching of signals by permutation
will only be approximate, and the specification of may
actually carry a significant part of the representation (coding)
cost. Nevertheless, as demonstrated in [3], and to a greater ex-
tent herein, there are important rate-distortion gains to be de-
rived from this approach.

Next, we will prove an invariance property for signal-adap-
tive FM spectra. Low variation in the spectra of a sequence of
signals is desirable since techniques such as DPCM can be used
to reduce the cost of coding the sequence, thereby offsetting in
part the overhead of representing permutations. First, we need
some definitions. Let be signals on (we think of as the
“target” signal). If the permutation of minimizes the en-
ergy quantity

(8)

then we say that matches to . In case the identity permuta-
tion matches to , then we say and are matched. Matching
permutations can always be found by using sorting [3]. To make
this precise, we fix a bijection

is then ordered by defining iff . The
bijection serves as an index for multidimensional arrays. As an
example, for accessing multidimensional arrays declared in a
computer language like “C”, the bijection is defined from the

-dimensional array index to an offset from the base address
of the array.

A signal on is sorted provided

and a permutation sorts provided is sorted.
Proposition 8 (See Proof and Associated Algorithms in

[3]): If sorts and sorts , then , where
denotes function composition, matches to .

Let be any two target signals. If we can find a permuta-
tion such that , then it is clear that

(9)

(10)

Therefore, finding a permutation that minimizes (9) for is
equivalent to finding a permutation that minimizes (10) for .
Furthermore, it is clear that a permutation such that

can be found iff and share the same distribu-
tion of values. Hence, signals that share the same distribution of
values are equivalent and we are thus only concerned with iden-
tifying one member of each equivalent class. We describe these
equivalence classes in Section IV.

If matches to a proper unidirectional -periodic
signal , then we can interpret as analyzing into “per-
centiles” in the following way. Write . Since

is proper, has distinct values, .
If , then if and only if

for some . If we arrange
the values of in ascending order, with multiplicity, and di-
vide this list of values into blocks of size (“percentiles”),
then the values in a single block will be those in the set

for some choice of .
Proposition 9 (Invariance Property): Assume that and

are signals on that share the same histogram of values.
Let be a proper unidirectional -periodic signal, and let
and be permutations of and (respectively) that
match . Then, the DFT spectra of and satisfy

if and (11)

Proof: Let . Then

As we observed, since is proper unidirectional -periodic,
and since matches , the double sum

is just the sum over one block of size of values of .
Since and have the same histogram

(12)
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and by reversing the steps above, we see that
. Q.E.D.

Remark 2 (Milder Conditions for Invariance): Note that the
condition that and share the same histogram is actu-
ally stricter than required. By carefully examining the proof, one
sees that and need only share the same averages over
each of the analysis blocks [as given in (12)]. Furthermore, in
this proposition, we only consider unidirectional signal as tar-
gets, but as will be proven in Theorem 2, signals that are not
uni-directional are equivalent to uni-directional signals.

In fact, we can show that matched signals with the same his-
togram also share the entire FM spectra.

Proposition 10 (Invariance of Signal-Adaptive FM
Spectra): Assume and are signals on that
share the same histogram of values. Let be an arbitrary
target signal, and let be a fixed permutation that sorts . Let

, and be permutations of and (respectively)
that match . Then, the DFT spectra of and are the
same. The reverse is also, clearly true. If the DFT spectra of

and are the same, then the original signals and
share the same histogram of values.

Proof: Let sort , and let sort . Then,
and are the sorted lists of the same col-

lection of values. It follows that and
are also the same and hence their DFT spectra

are the same. Q.E.D.
The results of Propositions 9 and 10 relate to the implementa-

tion of FM transforms. In implementing FM transforms, just like
JPEG, we break the given image into blocks. If the histograms
of the values between two adjacent blocks are not very different
then it makes sense to apply differential pulse code modula-
tion (DPCM) encoding between the FM coefficients of adjacent
blocks. In practice, the milder conditions of Proposition 9 (see
Remark 2) were found to hold, and DPCM was only applied to
the FM coefficients specified in (11). We will return to this point
in Section VI.

IV. EQUIVALENCE OF TARGET SIGNALS

We have suggested that, because of their sparse spectra
and invariance property, unidirectional periodic signals form a
family of target signals well-suited to the signal-adaptive FM
transform strategy. In [3], however, emphasis was placed on
DFT basis signals as the ideal targets for energy compaction
via permutation. In this section, we explore the relationship
between DFT basis signals and unidirectional periodic signals
from the perspective of the signal-adaptive FM transform
strategy. We will define a suitable equivalence relation between
(target) signals and see that all DFT basis signals are equivalent
to proper unidirectional periodic signals. Furthermore, we will
describe the equivalence classes of DFT basis signals under the
relation. For any family of target signals, the number of equiva-
lence classes is of interest since it is a measure of richness and
descriptive power of signal-adaptive FM transforms that match
to the target signals of the family. For these results, we will use
basic concepts from group theory, which can be found in [8].

According to Proposition 8, matching is accomplished by
sorting. Thus, two target signals that share the same histogram of

values will be matched by the same set of input signals, although
the matching for a given input signal may be accomplished by
a different permutation. Two target signals share the same his-
togram of values if and only if they are themselves related by
a permutation, and so we are led to the following definition of
equivalence.

Definition 2 (Equivalence of Target Signals): Two target sig-
nals and on are equivalent, written , if and
only if there is a permutation of such that .

Of course, equivalent target signals need not have the same
DFT spectrum. From previous observations, it is easy to see that
two proper unidirectional periodic signals are equivalent if and
only if they have the same set of values, and hence the same
period.

Now we address equivalence of DFT basis signals. Fix
, a primitive, complex th root of unity. For each

, there is a DFT basis signal given by
. A DFT basis signal can be thought of as a group homo-

morphism in the following way. Let

is the set of complex th roots of unity, and it is easy to
see that forms a group under complex multiplication. On the
other hand, since we view forms a group
under vector addition . Any DFT basis signal is a
function , and the fact that is a group homomor-
phism follows from the familiar property of exponents

(13)

Since is a group homomorphism, it follows that any two
values of are assumed with the same multiplicity. This pro-
perty is stated more precisely as follows. For , write

(14)

Proposition 11 (Multiplicity of DFT Basis Signals): For
, if and are both nonempty, then

and have the same number of elements.
Proof: It suffices to give the proof when because

the general case then follows by transitivity. Suppose
, i.e., that . Then

, so that . This shows that for any
particular choice of , we have

Clearly, then, has the same number of elements as
. Q.E.D.

From the fact that is a group homomorphism, it is easy
to verify that the set of values

(15)
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forms a subgroup of . The subgroups of are well known,
and we briefly describe them now. For further details, see the
discussion of cyclic groups in [8]. If , write

(16)

It is easy to check that is a subgroup of . In fact, every
subgroup of is of the form for some .
Furthermore, if , then is a subgroup of
if and only if (as can be easily verified).
It follows that if and only if .
In particular

(17)

and so the subgroups of are in one-to-one correspondence
with the positive divisors of . The number of elements in
is .

Example 1: To illustrate the ideas above we describe the sub-
groups of more explicitly when . This choice of
is of particular interest for implementation. The positive divi-
sors of are the numbers for . Thus, the
subgroups of are

. Notice that these subgroups are all nested:

(18)

Proposition 12 (Set of Values of DFT Basis Signal):
, where . Here, we understand that

and .
Proof: Using a well-known property of gcd (given in [9,

p. 10]), we can find such that . Then
, and it follows that . Therefore,

. On the other hand, since is equal to
, we can find an integer such that .

With , it follows that , and so
for any

Then

This implies that . Q.E.D.
According to Proposition 11, assumes its values with

uniform multiplicity. Proposition 12 implies that the set of
values of is equal to a subgroup of . The number
of distinct values of is , a divisor of . From
these observations, it follows that is equivalent to a proper
unidirectional -periodic signal.

We can now characterize the equivalence classes of DFT basis
signals.

Theorem 2 (Equivalence of DFT Basis Signals): For
if and only if .

Proof: if and only if and have
the same histogram of values. In view of Proposition 11, the
histograms are the same if and only if the two signals have
the same set of values, i.e., if and only if . By
Proposition 12, this last condition holds if and only if

. Q.E.D.

Notice that Theorem 2 implies that the number of equivalence
classes of DFT basis signals is no more in Example 1. In par-
ticular, the number of equivalence classes of DFT basis signals
depends only on , not on the dimension of the hypercube.

Now, for matching signals to targets, we need only consider
the number of distinct elements in each target. This is due to
the fact that all signal samples that get permuted to match the
location of the same target sample are (from the perspective of
the target) equivalent (also see our discussion of bucketing in
[3]). Returning to Example 1, we note that for matching sig-
nals to targets, we observe that has two elements,
has four elements has elements. Thus, we need a
single bit per signal sample for matching signals to the unique
uni-directional signal with the same elements as , two bits
per signal sample for matching signals to the unique unidirec-
tional signal with the same elements as bits
per signal sample for matching signals to the unique uni-direc-
tional signal with the same elements as . This is summarized
in Fig. 1. Furthermore, in Section V, we demonstrate how the
matching can be achieved for two-dimensional images with uni-
formly distributed samples in two and four bins.

V. EXAMPLES OF FM TRANSFORMS

In this section, we demonstrate the use of FM Transforms for
two-dimensional images. We will present examples for images
associated with and . For -examples, we use
signals that have a histogram of two equally distributed values.
For -examples, we use signals that have a histogram of
four equally distributed values. We will also address implemen-
tation issues.

Without loss of generality, we pick a 2-D signal that has a
histogram with two equally distributed values. Consider

N/2 samples N/2 samples

...
...

For each sample, we want to assign a single bit to indicate which
bin the sample falls in

N/2 samples N/2 samples

...
...

Using the bit codes in , we can re-arrange the samples in the
original signal so as to match the appropriate transform domain
samples. We match samples by mapping the smallest signal
value to the smallest transform domain value, and then the next
smallest signal value to the next smallest transform domain
value and so on. For this two-bin signal, the most appropriate
FFT basis function is

...
...

...
...

...
...

...
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Fig. 1. Relationships between FFT subgroups and discrete signals with uniformly distributed samples. The required bits per sample denote the number of bits that
are required for encoding the permutation for the FM transform. The FM spectrum coefficients are described in Proposition 6. Also, examples of FM transforms
for the cases

�����
and
�����

are described in Sections V and VI.

Using the bit codes , we map the original signal so as to
match this basis function. For the permuted signal , we write

...
...

...
...

...
...

... (19)

We note that has a period of two along the horizontal coordi-
nate. Hence, is a 2-D example of a unidirectional, period-2
signal. Along the vertical coordinate, remains constant.

We next write the permuted signal as

...
...

...
...

...
...

...

...
...

...
...

...
...

...

(20)

The FM spectrum for this example is nothing but the FFT of the
permuted signal. As shown in (20), the permuted signal requires
two coefficients. This example illustrates a simple application of
Proposition 6.

A numerical 1-D example is shown in Fig. 2. In this example,
the FM transform can reconstruct the signal exactly using 1.04
bits per sample. The FM transform is exact since the FM spectral
coefficients are computed after multiplying by the two roots of
unity: 1 and 1 (which can be represented exactly).

Next, we examine signals that have a histogram of four
equally distributed values. Without loss of generality, we pick a
simple member of this general class of signals (see (21), shown
at the bottom of the next page), satisfying .
We encode the permutation required to match the signal to the
FFT basis functions shown in (22) at the bottom of the page. For
this signal, we look for FFT basis functions that have period 4 in
the horizontal direction. Note that both
and are such basis functions.
This observation motivates the subgroup property described in
Fig. 1. The subgroup property stems from the fact that period

N/4 samples N/4 samples N/4 samples N/4 samples

...
...

N/4 samples N/4 samples N/4 samples N/4 samples
(21)

N/4 samples N/4 samples N/4 samples N/4 samples

...
...

N/4 samples N/4 samples N/4 samples N/4 samples
(22)
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Fig. 2. DFT and FM Spectrum results for a signal that is uniformly distributed in two bins (127 and � 123). In (a), we show the histogram of the signal. In (b), we
show the first 16 samples of the signal (out of a total of 1024 samples), and its DFT magnitude spectrum in (d). In (c), we show the first 16 samples of the permuted
signal, and its corresponding, FM spectrum in (e). The entropy of the DFT coefficients is 17.89 bits per sample, and the PSNR is 86 dB. The FM spectrum and
permutation bits correspond to 1.04 bits per sample, and the PSNR is infinite.

signals are also of period . Now, to match
our signal to the FFT basis functions:
and , we use the bit codes to
re-arrange into a period 4 signal

...
...

...
...

...
...

...
...

... (23)

The FM spectrum is the FFT spectrum of the permuted signal
. As discussed earlier, it is captured in the coefficients of

, and the
dc coefficient.

A numerical, 1-D example is shown in Fig. 3. The FM
transform can reconstruct the signal exactly using 2.07 bits
per sample. The FM transform is exact since the FM spectral
coefficients are computed after multiplying by the four roots of
unity: 1, 1, (which can be represented exactly).

It is clear how to extend our discussion to bins.
Furthermore, it is fairly clear that the dimensionality of the
signal does not affect our ability to rearrange the samples
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Fig. 3. DFT and FM Spectrum results for a signal that is uniformly distributed in four bins (113, 120, 123, and 127). The figures are the same as in Fig. 2. The
entropy of the DFT coefficients is 16.03 bits per sample, and the PSNR is 86 dB. The FM spectrum and permutation bits correspond to 2.07 bits per sample, and
the PSNR is infinite.

along a single dimension. In our examples, we chose the
-coordinate.
For the DCT, we look for permutations that produce signals

with twice the period of the corresponding FFT group. This is
accomplished by mirroring the samples within the period. We
illustrate this approach for the two-bin case

...
...

...
...

...
...

...
...

... (24)

and the four-bin case

...
...

...
...

...
...

...
...

... (25)

To be able to visually identify how the permuted images look
like, we examine (24) and (25) as digital images. For (24), we
assign the black color for , and the white color for . Along
each column of this image, the intensity remains constant. The
image appears as an alternating sequence of black and white
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Fig. 4. DFT and FM Spectrum results for a signal that is normally distributed in two bins. The figures are the same as in Fig. 2. For the DFT, the ac coefficients
were divided by 200 before rounding of to the nearest integer values. The dc coefficient was divided by 2 before rounding to the nearest integer value. Similary,
for the FM transform, the spectral coefficients that did not capture the energy were rounded in the same way [see text and (e)]. The entropy of the DFT coefficients
is 10.3 bits per sample, and the PSNR is 39.9 dB. The FM spectrum and permutation bits correspond to 6.8 bits per sample, and the PSNR is 40.1 dB.

stripes. Each stripe is two pixels thick. Similarly, (25) appears
as an alternating sequence of white, two-pixel columns (coming
from columns of ) and black, two-pixel columns (coming
from columns of ). Between the white and black stripes,
we have a transition stripe coming from columns of .
We expect to observe similar stripe patterns when examining
general images permuted to match the structures of (24) and
(25). This is seen in Fig. 8(a) and (b), the permuted blocks of
Fig. 12(a) and (b), (see Section VI for more details).

We generalize our discussion for matching any given signal to
, or . For

matching a signal to , we simply per-
mute the lowest half of the samples as if they were , while
samples in the upper half are permuted as

permuted as

permuted as

(26)

For matching a signal to , we break
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Fig. 5. DFT and FM spectrum results for a signal that is normally distributed in four bins. The figures are the same as in Fig. 2. For the DFT, the ac coefficients
were divided by 100 before rounding of to the closest integer values. Similary, for the FM transform, the spectral coefficients that did not capture the energy were
rounded in the same way [see text and (e)]. The entropy of the DFT coefficients is 12.4 bits per sample, and the PSNR is 45.9 dB. The FM spectrum and permutation
bits correspond to 7.3 bits per sample, and the PSNR is 46.2 dB.

the signal into quartiles

permuted as

permuted as

permuted as

(27)

Numerical results are presented in Figs. 4 and 5. In these exam-
ples, two multi-modal, normally distributed signals are used. In

thefirstexample,theFMreconstructedsignalhasslightlylessdis-
tortion at less than 70% the bit rate of the corresponding discrete
Fourier transform. Similarly, for the second example, the FM re-
constructed signal has slightly less distortion at less than 60% the
bit rate of the corresponding discrete Fourier transform.

Using this general method for matching arbitrary signals to
, and , we

conjecture that most of the signal energy should be captured in
(i) the ideal FM coefficients described in Proposition 6, followed
by (ii) the horizontal FM coefficients, and (iii) the nonhorizontal
FM coefficients. The claim that the ideal FM coefficients cap-
ture most of signal energy is vividly demonstrated in the exam-
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Fig. 6. Rate-distortion curves for FM transform and JPEG for the sensor
image. In all plots, we plot the PSNR versus bits per pixel. The FM-transform
results are plotted in solid line, while JPEG results are plotted using a dashed
line. In (a), we show results for one-bit permutations. In (b), we show results
for two-bit permutations.

ples of Figs. 2(d), 2(e), 3(d), 3(e), 4(d), (e), and 5(d) and 5(e).
The ideal FM coefficients are above all other coefficients in or-
ders of magnitude. The claim that the horizontal FM coefficients
are expected to capture more of the energy than the nonhori-
zontal FM coefficients is less obvious. To see why this is true,
we return to the permuted matrices of (19), (23), (24), and (25).
We recall that the permuted images are formed after first sorting
the image values, and then arranging successive pixels across a
column. Hence, we expect far less intensity variation across a
column than across a row. This conjecture is also seen to hold
for more general images [see the permuted images of Fig. 8(a),
(b), and the permuted blocks of Fig. 12(a) and (b)]. We observe
far less intensity variations across the columns than across the
rows. In the ideal case, when there is no intensity variation along
the columns of an image, the nonhorizontal Spectral coefficients
are zero. It then follows that the horizontal spectral coefficients
capture more of the energy in the image.

VI. APPLICATIONS

As a sample application of the discrete FM transform, we
consider a natural and significant example: signal compres-
sion. Consider the original images displayed in Fig. 7(a)1 and
Fig. 11(a) (a grayscale image). The two examples that

1This is a
�����������	�

image segment of the sensor imagem78p1f24hh.884,
and it was taken from http://www.mbvlab.wpafb.af.mil/public/MBV-
DATA/adts.htm.

Fig. 7. JPEG results for the sensor image. (a) The original image is an 8-bit
image of size

�����
�������
. The optimized JPEG reconstructed image is shown

in (b). The optimized JPEG is computed at 1.33 bits per pixel at a quality factor
of 20, at a PSNR of 18.13 dB.

we are showing are well suited for the FM transform methods
that we have developed, essentially due to the noiselike texture
that they contain. JPEG and most traditional techniques have
not being very effective in compressing these kinds of textures.

To efficiently capture the textures in the two examples, we
implement two distinct transforms 1) FM transforms on
blocks and 2) a hybrid technique using either an FM transform
or the DCT on each block. For the sensor image, the same
texture is present throughout the image, and we applied the FM
transform on each block (see results in Fig. 6). For the Man-
drill image, the texture is only found on portions of the image,
and we thus applied the hybrid transform, in an attempt to allow
the FM transform technique to effectively capture the texture,
while leaving the smooth regions to the DCT. For general im-
ages, where there is no knowledge of the presense of texture in
the image, the hybrid method is clearly the best one to try.
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Fig. 8. Permuted images for the sensor example. (a) The one-bit permutation
image and (b) the two-bit permutation image.

To analyze the performance of the FM transforms, we consider
the permutation overhead. We only consider target signals that
have a constant overhead of either one bit per sample, or an over-
head of two bits per sample (as we have described in Section V).
To reduce the permutation overhead, we employ two different
methods for encoding the permutation bits. In direct encoding,
we simply store the bit codes without processing. For the images
that we consider here, this is the preferred method. In scanned en-
coding, we scan the array of codes in horizontal, vertical
or some other scan order. The scanning direction is defined to be
orthogonal to thedirectionofmaximumenergy in the two-dimen-
sional power spectrum. For example, if the sum of all the power
along the diagonal frequencies is greater than the sums
along the horizontal and vertical directions, we use zig-zag scan-
ning of the permutation codes. For the images that we are pre-
senting here, there is usually no preferred direction and there is
no real need to determine the preferred direction. However, for

Fig. 9. FM reconstructed images for the sensor example. In (a), we have the
reconstructed image for the single bit FM transform. It is encoded at 1.49 bit
per pixel, with a PSNR of 18.90 dB. In (b), we have the reconstructed image for
the two-bit FM transform. It is encoded at 2.42 bits per pixel, with a PSNR of
22.50 dB.

applying FM transforms to smooth images, for future research,
we hope that scanning codes will prove useful.

It is clear that all coding gains are due to the quantization
of the FM spectrum. For a specified number of permutation
bits per sample, we have a corresponding number of dominant
FM coefficients: the nonzero spectrum coefficients of the
unidirectional -periodic signal (see definition in Propo-
sition 1). For theDCT implementation of the FM transform,
the dominant coefficients are a bit different. It is easy to show
that in the two-dimensional DCT-spectrum, in the first row,
the dominant coefficients are the 0th and 4th coefficients for
one-bit permutations, and they are the 0th, 1st, 3rd, 5th and 7th
coefficients for two-bit permutations. Due to the invariance of
these dominant FM coefficients (see Proposition 9), we apply
a DPCM technique to encode these coefficients (similar to the



PATTICHIS et al.: MULTIDIMENSIONAL ORTHOGONAL FM TRANSFORMS 461

Fig. 10. Rate-distortion results for the Mandrill image. For this image, we used
a hybrid transform (see text). For one-bit permutations, we show the results
in (a). For two-bit permutations, we show the results in (b). The solid lines
represent the hybrid FM transform, while the dashed lines represent JPEG.

DPCM of the dc coefficient in JPEG). Furthermore, we used
the standard Huffman table for encoding dc coefficients for
encoding these coefficients (given in [10]).

The permuted images are shown in Figs. 8 and 12, where we
plot the permuted images corresponding to Figs. 7(a) and 11(a).
The horizontal stripes in the permuted images confirm our ex-
pectation that for thenoiselike,granular texturedregions, suitable
permutations have converted them into almost unidirectional, pe-
riodic signals (see Section V). Most promising is the fact that
FM reconstructed images shown in Figs. 9 and 13 are free from
blocking artifacts that are clearly present in the JPEG images of
Figs. 7(b) and 11(b). Blocking artifacts have been eliminated due
to1) thepermuted imageblocksareapproximatelyunidirectional
periodic, and since unidirectional periodic signals are free of any
blocking artifacts, the permuted image blocks can be encoded
with less blocking artifacts, and 2) the reduced artifacts in the
permuted image blocks are eliminated when the image samples
at the edges are permuted to different locations within each block.
It is easy to recognize what an FM image will look like at very
low bit rates. In the extreme case, where only the dominant FM
coefficients are kept, the low-bit rate FM image appears like a his-
togram equalized version of the original image (equalized over
each block). The number of equalization levels is determined by
the number of permutation bits.

Based on our discussion on the relative importance of dif-
ferent coefficients, it is natural to chose different quantization
levels based on the importance of each coefficient. To specify

Fig. 11. Mandrill image results for JPEG. In (a), we show the original Mandrill
image. In (b), we show the (optimized) JPEG image for the quality set to 30 in
cjpeg. At this quality level, JPEG is coded at 1.0745 bits per sample, at a
PSNR of 23.67 dB.

the quantization levels, we use three different quality factors:
(i) iq for ideal quality factor, which is used with the horizontal,
unidirectional periodic coefficients, (ii) hq for horizontal quality
factor, which will is used for the horizontal coefficients that are
not covered by the ideal quality factor iq, and (iii) nhq for non-
horizontal quality factors, which is used for the nonhorizontal
coefficients. We use very simple relationships for describing the
relationships among the quality factors. For one-bit permuta-
tions, we set

��� ���
and �

��� ���
, while for two-bit per-

mutations, we set
��� ���

and �
��� ���

. Hence, given a
value for the ideal-quality factor iq, we obtain simple expres-
sions for hq and nhq, which we can use to compute the quanti-
zation levels for: (i)

�����
for the ideal quantization levels corre-

sponding to iq, (ii)
���	�

for the horizontal quantization levels
corresponding hq, (iii) �

���	�
for the nonhorizontal quantiza-

tion levels corresponding to hq. Again, we use simple, empirical
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Fig. 12. Permutation images for the Mandrill example. The one-bit permuted
image is shown in (a), while in (b), we show the two-bit permuted image. When
the image does not appear permuted, we are using JPEG for that block.

expressions (for the standard image block)

����� ���

� ��� � �

� � ��� � � � (28)

Now that we have specified the quantization levels for the
FM transform alone, we turn to the problem of implementing
a hybrid transform. For the hybrid transform, we would like
to specify the DCT quantization tables so that the number of
bits required for encoding DCT blocks and the number of bits
required for encoding FM blocks are comparable. For using
hybrid transforms to compress images at about two bits per
sample, we use the standard quantization table of the DCT [10].
For using hybrid transforms to compress images at one bit per
sample, we multiply each entry in the quantization table by two
and use the result as the new quantization table. Then, for each

Fig. 13. FM reconstruction results for the Mandrill image. For one-bit
permutations, we show the reconstructed image in (a). It is compressed at 1.49
bit per pixel, with a PSNR of 18.90 dB. Similarly, for two-bit permutations,
we show the results in (b). It is compressed at 2.42 bits per pixel, with a PSNR
of 22.50 dB.

image block, we must select whether to apply the FM transform
or the DCT.

We use a simple rule to decide whether we should apply the
FM transform or not. For one bit permutations, if JPEG requires
more than 64 bits for a block, we then choose to apply FM trans-
forms instead. Similarly, for two bit permutations, if it requires
more than 128 bits for a block, we then choose to apply FM
transforms instead.

For one-bit permutations, we present the rate-distortion curves
in Figs. 6(a) and 10(a). For two-bit permutations, we present the
results in Figs. 6(b) and 10(b). For encoding the spectral coeffi-
cientswe usebaseline Huffmancoding for all FM transforms. For
computing FM transform at different bits per sample, we simply
varied the dominant quality parameter between 5 (producing the
right endpoints), and 24 (producing the left endpoints). We show
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compressedimagesforthesensorimageinFig.9,andfortheMan-
drill image in Fig. 13. The JPEG images were computed using
cjpeg for baseline JPEG, but also using optimized JPEG using
the optimized flag for cjpeg.

For the sensor image, Fig. 7(b) shows the optimized JPEG
image which was compressed at 1.33 bits per pixel, at a PSNR
of 18.13 dB (for a quality factor of 20). For the Mandrill image,
Fig. 11(b) shows the optimized JPEG image which was com-
pressed at 1.07 bits per pixel, with a PSNR of 23.67 dB (for a
quality factor of 30). As we pointed out earlier, both JPEG im-
ages suffer from severe blocking artifacts. For the sensor image,
we show the one-bit FM reconstructed image in Fig. 9(a). It is
compressed at 1.49 bit per pixel, with a PSNR of 18.90 dB. It
corresponds to the rightmost point in the rate-distortion curve of
Fig. 6(a). For the two-bit FM reconstructed image in Fig. 9(b),
the image is compressed at 2.42 bits per pixel, with a PSNR of
22.50 dB. It corresponds to the leftmost point in the rate-distor-
tion curve of Fig. 6(b).

We next explain the results for the hybrid transform. The hy-
brid transform was applied to the Mandrill image. The one-bit
permuted image is shown in Fig. 12(a), while in Fig. 12(b), we
show the two-bit permuted image. When an image block does
not appear permuted, we are using JPEG for that block. When
an image block is permuted, the permuted image forms the ver-
tical stripes, and the FM transform is applied for these blocks.
For one-bit permutations, we show the reconstructed image in
Fig. 13(a). This image was compressed at 0.98 bits per pixel,
at a PSNR of 23.89 dB. It corresponds to the leftmost point of
the rate-distortion curve, for

���������
	��
� ���
	��������
. Simi-

larly, for two-bit permutations, we show the results in Fig. 13(b).
This image was compressed at 1.66 bits per pixel, at a PSNR of
27.05 dB. It corresponds to the leftmost point of the rate-distor-
tion curve, for

���������
	��
� ���
	��������
.

Clearly, the FM transform provides better rate-distortion per-
formance in Fig. 6, while the hybrid method shows better rate-
distortion performance in Fig. 10. As demonstrated in Fig. 12(a)
and (b), the hybrid transform worked very well, in the sense that
it separated out the texture in the image for application of the
FM transform, while the smooth regions were left to JPEG. The
adaptive scheme seems to have worked exceptionally well for
the one-bit case, while for the two bit case, our simple rule ap-
pears to be a little conservative, selecting JPEG to be applied on
some blocks where the texture is not as pronounced. Overall, we
believe that the hybrid method holds great promise.

VII. CONCLUSION

In this paper, we have demonstrated promising coding gains,
especially on images containing rough, noiselike, or granular
textured regions. We hope that further research in FM transform
signal compression will confirm the improved performance on
a large class of images. We also believe that discrete FM trans-
forms have the potential for a broader spectrum of applications,
e.g., in signal/image cryptography and general image analysis.
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