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Further Results on MAP Optimality and Strong
Consistency of Certain Classes of Morphological Filters

N. D. Sidiropoulos, J. S. Baras, and C. A. Berenstein

Abstract— Morphological openings and closings can be viewed as
consistent MAP estimators of smooth random binary image signals
immersed in i.i.d. clutter, or suffering from ii.d. random dropouts. We
revisit this viewpoint under much more general assumptions and show
that, quite surprisingly, the above interpretation is still valid.!

I. INTRODUCTION

In recent work [3], [4], Sidiropoulos ef al. have obtained statistical
proofs of MAP optimality and strong consistency of certain classes
of morphological filters, namely, morphological openings, closings,
unions of openings, and intersections of closings. These results were
made possible by casting the filtering problem within a general
framework of uniformly bounded discrete random set (DRS) theory
[5], [6].

A DRS X is simply defined as a measurable mapping from some
probability space to a measurable space (Z(B), Z(Z(B))), where
3(B) is a complete lattice with a finite least upper bound {(usually,
the power set P(B) of some finite B C Z?), and Z(Z(B)) is a o-
field over X(B) (usually, P(P(B)), the power set of the power set of
B). ADRS X induces an associated probability structure Px (-) on
Z(X(B)). DRS’s can be viewed as finite-alphabet random variables,
taking values in a finite partially ordered set (poset). Thus, the basic
difference with ordinary finite-alphabet random variables is that the
DRS alphabet naturally possesses only a partial-order relation instead
of a total-order relation.

The optimality results of [3], [4] critically depend on the assump-
tion that B is finite; they further assume that the noise process is i.i.d.,
both within a given observation (pixel-wise), and across a sequence
of observations (sequence-wide). As it turns out, the pixel-wise i.i.d.
assumption as well as the sequence-wide assumption of identical
distribution can both be removed, as long as the sequence-wide
independence assumption is maintained. The net result is that we end
up with a rather general set of optimality conditions, which includes
the previous set as a special case. The most interesting feature of this
new set of conditions is that it allows the explicit incorporation of
geometric and probabilistic constraints into the noise model, thereby
establishing optimality in a significantly more flexible environment.

II. BACKGROUND

The fundamental elements of mathematical morphology have been
developed by Matheron [7], [8], Serra [9], [10], and their collabora-
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tors. Morphological filtering is one of the most popular and successful
branches of this theory.? One good reason for the widespread use of
morphological filters is their excellent shape-preservation (syntactic)
properties. Important characterizations (e.g., root signal structure,
relations to other filter classes, basis representation theory) are well
developed and understood [11], [13]-{16]. Another aspect of filter
behavior is revealed through statistical analysis. We are mostly
interested in optimizing filter behavior with respect to some statistical
measure of goodness [3]-[6]. Dougherty et al. [17]-[22] Schonfeld
et al. [23]-[25] and Goutsias [26] have worked on several related
problems using different measures of optimality and/or families of
filters. We concentrate on MAP optimality and strong consistency.

In morphological image analysis, structural and geometric image
constraints are often expressed in terms of domains of invariance
under certain morphological lattice operators. A digital image I €
¥(B) is said to be smooth with respect to a given operator f iff
it is invariant under that operator, i.e., f(I) = I, in which case
I is also called a root of f. The collection of all roots of fis
the domain of invariance (or root set) of f. In what follows o,
denote morphological opening, and closing, respectively, whereas
Ow (B), Cw (B) denote the root sets of opening by W, and closing
by W, respectively. It is well known [8] that Ow (B) is the collection
of all images (subsets of B), which are spanned by unions of
translates of W, and, in view of duality, a dual interpretation is
available for Cw(B). We can also fit more complicated image
structure by allowing composite constraints, e.g., consider the class
of all images that are invariant under a union of openings with respect
to a family of structural elements.

A drawback of the optimality results of [3] and [4] was that the
noise process could not be “smooth:” e.g., one could not accom-
modate a composite noise process resulting by taking the union of
translated replicas of some noise “primitives.” In effect, one could not
accommodate colored and/or geometrically structured noise. In what
follows, this restriction is completely eliminated. Furthermore, the
sequence-wide assumption of identical noise distribution is removed.
In fact, we show that, modulo a relatively mild condition on marginal
noise statistics that is needed for consistency, as long as the noise
process consists of a sequence of independent DRS’s, which is
independent of the signal DRS, it can otherwise be arbitrary, and
the results still hold.

III. RESULTS

Theorem I—MAP Optimality: Assume we observe YM) =
[Y1,---,¥um], where Vi = X U Ny, {N)M, is an independent
but not necessarily identically distributed sequence of noise DRS’s,
which is independent of X, and each N; is an otherwise arbitrary
DRS taking values in some arbitrary collection ¥,;(B) C %(B) of
subsets of the observation lattice B. Let us further assume that X is
uniformly distributed over a collection ®(B) C Z(B), of all subsets
K of B, which are spanned by unions of translates of a family of
structural elements Wi, { = 1,---, L, ie., those K C B, which can
be written as® K = Uf., Ky, K; € Ow,(B), [ = 1,---, L. Then

2See [11] and [12] for recent surveys of the status of morphological filtering.
3Note that one or more of the X7;’s can be empty, since § € Ow (B), VIV.
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Xmap(YD) = Ule((ﬂf‘ilYi) o W;) is a MAP estimator of X
on the basis of Y,

Proof: Following some manipulations, the MAP principle re-

% M)y _ M
duces to Xpmap(YM)) = argmaxseg(p)np(n M v;) Pr(Y®) |
X = 8), where P(NM,Y;) (the power set of N}L,Y;) is the
sub-o-field restriction imposed by the observations. By independence
M

argmax H Pr(SUN; =Y)).

SeH(B)NP(NM | Y;) =1

Xmar(YM)) =

Now, § € P(NM,Y;) implies that S C Y; for every j =
1,2,---,M, and SUN; = Y; & Y;\S C N; C Y. For
j=1,2,--+, M, define G(-,5): B(B) NP(NXL,Y;) = P(¥;(B))
by

G(5,5) 2{V € ¥;(B) |[Y;\S CV CY;}.

This is the set of all IV;-realizations, which are consistent with the
jth observation (i.e., Y;) under the hypothesis that the true signal is
S, which is necessarily in ®(B) NP (N}, Y;). Clearly, as a function
of S € ®(B)N P(O%IYZ) and for every j = 1,2,---, M, the set
G(S,j) is monotone nondecreasing. Therefore, the functional

M M
II Pr(sunN; =v;) =[] Pr(WN; € G(S,4))

Jj=1 j=1

is monotone nondecreasing with respect to S € ®(B) N P(N¥,Y;).

The MAP optimality result then follows trivially from the fact that
U,L=1 ((NM,Y;)o W) is the maximal element of B(B)NP(NM,Y;).
Nonuniqueness of the functional form of the MAP estimator is a direct
consequence of the fact that the functionals G(S, j) are generally not
strictly increasing. O

Theorem 2—Strong Consistency: In addition, assume the follow-
ing Condition 1 holds.

Condition 1: Vz € B there exists 0 < r < 1, such that
Pr(z € N;) < r, for infinitely many indices j.* In other words,
for every z € B, there exists 0 < r < 1, and an infinitely long
subsequence Z of observation indices (both possibly dependent on
z), such that Pr(z € N;) < », Vj € 7.

Then, under the foregoing assumptions, Xmap (Y(M )) — X,
a.s. as M — oo, i.e., this MAP estimator is strongly consistent.

Proof: The proof involves three steps. We start by showing that,
in the pathwise sense, and for all M > 1, X C Xmap (YD) C
N, Y;. The next step is to show that MY, — X,as.as M — oo
is implied by Pr(ﬂjﬂil N; =0) — 1, as M — oo, and complete the
proof by showing that this latter condition is implied by Condition
1 in the statement of the theorem.

The first two steps can be found in [4]. We now proceed to prove
the third step. Equivalently, we need to show that Pr(ﬂj‘il N; #
0) — 0, as M — oco. Now

Pr(ﬂjM:l N;#0)=Pr(z € ﬂinle for some z € B)
(by the union bound)

< Z Pr(z ¢ ﬂé\il]\’j)
z€B

and by independence
M
SoPr(ze LN =S [ Pr(z € V).
2€EB 2€B j=1

Since |B| < oo, it suffices that Hivil Pr(z € Nj) = 0,as M — oo
for each and every z € B. This is clearly implied by Condition 1,
and the proof is complete. O

4Observe that this is a condition on marginal noise statistics only.
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We now present two more theorems. They can both be established
by appealing to duality (note that closing is the dual of opening with
respect to lattice complementation). Observe that here we deal with
intersection noise, which can be interpreted as a formal mechanism
to consider random sampling of DRS’s.

Theorem 3—MAP Optimality Dual: Assume we observe Y
[Yi,- -, Y], where Y; = XO\N;, {N;}, is an independent but not
necessarily identically distributed sequence of noise DRS’s, which is
independent of X, and each N; is an otherwise arbitrary DRS taking
values in some arbitrary collection ¥;(B) C X(B) of subsets of
the observation lattice B. Let us further assume that X is uniformly
distributed over a collection ®(B) C X(B) of all subsets K of B,
which can be written as K = N2, K, K; € Cw,(B),1=1,---, L.
Then Xumapr (YD) = NE, ((UM,Y;) « Wi) is a MAP estimator
of X on the basis of Y.

Theorem 4—Strong Consistency Dual: In addition, assume the
following holds. i

Condition 2: ¥z € B there exists 0 < r < 1, such that
Pr(z ¢ N;) < r, for infinitely many indices j°. In other words,
for every z € B, there exists 0 < 7 < 1, and an infinitely long
subsequence Z of observation indices (both possibly dependent on
2), such that Pr(z ¢ N;) < r, Vj € 7.

Then, under the foregoing assumptions, Xnmap (Y(M )) — X,
a.s. as M — oo, i.e., this MAP estimator is strongly consistent.

(M) —

IV. DISCUSSION

A little reflection on the above results is in order. The discussion
will focus on Theorems 1 and 2, but the remarks are equally
applicable to the case of Theorems 3 and 4.

The first observation is that both theorems crucially depend on B
being finite®. This is obvious at several points in the proofs. We view
this as further evidence of the utility of this restriction. The second
observation is that the results are fairly general: apart from (mild)
Condition 1, which is needed for consistency, and the requirement that
{N;} is a sequence of independent DRS’s, which is independent of
X, we have imposed absolutely no other restrictions on the sequence
of noise DRS’s {N;}.

In general, we cannot derive analytical formulas for some standard
measures of estimator performance, such as bias and variance, without
specifying the sequence of noise DRS’s {IV; }; this is obvious, since
these measures strongly depend on the structure of this sequence.
Based on our experience in'[4], our feeling is that these derivations
are going to be nasty, except in some limited cases. However, it
should be noted that the MAP principle leads to optimal estimators
in a particular Bayesian sense: it minimizes the total probability of
error, P. [27]. In other words, even though the MAP estimator may
not be unbiased and/or minimize the error variance (as a MMSE
estimator typically does) it is optimal in the sense that, for each and
every M, it minimizes the total probability of error. This is just an
alternative concept of optimality.

Let us now consider three special cases.

« The sequence of noise DRS’s {N;} is i.i.d., and each noise DRS
is i.i.d., i.e., a Bernoulli lattice process of constant intensity.
This particular noise process is compatible with earlier results
in [4]. In addition to MAP optimality and strong consistency,
compatibility with [4] buys uniqueness of the functional form
of the MAP estimator, and a handle on the bias [4].

« {N;} is a sequence of independent DRS’s, which is independent
of X, and each N; is uniformly distributed over ¥;(B) =
¥(B), Vj > 1, where ¥(B) C X(B) is a collection of all

5 Again, this is a condition on marginal noise statistics only.
6The size of B can be made as large as one wishes, as long as it is finite.
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subsets K of B which are spanned by unions of translates of
a family of structural elements, V;, [ = 1,---, A, ie., those
K C B that can be written as K = U, K, K; € Ov,(B),
{=1,---,A. The noise is now a system of overlapping particles
of several different types, i.e., constrained to be smooth with
respect to a union of openings by an appropriately chosen
family of structural elements. Noise particles overlap with signal
particles. It is easy to see that this composite noise process
satisfies Condition 1. Regardless of the degree of overlap and the
particular types of signal and noise particles, we can claim opti-
mality and strong consistency. However, small sample behavior
will be governed by the interplay between the two families
of structural elements that span the signal and noise DRS’s

Wi}, {Vi}, respectively). For example, if |Vi| < |Wml, .

¥Ym = 1,---, L, then application of the M = 1 MAP filter
will eliminate all isolated instances of V; noise patterns. This
may well be the case in applications, where the signal is usually
associated with the more prominent image structures.

{N,} is a sequence of independent discrete Boolean random sets
[5], [6], which is independent of X . This particular case is of
great interest, since the Boolean union noise model is arguably
one of the best models for clutter. For all practical purposes
(i.e., all Boolean models of practical interest), Condition 1 is
satisfied, and, therefore, optimality and strong consistency can
be warranted.

V. CONCLUSION

We have revisited the problem of estimating realizations of random
sets immersed in random clutter, or suffering from random dropouts,
under a much more general set of assumptions, which allows the
explicit incorporation of geometric and probabilistic constraints into
the noise model, ie., the noise may now exhibit geometric and
probabilistic structure; surprisingly, it turns out that this affects nei-
ther the optimality nor the consistency of appropriate morphological
estimators.
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