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MAP Signal Estimation in Noisy Sequences
of Morphologically Smooth Images
N. D. Sidiropoulos, D. Meleas, and T. Stragas
Abstract— In a recent paper [1], it has been demonstrated that

morphological openings and closings can be viewed as Maximum «
posteriori (MAP) estimators of morphologically smooth signals in signal-
independent i.i.d. noise. In this correspondence, we extend these results
to the 1/-fold independent observation case, and show that the afore-
mentioned estimators are strongly consistent. We also demonstrate the
validity of a thresholding conjecture [2] by simulation, and use it to
evaluate estimator performance. Taken together, these results can help
determine the least upper bound, M, on M, which guarantees virtually
error-free reconstruction of morphologically smooth images.

1. INTRODUCTION

In a recent paper [1], it has been demonstrated that morphological
openings and closings can be viewed as Maximum a posteriori
(MAP) estimators of morphologically smooth signals in signal-
independent i.i.d. noise. These results were made possible by cast-
ing the filtering problem within a general framework of uniformly
bounded discrete random set (or, discrete random set (DRS), for
short) theory [4].

A DRS X is simply defined as a measurable mapping from some
probability space to a measurable space (£(D),X(X(D))), where
YD) is a complete lattice with a finite least upper bound (usually,
the power set, P(B), of some finite B C Z?), and (Z(DB))isa o-
field over X( B) (usually, P(P(DB)), the power set of the power set of
B). A DRS X induces an associated probability structure Py (-) on
S(X(DB)). DRS’s can be viewed as finite-alphabet random variables,
taking values in a finite partially ordered set (poset). Thus the basic
difference with ordinary finite-alphabet random variables is that the
DRS alphabet naturally possesses only a partial order relation, instead
of a total order relation.

The foundations of mathematical morphology have been laid
out by Matheron [5], [6], Serra [7], [8], and their collaborators.
Morphological filtering [9] is one of the most popular and successful
branches of this theory, due in part to the excellent shape-preservation
(syntactic) properties of morphological filters [10]-[13]. Another
aspect of filter behavior is revealed through statistical analysis. We
are mostly interested in optimizing filter behavior with respect to
some statistical measure of goodness [1], [2], [4]. Dougherty er al.
[14]-[19], Schonfeld et al. [20]-[22], and Goutsias [23] have worked
on several related problems, using different measures of optimality
and/or families of filters. We concentrate on MAP optimality and
strong consistency.

We will use :{..+ :, 0, e to denote Minkowski addition and subtrac-
tion, and morphological opening and closing, respectively; refer to
|7] for definitions.
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A digital image I € (D) is said to be W-open iff I is invariant
under opening by W, i.e, I o W = [. It has been shown [6] that
this latter condition is satisfied iff I is a union of replicas of the
structural element W, i.e., iff I is spanned by translates of W. The
interior of such an I can be perfectly traced by W, which can be
thought of as a discrete counterpart to the notion of a ball (according
to some distance metric) in R?; thus the term “smooth” in the title
of this correspondence. We now state a backbone result of {1] which
provides a starting point for our current discussion.

Theorem 1: Let Ow (B) denote the collection of all W-open
subsets of B. Assume that the signal DRS, X, on B, induces the
following probability mass function on X(B):

o ooE. K €Ow(B)
Px(X =L)=
0, otherwise

where || stands for set cardinality. Furthermore, assume that the
observable DRS is Y = X U N, where N is ii.d. of intensity
r € {0,1) (i.e., each point = € B is included in V' with probability
r, independently of all other points; NV is, in effect, what is known
as a homogeneous Bernoulli lattice process of intensity r), which is
independent of X. Then Y o W is the unique MAP estimate of X
on the basis of Y, regardless of the specific value of 7.

This latter result provided the first rigorous proof of a widespread
“folk” theorem in the image processing community that opening
is suitable, robust, and very effective in removing impulsive one-
sided additive (union) noise. A union noise model is appropriate
for modeling random clutter, partial occlusion, and obscuration. By
duality and distributivity, similar results hold for the characterization
of closings, unions of openings, and intersections of closings as MAP
signal estimators under suitable—and plausible—statistical scenarios.

Even though the structure of the MAP estimator turns out to be
independent of the noise level, r, the fidelity of the estimate, quite
naturally, depends on r. In [2] it has been implicitly suggested that
the fidelity of the MAP estimate (as measured by El.’?MAI»(Y)\AX'L
where \ stands for symmetric set difference) behaves as a steplike
function of r, i.e., for r < r* the estimate is virtually error-free,
while for » > r™ the quality of the estimate deteriorates rapidly with
r. However, an analytical proof of this “thresholding effect” seems
to be very difficult.

In this correspondence, we extend the results of [1] to the M-
fold case. In particular, we show that if X takes on values in the
collection of all W -open subsets of some finite lattice, the observable
record is YO = [¥7, -+, Yas], where Y; = X U N,, and {N,}}]
is i.i.d., then NM.Y; is a sufficient statistic for the estimation of
X on the basis of Y (NX,Y:) o W, can be interpreted as a
MAP signal estimator, the effective noise level is r“”, and this MAP
estimator is strongly consistent. We also demonstrate the validity
of the aforementioned thresholding conjecture by simulation, and
conclude that, for all practical purposes, r* > 0.65 [24].

Several related results follow by duality and distributivity of certain
classes of morphological operators. Taken together, these results can
help determine the least upper bound, M, on M, which guarantees
virtually error-free reconstruction of morphologically smooth images.

II. MULTIFRAME OBSERVATIONS

The idea behind our present study of the case of multiple ob-
servations is that sometimes it pays off to consider combining a,
usually small, number of degraded replicas of an original image, X, to
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produce a more accurate estimate X of X. We start with the following
setup. Let us assume for a moment that the signal (original) X is some
unknown but deterministic “constant” in Ow (B), and we observe a
vector (sequence) of degraded images Y ) =Y, Y], where
YV; = X UN;, {N:;} is iid. and independent of X, and each
N, is a Bernoulli lattice process of intensity r € [0,1). We have the
following result.

Lemma 1: NM,Y; is a sufficient statistic for the estimation of the
unknown constant X on the basis of Y,

Proof: Let 1(-) denote the indicator function on the o-field

X(X(B)). Consider

Hif\ilr\"i*x\(l_”]B—Vi\’ ifXgnlAiIYi
0, otherwise

Pr(Y")|x) :{
M
=1(X c L, v [T ¥ -yl B
=1
—1(X C MM, YD M X = )il 1B

Observe that X C nMY; implies X C Y;,Vi = 1,---

therefore, |Y; — X| = [Y;| — | X/, and so,

a‘M>

Pr(Y®)|x)
=1(X € M, Yo (DL ) =MIXT (o MIBI=30E il

M
-, 1Yl
= by (L= rMB 0 D
=1(X C N;21Y%) R - .
Let
M A M (1 —7)MIBI
(X, NS, Ye) = 1(X € ML Yo e —
and

R(YM)) 2 (%)Eﬁl ¥l

and the result follows from the Factorization Theorem [25]. | ]
Next, let us consider MAP Signal Estimation. Toward this end,
we need to introduce a prior distribution for X. This prior should
reflect our knowledge about the statistical behavior of X. If all we
know is that X takes on values in some collection of subsets of B
(in our case Ow (B)), then it is reasonable to model this knowledge
using a uniform distribution (in our case over Ow (B)). So let us
additionally assume that X induces the following probability mass
function on Z(B):
if K € Ow(B)

1
[Ow (B)]?
0, otherwise.

In addition, we assume that the noise sequence, {Ni}fil , is indepen-
dent of X, for all M > 1. We have the following result.
Theorem 2: Under our foregoing assumptions

Xorap(Yy = (ﬁé\iﬂﬁ) oW

for all r € [0,1).
Proof:

Xarap(YD) = argmaxgeo,, (s Pr(X = Sy,

Observe that any S € Ow (B) which does not satisfy 5 C N4, Y;
has zero-conditional probability. Let 7 = T(W, N7, Y;) denote the
restriction of Ow (B) to NM,Y; (ie., S € T iff § € Ow(B) and
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S C (nN,Y7)). This is the signal subspace which now carries all
the conditional measure. Then

Xarap(YOD)

Pr(YP)|X = §)Pr(X = S)
=argmaXgerp PI‘(Y(M))
:argmaxseTPr(Y(M)|X =S5Pr(X =15)

1

:argmaxseTPr(Y(M)p( = S)W

=argmax5eTPr(Y(M) X =29)

M
: B\Y:

=argmaXxgcp Hrlyl\sl(l — p)IB\Y:l

=1

M
—ar [Y:\S]
=argmaXger r
=1

M
—ar S Ivas]
=argmaxgepr<i=1

M

=argminger Z [Y\S|

=1
FArEMAX se 0y (B),5C(NM,Y;) 151

So, )?MAP(Y(M)) is the largest W — open subset of NM,Y;, which
is exactly the opening of NM.Y; by W [6], [7]. ]

Theorem 3—Strong Consistency: Under the foregoing assump-
tions

XMAP(Y(M)) — X, a.5.asM — oo

where a.s. means almost surely, i.e., convergence almost everywhere,
except for a set of measure zero.

Proof: We start by showing that, in the pathwise sense, and for
al M > 1

X C Xuar(YM) cniLyy;
and complete the proof by showing that
AMY, — X, a.5.asM — co.
For the first step, observe that
Kaap(YOD) = (mf‘i]m) oW CNM,Y;
since o is an anti-extensive operator [6], [7]. Also,
Rarar(Y) =(NL (X UN) ) o W
=(xunlN)ow
(X o W)U ((n;”ilm) o W)
XU ((mr}ilzvi) o W) o X
since X is W-open. For the second part of the proof, look at
Pr(tim { N, Y.\ X = 0})-

Here, lim stands for limit as M — oco. The events in curly brackets
form an increasing sequence, therefore [26],

Pr<lim {ﬂi’\i]y’i\X = 0})
= lim Pr (n;ﬁln\x = w)
= lim Pr(ﬂi\ilNi\X = (0)

> lim Pr(ﬂ;“ilNi - (z)) = lim (1 - rM) B
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So, since Pr(lim {N/Z,;Y;\X = 0}) is a valid probability, we con-
clude that Pr(lim {ﬂfilYi\X =0¥}) = 1 which completes the
proof. i

Since the sufficient statistic itself a.s. converges to the true un-
derlying signal DRS X, why need we study the performance of the
MAP estimator? The answer, of course, is that (as we will soon see)
the MAP estimator converges much faster than the sufficient statistic
does.

Corollary 1: Given our on-going setup, we can conclude that, for
th\s:[ purposes of MAP signal estimation, the effective noise level is
P

Proof: Note that

NZY: =N (XUN,) =

XU (mf‘ilm) ~XUN

where N is i.i.d. of intensity rM, and ~ means equivalent in the
sense of distributions. |

Thus, in so far as estimator performance is concerned, we can
restrict our study to the M = 1 case.

III. SAMPLING AND SIMULATION

In order to study estimator performance, and subsequently validate
the thresholding conjecture suggested in [2], we would like to
devise a way to sample from our target distribution i.e., the uniform
distribution over Oy (B). However, this turns out to be a formidable
task. Observe, in particular, that a uniform distribution over Ow (3)
is not equivalent to, and, in fact, cannot be approximated by, the
distribution of a Boolean model (cf. [27] and references therein for
background on Boolean models; there exists a substantial amount of
literature on this subject) having W as its (deterministic) primary
grain, for even though individual samples of the two distributions
may look very much alike, the ensemble properties of the two
distributions differ (e.g., by virtue of the law of large numbers, and
for sufficiently wide B, a Boolean model of constant intensity will
tend to produce realizations with an approximately constant number
of grains). In what follows, we focus on worst case behavior and
provide a reasonable estimate of »*, which is then validated by further
simulation.

The fidelity of the MAP estimate (as measured via
E|Xmar(YNX| = EY o WA\X| = E(X UN)o W\X]|)
depends on the noise intensity, r, and the size and shape of the
signal primitive, W, relative to I3. We have found that, for convex
W, and for all practical purposes, the shape factor can be safely
ignored. Observe that

E|(XUN)oW\X| = o(r, W)

= Ex{Enjx{I(X UN) o W\X][}}

< Enix N X
< o max  AEnx{|(X UN) o WAX]}}
=o(r,W).
Let us fix W. For any given realization of the signal

DRS X, and noise intensity 7, the conditional expectation
Enix{[{XUN)oW\X|} can be estimated by an appropriate
sample average; that is, by producing sufficiently many independent
realizations of N, each time merely generating an i.i.d. sequence of
binary variables to simulate N, and computing the resulting error
[(X UN)o W\X]|, then averaging the respective errors. Thus, by
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Fig. 1. Estimator performance plots.

repeating this process for a range of values of 7, we can plot the vaiue
of Exx{{(X UN)oW\X]|} as a function of 7, for a given X.

The next step is to compute &(r, W), for which we need to generate
a total of |Ow (B)] plots like the one above, then take the pointwise
(in r) maximum of these plots. This is not feasible in practice, for
in general we cannot even enumerate the elements of Ow (D), let
alone generate them. Nevertheless, the goal is a worthy one, and we
therefore take on a reasonable, yet not entirely satisfactory approach,
that is we only generate a subcollection of these plots corresponding
to a representative array of realizations of X, and take the pointwise
maximum (in 7) over this subcollection only as our estimate of
o(r. W) [24]. This latter estimate clearly underestimates ¢(r, W),
yet if the utilized subset of realizations of X is indeed representative
of the entire signal space, Ow (B), then the effect of this bias in our
final estimate of »* will be more than accounted for by the fact that we
estimate an upper bound on expected error, instead of expected error
per se. This is a key point, and it is validated by further simulation
in Section V.

The experimental setup is as follows (further details can be found
in [24]). B is taken to be a 146X 146 square lattice, whereas W =
AO =0202.-.20(\—1times), where A € {1,-+-,5},and © is
a 2]-point discrete octagon. For each A we run a separate experiment.

The most important consideration in generating a representative
subcollection of signal realizations is to account for signal variability,
i.e., number and relative position of W primitives in X . To do this,
we take the following approach. We fix the number of primitives, v,
in X, and generate 50 realizations of X with the given number of
primitives, each time placing v, random translates of ¥ within the
interior of B, according to a uniform probability distribution over
B & W?* for the translation vectors (here, ° stands for reflection
about the origin). The process is repeated for 10 equispaced values
of v,, the maximum of which is chosen to ensure almost complete
coverage of B (this strongly depends on A). Thus for each A, we
end up with 500 realizations of X, for each one of which a plot
of Exix{{(X UN)oW\X]|} as a function of r is generated, as
explained earlier on. Finally, we take the pointwise (in 7) maximum
of these 500 curves. The overall process results in one performance
curve for each A. These curves are plotted in Fig. 1.

The results are consistent with intuition, for the bigger X is, the
smoother the signal DRS X relative to the noise DRS N is, and
therefore, the more noise is removed by projecting the statistic onto
the signal subspace, which is essentially what the MAP estimator
is doing. As it can be clearly seen from this figure, if we define
“virtually error-free” reconstruction to mean that the residue noise
rate after MAP filtering is below 1%, then 0.65 appears to be a tight
lower bound on »* for all A > 1. What this means is that, in the
context of multiframe observations of noise intensity r each, by virtue
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of Corollary 1, and assuming that » is known a priori, one can pick
the length, M, of the observation sequence such that the effective
noise level prior to filtering, +*, drops below the 0.65 threshold,
and therefore guarantee that the residue noise rate after filtering is
below 0.01, i.e., virtually error-free reconstruction. This will also be
the case if » can be adaptively estimated by occasionally transmitting
a test pattern.

IV. EXTENSIONS

We now present two more theorems. The first can be easily
established by following the same lines of proof as in Theorems
2 and 3. The second can be established from the first by appealing
to duality (note that closing is the dual of opening with respect to
lattice complementation).

Theorem 4: Assume we observe YM) = [V1,---, Yas], where
Y; = XUN;, {N;}}X is i.i.d. and independent of X for all M > 1,
and each N; is ii.d. of intensity » € [0,1). Let us further assume
that X is uniformly distributed over the collection of all subsets
of B which are spanned by unions of translates of W7, i.e., those
K C B which can be written as

K =UiL, K, K, € Ow,(B),l =1,---, L

Then
L

X\MAP(Y(‘M)) = U ((ﬂ,ﬂilx) ° WI)

=1
and

/\/}MAP(Y(M)) — X, a.s.asM — co

We now state the dual theorem. Observe that here we deal with
intersection noise, which can be interpreted as a formal mechanism
to consider random sampling of DRS’s. The reader is referred to
{28] for an account of an interesting approach when N is assumed
to be a deterministic regularly spaced grid which undersamples the
observation.

Theorem 5: Assume we observe Y™ = [V}, .-, Y], where
Y:=XnNnN,, {Ni}?; is i.i.d. and independent of X for all M > 1,
and each N; is iid. of intensity r € [0,1). Let us further assume
that X is uniformly distributed over the collection of all subsets K
of B which can be written as

K=n0LK,K €Cw,(B),l=1,---,L

where Cw, (B) denotes the set of all ;-closed subsets of B. Then

Karap(YOD) = (Lj ((vv) e wn)

=1
and

Xurap(YM)y s X, a.5.asM — oo.

V. AN EXAMPLE

Let us now present a simple complete simulation example to enable
us to appreciate the kind of gain one might achieve by using more than
one observation. Fig. 2 depicts a 512x 512 raster-scanned portion of
a typeset document, which has been preconditioned to be open with
respect to a discrete octagon of size A = 2; this is assumed to be a
realization of the signal DRS X. In practice, given a characterization
of the class of noise-free images under consideration (e.g., font type(s)
and size(s) for typeset documents), and for a union noise model,
the structural element W should be chosen to maximize |W| (i.e.,
maximize noise elimination capability), subject to the constraint that
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ar John,
eceived your
essage; I will

Fig. 2. X is a raster-scanned portion of a typeset document.

Fig. 3. Yiis X corrupted by i.i.d. union noise of intensity » = 0.75 (slightly
above threshold).

the given class of noise-free images is a subset of Ow (D) (i.e.,
subject to the constraint that the signal is not affected by the filtering
operation). If the latter constraint is not satisfied, then the resulting
filter may distort the noise-free signal itself, and it may converge to
a subset of the true signal. In general, it pays to consider multiple
structuring elements, as in Theorem 4, to achieve the best results,
in which case one follows the same basic principle for choosing an
appropriate collection of structural elements. To avoid unnecessary
complication, we only use one structural element for the purposes
of illustration.

Figs. 3 and 4 depict two independently degraded versions of Fig. 2,
each heavily corrupted by i.i.d. union noise of intensity r = 0.75,
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Fig. 4. Y3 is X corrupted by i.i.d. union noise of intensity r = 0.
above threshold).

75 (slightly

Fig. 5.

YN Y.

which is slightly above threshold. Call these Y}, and Y2, respectively.
Fig. 5 depicts the resulting realization of the sufficient statistic,
Y1 NY,. Figs. 6 and 7 depict the optimal MAP estimate of X based
on Y7, Y, respectively. Both estimates suffer from noise artifacts
due to excessive clustering. Fig. 8 depicts the optimal MAP estimate
of X on the basis of the joint observation vector (Y1,Y>). This
estimate does not suffer from noise clustering artifacts; this could
have been predicted by our earlier discussion of the thresholding
effect. Observe that the effective noise power in the observation
statistic is 0.75% = 0.562, i.., below threshold.

Given that we operate in a very noisy environment, the estimate
in Fig. 8 seems very good. Yet, how does it compare to standard
median filtering? Observe that, unlike opening, the median is not

Fig. 7. X’_\/;AP(YQ) is MAP estimate based on Y5.

guaranteed to converge when applied to the sufficient statistic, the
reason being that the “dominated convergence” argument in the proof
of Theorem 3 fails in the case of the median. Still, one might be
able to get good results by choosing the median window to make
the class of input signals a subset of the root set of the median,
i.e., the class of all signals that are invariant under median filtering
with respect to the given median window. However, median roots are
much harder to characterize in two dimensions [13], and may include
oscillatory patterns, which are probably not suitable for modeling
typeset documents. In contrast, as mentioned before, the class of
images invariant under opening by W is precisely the class of images
spanned by translates of W this class is easy to visualize and work
with, and it does not include any oscillatory patterns. The net result is
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Fig. 8. Xprap(Y1,Y2) is MAP estimate based on the vector (Y1,Y2).

that while a properly chosen median may also give reasonable results
when M is small, its asymptotic behavior will be worse than that of
the opening, which is MAP-optimal and guaranteed to converge in
this case, and for a good reason: the median is an unbiased estimator,
and unbiased estimators are not suitable for union noise, for they treat
an object and its background in a balanced fashion, whereas there
exists a very clear imbalance between the two in one-sided noise;
good estimators should capitalize on this fact.

VI. CONCLUSIONS

In this correspondence we presented proofs of MAP optimality
and strong consistency of certain classes of morphological filters
acting on noisy sequences of morphologically smooth images. We
also demonstrated the validity of a thresholding conjecture suggested
in [2] by simulation, and used it to evaluate estimator performance.
Taken together, these results can help determine the least upper
bound, M, on M, which guarantees virtually error-free reconstruction
of morphologically smooth images.
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