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The Viterbi Optimal Runlength-Constrainéd
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Abstract— Simple nonlinear filters are often used to enforce
“hard” syntactic constraints while remaining close to the observa-
tion data, e.g., in the binary case, it is common practice to employ
iterations of a suitable median, or a one-pass recursive median,
openclose, or closopen filter to impose a minimum symbol run-
lIength constraint while remaining “faithful” to the observation.
Unfortunately, these filters are—in general—suboptimal. Moti-
vated by this observation, we pose the following optimization:
Given a finite-alphabet sequence of finite extent y = {y(n)} -2,
find a sequence & {#(n)}7' that minimizes d(x,y)
BV4 da(y(n),z(n)) subject to the following: z is piecewise
constant of plateau run-length >3/. We show how a suitable
reformulation of the problem naturally leads to a simple and
efficient Viterbi-type optimal algorithmic solution. We ecall the
resulting nonlinear input-output operator the Viterbi optimal
runlength-constrained approximation (VORCA) filter. The method
can be easily generalized to handle a variety of local syntactie
constraints. The VORCA is optimal, computationally efficient,
and possesses several desirable properties (e.g., idempotence);
we therefore propose it as an attractive alternative to standard
median, stack, and morphological filtering. We also discuss some
applications.

I. INTRODUCTION

HE median filter' [1]-[7] is arguably one of the most

_ frequently used tools in nonlinear signal processing.

It has several desirable properties, and considerable effort

has been spent in its analysis [7]. Due to its simplicity, it

affords very efficient implementation. It also has two important

disadvantages, namely, (as we will see) it is not optimal

even under statistical scenarios which are well adapted to its

purported strengths, and it is not idempotent, meaning that if

and when it converges (it does in the case of ordered data of
finite extent), it only does so after a number of passes [7].

The main textbook argument behind median filtering is that

it preserves edges while effectively removing impulsive noise

and outliers, i.e., it is a robust and locally optimal estimator
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In [1, a filter is defined as an operator which is increasing and idempotent
(these properties are explained later in this paper). In this sense, the median is
not a filter, since it is increasing but not idempotent. However, it is standard
engineering practice to call it a filter. We therefore adhere to this practice and
reserve the term morphological filter for those operators which are increasing
and idempotent, i.e., filters in the sense of [1].

of edge location. In addition, it is a self-dual operator [1]
(more will be said about self-duality later). In this setting, the
analysis is based on the concept of an ideal edge, which is
really thought of as a jump discontinuity which exhibits some
degree of consistency, i.e., a jump discontinuity in between
"two locally flat regions of sufficient breadth (i.e., plateaus of
length greater than or equal to some constant). It is assumed
that the ideal edge data is corrupted by independent. identically
distributed (i.i.d.) two-sided impulsive noise, and the purpose
of applying the filter is to recover the true data by eliminating
outliers (noise impulses, which are locally inconsistent with
the data). Indeed, the median filter does a fairly good job in
this setting, one that is remarkably better than that of a moving
average. Unfortunately, local optimality of the median® does
not suffice to guarantee global optimality of the solution (i.e.,
filtered data). Morphological filters [1] can also be applied,
and they are idempotent by definition, but (as we will show)
similar remarks hold regarding their optimality in this setting.

A. Constrained Optimization

Suppose we are given a set of ordered data (e.g., a function
of compact support, or a sequence of finite extent), f, and we
are interested in approximating, representing, or replacing f by
a compact descriptor (i.e., reduced complexity set of data), g,
which is optimal in some sense. Quite often, g is also required
to satisfy certain criteria of local regularity (e.g., continuity,
smoothness), and/or structural (syntactic) constraints.

This kind of problem often appears in a number of disci-
plines, including optimal filtering of time series, source coding
and vector quantization, curve fitting, edge detection, and
polygonal approximation of planar shape boundaries. There
exists an immense body of literature which deals with these
subjects. Some approaches are heuristic, while others are
optimal. Optimal approaches typically start with a formal
statement of the problem. This usually entails setting up
a suitable optimization, which involves the specification of
two fundamental components, namely, a distortion measure

.d(f,g), which formalizes and quantifies the notion of sim-
ilarity, i.e., provides a measure of how “close” ¢ is to f,
and a complexity-conformity measure A(g), which measures
two things: the complexity of the resulting approximation
and conformity to any prespecified regularity and/or structural
constraints. In general, any prespecified constraints of the

2The median lo¢ally minimizes an 1 -type norm, i.e., mean absolute error
[7]. It can also be viewed as minimizing a two-term composite cost function
[8] in a local sense. :
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latter type can be incorporated in A(g) by setting A(g) = oo
whenever g is not compatible with the given constraints.

Within this general framework, there exist essentially two
meaningful ways to pose the approximation of f as an
optimization problem. These are

minimize d(f,g), subject to A(g) < ¢t <00 1)

or

minimize \(g), subject tod(f,g) <e. (2)

Of course, there exists great freedom in choosing d(-,-),
and A(-). Depending on the particular choice of these two
measures, the optimization may, or may not have a solution,
which may, or may not be unique, stable, meaningful, and/or
computationally tractable. Typical choices for d(-,-) include
l1,12, and [, distance metrics. A typical constraint might be
that g is piecewise linear and continuous, while complexity
might be measured by the total number of line segments
required to construct g.

It occasionally happens that a particular optimization admits
an efficient recursive solution; in this case, the underlying
synergy can often be attributed to the principle of optimality, a
particularly pervasive “ground truth” of dynamic programming

[91-[11].

B. Organization

The rest of this paper is structured as follows. In Section I-
C, we present a bare bones formal statement of the problem.
Previous related work is reviewed in detail in Section II. Our
solution and a simple example are presented in Section IIL.
Several fundamental properties of the resulting optimal in-
put—output operator are investigated in Section IV. The anal-
ysis adopts a nonlinear filtering viewpoint and focuses on
general characterization principles. A discussion on implemen-
tation complexity is also included. A complete simulation ex-
periment is presented in Section V, applications are discussed
in Section VI, and conclusions are drawn in Section VIL

C. A Bare Bones Statement of the Problem

Suppose y(n) € A,n=0,1,---,N — 1, and |A| < co. Let
PJY denote the set of all sequences of N elements of A which
are piecewise constant of plateau (run) length >M. Consider
the following constrained optimization

. N-1"
minimize »  dn(y(n),z(n)) 3)
n=0
subject to z = {z(n)}) ' € Pyy. @)

This particular optimization arose during the course of our
investigations in nonlinear filtering.

II. BACKGROUND AND RELATED WORK

There exist numerous references which are related—in
various ways and degrees—to our present line of work. What
follows is a (long) partial list. We highlight those contributions

which are closest, in spirit, to our work. Additional references
can be found in Section VI. We note that our particular
formulation does not fit in any of the existing paradigms.

The piecewise-constant sequence approximation problem is
a proper special case of the problem of piecewise-linear curve
fitting. This latter problem (which in turn is a special case of
the problem of piecewise polynomial functional approxima-
tion) has attracted a considerable amount of interest for more
than three decades, triggered in part by a widely held belief
in the importance of this line of work in shape recognition.

In 1961, Stone [12] considered piecewise-linear curve fitting
as a formal optimization problem. The objective was to min-
imize the squared approximation error subject to a constraint
on the number of linear segments. Bellman [13] soon followed
with a solution based on his principle of optimality of dynamic
programming [9]-[11]. Gluss [14], [15]-[17] expanded on the
original idea of Bellman. Bellman et al. further extended these
ideas in [18]. Cox [19] discussed a similar solution in his 1971
paper. The aforementioned authors consider a least-squares
constrained complexity formulation (i.e., they fix the number
of segments in the approximation and minimize squared error),
and the common denominator is precisely the principle of
optimality.

There exist two similarities, as well as two significant dif-
ferences, between our formulation and Bellman’s formulation.
Both attempt to minimize distortion subject to a complexity-
conformity constraint (i.e., they are type-(1) optimizations).
Both can be solved by invoking the principle of optimality.
However, our constraint is on the minimum length of segments,
whereas Bellman’s constraint is on the maximum number of
segments. Observe that, for finite data, a constraint of the
former type implies a constraint of the latter type, but the
reverse is not true. The second noteworthy difference is that
our distortion measure can be inhomogeneous, and in fact
arbitrary, as long as it is the sum of individual per-letter costs.?

In 1986, Dunham [20] solved a related type-(2) optimization
by applying the principle of optimality. His program seeks to
minimize complexity (i.e., number of segments) subject to an
{ error bound. Kurozumi and Davis [21] considered a similar
problem.

There exists a considerable amount of additional litera-
ture on the subject of piecewise-linear curve fitting. This
includes the work of Montanari [22], who considered minimal
length polygonal approximations, Ramer {23], and Duda and
Hart [24], who considered successive refinement under an
error-bound constraint, Slansky et al. [25], [26], Tomek {27],
Rosenfeld and Weszka [28], Narayanan et al. [29], Pavlidis
et al. [301-[33], Vandewalle [34], Williams [35], [36], Badi’i
and Peikari [37], Wu [38], who employed a statistical model,
Bezdek and Anderson [39], Imai [40], Baruch [41], Teh and
Chin [42], and Fahn et al. [43], among others. These references
take on several variations of the problem, e.g., breakpoint
continuity/discontinuity etc. Some approaches are ad hoc,
while others attempt to compute a nearly-optimal solution.

3Note that this “sum” could be interpreted in a more liberal sense, e.g., our
method can also accommodate a minimax problem formulation, i.e., seeking to
minimize the supremum of pairwise per-letter costs, subject to a hard syntactic
constraint.
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Additional related material can be found in the literature
on regularization and edge detection (e:g., [44], [45]), and
deformable contours, snakes, and related themes [46]-[48].
In a sense, the determination of optimal deformable contour
. dynamics is an “inverse” of our problem. The former starts
with a “simple” user-supplied constrained approximation of a
curve, then attempts to match this initial approximation to the
data by deforming it under the influence of some appropriately
chosen dynamics. The goal is to minimize a suitable energy
functional. One particularly interesting reference in this area
is the work of Amini ef al. [49], in which the authors address
dynamic programming solutions of some variational problems
in early vision. The authors point out that when faced with
so-called “hard” nondifferentiable constraints on the solution,
Lagrangian-based methods, as well as regularization-based
methods, typically fail to produce an answer. Lagrangian meth-
ods require additive-differentiable constraints. Both methods
can “bias” the solution toward satisfying the constraints, but
they cannot strictly enforce hard nondifferentiable constraints.
On the other hand, dynamic programming can easily accom-
modate hard nondifferentiable constraints, and, in fact, use
these constraints to reduce computational complexity. The
drawback is that it does not provide a closed-form analytical
solution, but this is something we can often live with. In
the aforementioned reference the authors consider a particular
problem which, when translated into our setting, reads as
follows: minimize distortion, under the constraint that 1) the
number of segments is fixed and equal to some predetermined
constant (this is Bellman’s constraint), and 2) the length of the
plateaus is bounded below by some predetermined constant
(which is our constraint). Thus they consider a significantly
more constrained optimization. In contrast, we would like
our method to determine the optimal number of segments
automatically, and on the fly, by considering whether it pays
to introduce: additional segments as it parses the data.

Konstantinides and Natarajan [50] consider a type-(2) op-

timization, with complexity measured in terms of number
of segments, present an O(N) algorithm that solves it, and
provide a real-time custom processor implementation. Pa-
pakonstantinou ez al. [51] have recently pointed out that the
solution of a particular type-(2) optimization (with complex-
ity measured in terms of number of segments) is highly
nonunique. They subsequently proposed further refinement
of the solution by the method of least squares, i.c., among
the set of all optimal solutions of (2), select the one which
minimizes squared error. The overall optimization is a hybrid
two-step process, combining elements of both type-(2) and
type-(1) optimization. Their solution is based on a tree pruning
approach.

Mumford and Shah have posed [52] and investigated [53] a
general variational formulation of image segmentation. Their
formalism is ambitious and powerful; it attempts to tackle
the general problem of edge detection and low-level vision.
Blake and Zisserman [54] have written a book on how to
solve the Mumford—Shah optimization, based on the so-called

graduated nonconvexity (GNC) algorithm. Morel and Solimini -

[55] have written a recent book on the mathematical analysis of
the Mumford—Shah model, in' which they also argue that the
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Mumford—Shah formalism unifies many seemingly disparate
variational approaches to image segmentation. It is rather
interesfing to note that our particular optimization does not
fit in the general Mumford-Shah formulation.

III. SoLuTION

We show how a suitable reformulation of the problem
naturally leads to a simple and efficient Viterbi-type optimal
algorithmic solution.

z(n) €

Definition 1: Given any sequence z = {z(n)},

n07

A,n =0,1,---,N — 1, define its associated state sequence,
sz = {[x(n),lx( W, whete [a(-1),lo(~DIF =
[, M]",¢ ¢ A, and, for n = ~1,--- N — 2 :
_ Jmin{lp(n) + 1, M}, z(n+1)==z(n)
lr(n+1) = { 1, otherwise.
[z(n), lz(n)]7 is the state at time n, and, forn = 0, 1, - - ,N—

1, it assumes values in A x {1,---, M}

Clearly, we can equivalently pose the opurmzatlon (3) “@)
in terms of the associated state sequence. :

Definition 2: A subsequence "of state variables {[z(n),
lg)FY__1,v < N — 1, is admissible [with respect
to constraint (4)] if and only if there exists a suffix
string of state variables, {[z(n),lz(n)]T 71:7:,,1+1, such that
{fe(n), be(n)]* o folowed by (fo(n), Le(w]T V=L, i
the associated state sequence of some sequence in PJ)

Let # = {#(n)})-) be a solution (one always exists,
although it may not necessarily be unique) of (3), (4),
and {[#(n),l(n)]T}N=1, | be its associated state sequence.
Clearly, {[#(n),{4(n)]T}2=1, is admissible, and so is any
subsequence {[Z(n),l3(n)]T}4__,,v < N—1. The following
is a key observation. :

Claim 1: Optimality of {{Z(n),lz(n)]T }X=1, implies op- -
timality of {[2(n),lz(n)]T}i__1,v < N - 1, among all
admissible subsequences of the same length which lead to the
same state at time v, i.e., all admissible {[Z(n), Iz (n)]T}4__
satisfying [(v), iz ()]T = [E(v),lx(v)]"

Proof: The argument goes as follows. Suppose that
{[E(n),lz(n)]T}%__, is an -~ admissible subsequence
of states satisfying [Z(v),lz ()] [Z(), Lz (W)]F.
It is easy to see that {[Z(n),lz(n)]T}4__; followed
by {[#(n),lz(n)]T}A Y, is also admissible. The key
point is that any suffix string of state variables which
makes {[x(n) l3(n)]T}4__; admissible, will also make
{[#(n), lz(n))" }7—, admissible. If {[Z(n), lz(n)]"}1_ 4
has a smaller cost (distortion) than {[2(n),ls(n)]T}4__4,
then, by virtue of the fact that the cost is a sum
of per-letter costs, {[Z(n),lz(n)]"}4__; followed by
{[&(n), Lz (n)]* }n*,, % will have a smaller cost than
{[#(n),l3(n)]" 21, and this violates the optimality of
the latter. : '

This is a particular instance of the principle of optimality.
The following is an important corollary.

Corollary 1: An optimal admissible path to any given state
at time 7 + 1 must be an admissible one-step continuation of
an optimal admissible path to some state at time n.
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This corollary leads to an efficient Viterbi-type algorithmic
implementation of the optimal filter [56]-[58]. It remains to
specify the costs associated with one-step state transitions in
a way that forces one-step optimality and admissibility. This
is easy. Let c(sg(n) — sz(n + 1)) denote the cost of a one-
step state transition, and let V and A denote logical OR and
AND, respectively. Recall that, in so far as the hard constraint
is concerned, every run of length >M is acceptable, and, in
order to save on the number of required states, every run length
above M can be mapped back to M. Then

if
[((z(n) <M)V (n > N — M)A

((z(n+1) #2(n)) V (lz(n + 1) # min{iz(n) + 1, M}))]

/* current run incomplete, or not enough time to begin and
subsequently complete a new run, and we try to do anything
other than simply continue the current run */

\%

Uz(n) = M) A (z(n+1) = z(n)) A(lz(n+1) # M)]

/* current run is complete, and we decide to continue it, yet
the length variable does not remain at M */

\

[(lz(n) = M) A (2(n+ 1) # 2(n)) A (lm(n + 1) # 1)]

/* current run is complete, and we decide to switch to another
value, yet the length variable is not reset back to unity */

then c([z(n), lz(n)]T — [z(n +1),lz(n + 1)]T) =
else c([z(n), lg(n)]T — [z(n + 1), lz(n + 1)]T)
= dnt1(y(n + 1), 2(n + 1)) ®

will do it. A formal proof can be easily constructed and is
hereby omitted. The possibility of having multiple solutions
(minimizers) implies that the above specification of costs
associated with one-step state transitions does not uniquely
specify an input—output operator; a tie-breaking strategy is
also required. Since this does not affect filter performance, we
assume that one such strategy is given and call the resulting
nonlinear input-output operator the Viterbi optimal runlength-
constrained approximation (VORCA) filter.

Other types of local syntactic constraints can easily fit
in this paradigm. Suppose we are interested in a piecewise
linear solution of constraint length M (i.e., a piecewise linear
optimal approximation of segment length >M). We may
further augment the state to include the discrete slope of the
“current” segment, i.e., set sz(n) = [z(n),lx(n),tz(n)]¥,
where tz(n) is the discrete slope state variable. The spec-
ification of corresponding one-step state transition costs in
a way that enforces one-step ‘optimality and admissibility is
relatively straightforward, and it will not be further pursued
here. :

_ the VORCA trellis for the case dy,(y(n),z(n))

One may handle the most general type of local syntac-
tic constraints, by augmenting the state to include M — 1
“past” values. However, this corresponds to an exponential
(in M) expansion of the Viterbi trellis state space, which
quickly exhausts computational resources for moderate val-
ues of M. Most problems of practical interest do not re-
quire a full state expansion, thus being amenable to efficient
Viterbi-type algorithmic solutions. We refer to an element
of the resulting class of nonlinear input—output mappings
as a Viterbi optimal syntactic approximation (VOSA) Fil-
ter.

A. A Simple Example

A simple example is presented in Fig. 1, which depicts
, ly(n) —
z(n)|, ¥n € {0,1,---,N =1}, N = 12,M = 4, A =
{0,1}, and input {y(n)}:L, = {1,1,1,1,0,0,0,1,1,1,1,1}.
The state space consists of eight possible states in {0,1} x
{1,2,3,4}. Solid lines represent transitions which involve unit
cost, whereas dashed lines represent transitions which involve
zero cost. Absence of a line indicates infinite transition cost.
When two paths merge, the one with the higher cumulative
cost can be safely eliminated. When ambiguity exists, sur-
viving paths are highlighted using an additional dotted line
parallel to the path. The optimal path is clearly the one
indicated by the dotted line which leads to state (1, 4) at time
n = 11. We can read out the output (optimal approximation)
by traversing this latter path backward, and registering the
corresponding forward state transitions. The output then is
{z(n)}LL, = {1,1,1,1,0,0,0,0,1,1,1,1}.

IV. VORCA PROPERTIES
Definition 3: A filter, f, is idempotent if, and only if,

f(f) = f(v), vy

We have the following proposition.

Proposition 1: 1f d,(-,-) is a distance metric between el-
ements of A Vn € {0,1,---,N — 1}, then the VORCA is
idempotent, and the same is true, in general, for the VOSA.

Proof: We prove it for the VORCA. This way we avoid
introducing unnecessary notation; the proof for the VOSA
is exactly. the same. The output of a single application of
VORCA is obviously in Pjy. Suppose y € Pj}. Clearly,
vN-1 d,(y(n),z(n)) > 0,Vz € Pyjj. By virtue of the fact
that d,(-,-) is a distance metric Vn € {0,1,---,N — 1}, the
only element, z, of P{] which makes Z]nvz_ol dn(y(n), z(n))
zero is y itself. In fact, we can guarantee idempotence under
the relaxed condition that Vn € {0,1,---,N — 1}, dy(:,)
achieves its minimum value if and only if its arguments are
equal. [ ]

In the following, let us assume, for the sake of simplicity,
that .A can be identified with {0,1,--, L}, and let us define
the complement, y°, of an element, y € A, as y° = L —y, and
the complement, ¥°, of a sequence, y, in the obvious way, i.e.,
as the pointwise complement of its elements with respect to L.

4Ties do not appear in this simple example.
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Fig. 1.

Definition 4: A filter, f, is self-dual if, and only if, f(y°) =
(Fly))e.

We have the following proposrtron

Proposition 2: If d,(y,z) = dn(y°,2%),n = 0,1,---,N —
1,Vy,z € A, and the VOSA constraint is self-dual (in the
‘sense that z satisfies the constraint if and only if =€ does so),
then, without loss of'optimality, if so desired, the VOSA can
be designed to be self-dual. Observe, in particular, that the
VORCA can be designed to be self-dual, provided that the
first condition holds.

Proof: We prove it for the VORCA. The proof for the
VOSA is exactly the same. Let # be a solution (minimizer)
of (3), (4). Then

N—

S duly(n), é(n)) < Z (n)),

By the first condition in the statement of this proposition, it
follows that

S da(y(n), £°(n

and since z € Py if, and only if, z° € Pf}, this is the same as

2(y(n),z z € Pif.

N—

Z

n(y°(n),z°(n)), =€ Py

Zd (), 3(n Zdomomx%%

let z = z°, and

Z dn(y®(n), 2°(n)) < Z d(y°(n), 2(n)), Vz€ Py
n=0

whrch implies that £° (which is in Pf}) is @ solution (min-
imizer) of (3) and (4) with y replaced by y°. So far, we
have shown that if % is optimal for y, then £° is optimal for
9°. However, this does not immediately imply that any given
implementation of VORCA will be self-dual. There is a subtle
point here that arises due to the possibility of having multiple
minimizers. Conventional tie-breaking strategies may violate
self-duality. However, one can enforce self-duality without
compromising optimality as follows. Given an input sequence,

VORCA trellis.

y, one can decide whether to work with'y or %° in a consistent
fashion, e.g., using a level test on y(0), ie., for L odd, test
whether y(0) < (real)L/2; if so, work as usual with y; else,
work with its complement, y°, and complement the final result.
By virtue of the last inequality, this does not compromise
optimality, for the solution obtained thrs way is as good as
any. [

In the binary case, self-duality means that the filter treats

an “object” and its “background” in a balanced fashion. This
is a desirable property.

The median is a self-dual filter, but it is not idempotent. This
implies that, even though a single median filtering step (pass)-
is computationally less intensive than running the VORCA
trellis, the overall computation required to iterate the median
until convergence may surpass VORCA complexity, since the
latter filter converges in one pass. Furthermore, the VORCA
is optimal by design, while the median is not guaranteed to
be optimal.

Deﬁmtzon 5: y; <y, if and only if y1(n) < y2(n),Vn €
{0,1,---,N — 1}.

Deﬁmtzon 6: A filter, f, is increasing if, and only if, y; <
¥ = f(y1) < F(9), Y41, 9, € AN, where AN stands for
the set of all sequences of IV elements of A.

We have the following proposition, which at first might
seem counter-intuitive.

Proposition 3: The VORCA is not, in general, an increas-
ing filter. :

Proof: 'We prove it by what we think is a particularly
illuminating counter-example. This is depicted in Fig. 2. For
this example, we assume that M = 5, and d,,(y(n),z(n)) =
ly(n) — z(n)|,Vn € {0,1,---,N — 1}. The caption is self-
explanatory. ' ]

We have the following important corollary

Corollary 2: The VORCA is nelther a morphologrcal5 nor
a stack® filter.

SMorphological filters are increasing [1].

6 Stack filters [59], [7] are a class of increasing nonlinear operators which
obey the so-called threshold decomposition property. This class includes all
rank-order filters, i.e., filters based on rank ordering, e.g., min/max/median
filters and compositions thereof.
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Fig. 2. Counterexample illustrating the fact that the VORCA is not, in
general, increasing. Input data points are depicted using . The optimal
runlength-constrained -approximation (VORCA output) is depicted using a
thick continuous line, while the dashed line parallel to the horizontal axis
is at half the level of the maximal value of the input data sequence. M is
equal to five. The input in (a) lies below the input in (b), but the same is not
true for the corresponding outputs.

As a direct consequence, there is no hope in trying to
approximate the optimal filter (i.e., the VORCA) by using a
morphological filter (e.g., by using the basis representation
theory for morphological filters) or a stack filter. ,

A natural question that comes to mind is when can we
expect to be faced with a constrained optimization of type
(3) and (4) and, therefore, émticipate that the optimal filter is
not increasing, and thus not in the usual toolbox of nonlinear
filters? The following claim provides a reasonable scenario in
which this happens. '

Claim 2: Whenever we have a finite-alphabet signal, =,
which is piecewise constant of plateau (run) length >M,
and observation, y, arising from additive, two-sided, finite-
alphabet, independent (yet not necessarily identically dis-
tributed) noise, with marginal probability mass p(j\'})(-),n €
{0,1,---,N —~ 1}, the ML principle leads to a constrained
optimization of type.(3) and (4), and, therefore, the VORCA
is an optimal (ML) estimator.

Proof: This is a direct consequence of the ML principle.
Let arg max stand for “an argument that maximizes . ..” Then

%1 (y) = arg max log Pr(y|z)
: TePf]

N-1
argznerilxgl(]\Z 0og J;IOPN (y(n) ~ z(n))
N-1 = o
= i -1 v — .
a,rgzrgg}z T;) og Py’ (y(n) ‘ z(n))
If we let do(y(n),z(n)) = —logp{P (y(n) — z(n)),¥n €

{0,1,---, N — 1}, then we end up with a constrained opti-
mization of type (3) and (4). We point out that d,,(-,-) need
not be a distance metric; this is not required by our algorithm.

A. Complexity

The VORCA has computational complexity which is lin-
ear in the number of observations, i.e., N. The number of
computations per symbol depends on the number of states, as
well as state connectivity in the trellis. Each stage in the trellis

TABLE 1
NUMBER OF DISTANCE CALCULATIONS AND INTEGER ADDITIONS PER SYMBOL
(LE, PER VORCA TRELLIS STAGE). THE NUMBER OF INTEGER COMPARISONS Is
ALWAYS LESS THAN THIS NUMBER, AND THE COMPUTATIONAL COMPLEXITY PER
VORCA TreLLIS STAGE Is ALwAYS LESS THAN TWICE THIS NUMBER

M=5|M=10|M=15|M=20| M=25
=2 | 12 22 32 42 52 62
[Al=16 | 320 400 480 560 640 720
(Al=32 | 1152 | 1312 | 1472 | 1632 | 1792 | 1952
A|=64 | 4352 | 4672 | 4992 | 5312 | 5632 | . 5952
|Al =128 | 16896 | 17536 | 18176 | 18816 | 19456 | 20096
| Al =256 | 66560 | 67840 | 69120 | 70400 | 71680 | 72960

M =30

has a total of {A|M states, out of which |.A| are of the form
[v,1]7,v € A, |A| are of the form [v, M]T,v € A, and the re-
maining | A| M —2|.A] are of the form [v,]]T,v € A, 1<l < M.
States of the first kind at time n + 1 can only be reached
from |A| — 1 candidate states at time n, namely those of type
[w, M]T,w € A,w # v. States of the second kind at time
n + 1 can only be reached from two states at time n, namely
[v,M — 1]T, and [v, M]%. States of the third kind at time
n + 1 can only be reached from one state at time 7, namely,
[v,1 = 1]T. Therefore, one needs |.4| ~ 1 distance (branch
metric) calculations and integer additions, and |.A] — 2 integer
comparisons per state of the first kind, times |.A| states of the
first kind, for a subtotal of |.4|> — |.A| distance calculations
and integer additions, and |.A|> — 2|.4] integer comparisons for
all states of the first kind, per symbol. Similarly, one needs
a subtotal of 2|.4| distance calculations and integer additions,
and |.A4| integer comparisons for all states of the second kind,
per symbol. Finally, one needs a subtotal of |A|M —~ 2|.A4]

distance calculations and integer additions, and zero integer

comparisons for all states of the third kind, per symbol. The
grand totals are |AJ2 + [A|(M — 1) distance calculations
and integer additions, and |A|?> — |A| integer comparisons

per symbol (i.e., trellis stage). This translates to an overall

computational complexity of O(|A|?> + |A|(M — 1)) integer
operations per symbol, and O((|.A]?+|A|(M—1))x N) integer
operations for the entire optimization. The required number
of distance calculations and integer additions per symbol is
tabulated in Table I, for typical values of |.A|, M (the number
of required integer comparisons is always less). Clearly, |.4|
(i.e., the size of the alphabet) is the dominating factor.

The worst-case storage requirements of VORCA are
O(]A|M x N), but actual storage requirements are much
more modest, due to path merging.

The availability of VLSI Viterbi decoding chips, as well as
several dedicated multiprocessor architectures for Viterbi-type
decoding, makes the VORCA a realistic alternative to standard
nonlinear filtering, at least for moderate values of |.A|, M. In
the binary case, current Viterbi technology [60]-[64] can han-
dle 212 states. Hardware capability is continuously improving,
and at a rather healthy pace. Viterbi-type techniques, like the
VORCA, will certainly benefit from these developments.

V. SIMULATION EXAMPLE

Let us now present a complete simulation experiment.
Fig. 4 depicts a typical input sequence. This particular input
has been generated by adding i.i.d. noise on some artificial
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Fig. 3. “True” noise-free test data.
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Fig. 4. Input sequence {y(n)}3LL,.

“true” noise-free test data, depicted in Fig. 3. The noise has.
been generated according to a uniform distribution, and most
of the data points are contaminated. It should be stressed that
this is a “distribution-free” experiment, in that we do not use
our prior knowledge of the noise model to match VORCA
to the noise characteristics, which is certainly a possibility
(cf. Claim 2 in Section IV); the VORCA can handle both
short-tailed, and long-tailed, even inhomogeneous noise with
equal ease. The noise-free test data of Fig. 3 is also overlaid
on subsequent plots. This is meant to help the reader judge
filtering “quality,” yet, again, “true” data should be taken
with a grain of salt, for in practice we obviously do not have
access to the true data, and, therefore, comparisons relative
to the “true” data may be a bit misleading. Visual perception
is arguably the ultimate “gold standard,” and the reader
is encouraged to attempt to trace edges in the observation
data depicted in Fig. 4. Chances are that his/hers sketch will
occasionally differ from the “true” data.

For this example, we take dn(y(n),z(n)) = [y(n) —
z(n)|,¥n € {0,1,--- N — 1}, 4 = {0,---,99}, and NV =
512. The resulting optimal approximation (VORCA output
sequence) for M = 5,10,15, 20,25, 30, and 40 is depicted
in Figs. 5-11, respectively. The results are rather remarkable.
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Fig. 5. VORCA output M = 5.
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Fig. 6. VORCA output M = 10.
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Fig. 7. VORCA output M = 15.
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Observe that strong edges in the data remain uniformly lo-
calized for a wide range of values of M. This is a desirable
property. Fig. 12 presents a plot of the resulting average per-
letter approximation error (i.e., 1/N X2-1 |y(n) — z(n)|),
as a function of M. Observe that this error figure (which, by
virtue of optimality, is necessarily a nondecreasing function
of M) stabilizes for values of M between 20 and 30, then
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Fig. 9. VORCA output M = 25.

grows approximately linearly with increasing M. The visually
best compromise seems to be around M = 25 or 30, which is
consistent with the fact that the uncorrupted edge data for this
simulation experiment has significant plateaus commensurate
with this choice. This behavior is typical in several of our
experiments. This suggests that one might be able to pick the
“best” M, by studying performance plots just like the one in
Fig. 12. This possibility warrants further investigation.

Two comparative simulation experiments are presented in
Figs. 10, 13, and 14 and Table II, and Figs. 10, 15, and 16
and Table III, respectively. In these experiments, the output of
VORCA for M = 30 is compared with a standard median
with respect to a convex symmetric window D of length
| D], the median root with respect to D, and a morphological
openclose filter with respect to a convex symmetric structural
element W of length |W|. For each filter, the length parameter
is individually adjusted to provide a common basis for a
meaningful comparison. The conclusions for the closopen filter
are very similar to the ones for the openclose filter; results for
the former are thereby omitted. In the same spirit, and for the
two experiments below, plots for the median filter are very
close (and, in fact, slightly inferior) to those for the median
root, and, therefore, the former are omitted.

TABLE 1II
CoMPARISON OF VORCA VERSUS SOME WELL-KNOWN NONLINEAR FILTERS ON
THE BASIS OF THE RESULTING AVERAGE PER-LETTER DISTORTION, FOR A
TypicAL INPUT. FILTER LENGTH PARAMETERS HAVE BEEN INDIVIDUALLY
ADJUSTED TO PRESERVE SIGNALS PRESERVED BY VORCA OPERATING
WITH M = 30 WHILE MAXIMALLY SUPPRESSING THE NOISE

Openclose, |W| = 30
12.433

VORCA, M =30
4.962

Median, |D| = 59
7.115

Median root, (D] = 59
7.142

APLD

TABLE 1II
SYNTACTIC COMPARISON OF VORCA VERSUS SOME WELL-KNOWN
NONLINEAR FILTERS FOR A TYPICAL INPUT. FILTER LENGTH
PARAMETERS HAVE BEEN ADJUSTED TO APPROXIMATELY
EQUALIZE THE RESULTING AVERAGE PER-LETTER DISTORTION

VORCA, M = 30 | Median, |D| = 39 | Median root, |D| = 39 | Openclose, |W| =7
APLD 4.962 4.923 4.992 5.107
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Fig. 10. VORCA output M = 30.

The first experiment is a comparison on the basis of the
resulting average per-letter distortion, for a typical input
(namely, that of Fig. 4). For this comparison, the length
parameter of each filter has been adjusted to preserve signals
which are piecewise-constant of plateau (run) length > 30
while maximally suppressing the noise. Results are presented
in Figs. 10, 13, and 14 and Table II. Observe that the VORCA
is not only reliably picking up the signal edges while at the
same time essentially eliminating the noise, it also beats the
other filters in terms of distortion, and by a significant margin.
This also results in visually superior performance.

The second experiment is a syntactic comparison for the
same input. Filter length parameters have been adjusted to
approximately equalize average per-letter distortion. Results
are presented in Figs. 10, 15, and 16 and Table II. Observe
that the VORCA exhibits better signal edge localization while
at the same time suppressing more noise than its competitors.
This results. in visually superior performance. Observe, in
particular, the poor noise suppression capabilities of openclose,
for this particular choice of |IW|. ‘

The drawback of VORCA relative to these filters is that, in
general, it has higher complexity. However, this complexity is
not prohibitive, and, given enough resources (as is more and
more often the case in these days of exponential increases in
hardware capability), we should opt for the best possible filter.
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Fig. 12. Plot of average per-letter approximation error as a function of M.

VI. APPLICATIONS

A. Optimal Filtering

Nonlinear filter analysis and synthesis typically draws heav-
ily on two important tools, namely, root signal structure and
output distribution for i.i.d. input statistics. A signal s is said
to be a root or fixed point of an operator (filter) f if and only
if f(s) = s, in which case, we also say that s is invariant
or smooth under f. The collection of all signals which are
invariant under f is variably called the roof set, set of fixed
points, or domain of invariance of f. We will adopt the latter
convention and denote this collection of signals by Inv(f), yet
we will sometimes refer to elements of Inv(f) as roots of f.

For ideal linear filters, the domain of invariance is given by
the set of all signals in the filter’s passband. Unfortunately,
the analogy stops here, for nonlinear filters do not obey the
superposition principle. Nevertheless, root signal analysis is
still useful, since it allows one to specify structural (i.e.,
syntactic) .constraints on filter behavior. This kind of analysis
is purely deterministic. Idempotent filters converge to a signal
in their domain of invariance in just one step, for all input
signals. Several useful filters are not idempotent. A prime
example is the median filter. For finite-duration signals, the
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Fig. 14. Output of openclose |W| = 30.

median, although not idempotent, always converges to some
signal in its domain of invariance, and in a finite number of -
steps (passes). Similar results exist for other nonlinear. filter -
classes of practical interest. The idea, then, becomes clear:
Given the syntactic properties of some desirable signal, which
is embedded in noise, design a nonlinear filter f t0 extract
this signal from a noisy observation by specifying the domain
of invariance of f in such a way that Inv(f) agrees as much
as possible with (ideally, equal to) S, which is the set of all
signals that comply with the given set of syntactic properties
of the desirable signal. If repeated applications of f converge,
they must converge to a signal in Inv(f), and therefore, one is
always assured of obtaining a final estimate that complies with
the given set of desirable syntactic properties. Nevertheless,

* this estimate may be very far off from the true input signal; the
hope is that if the noise level is low, and/or the noise is highly
unstructured, then the resulting estimate will be reasonably
close to the true signal. This approach obviously ignores signal
and/or noise statistics; instead, it focuses solely on syntactic
properties.

The output distribution for ii.d. input statistics is often
used as a “rule of thumb” for judging the noise attenuation
capabilities of a particular nonlinear filter structure. This kind

"of (elementary) analysis is clearly inadequate in most cases
of interest.
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Fig. 16. Output of openclose |W| = 7.

Several authors have studied generalizations of the me-
dian (rank-order and stack filters) under a more appropriate
blend of structural constraints and statistical hypotheses (e.g.,
[65]-[67]). In a very recent article [68], Yin considers a related
design problem under a hard symbol runlength constraint, and
a statistical model which assumes that the input is a constant
plus additive i.i.d. noise’ and optimizes over the class of stack
filters of a given length. However, we have shown (cf. Claim
2) that, given a rather general formulation of the problem of
optimal runlength-constrained approximation (which includes,
in particular, per-letter distance-based optimal filtering criteria,
and the ML criterion), the optimal filter is not, in general, an
increasing operator, and, therefore, the class of stack filters'is
suboptimal; for stack filters are increasing by definition [59].

In a recent paper [69], Niedzwiecki and Sethares propose a
novel nonlinear filtering approach based on the idea of using
a set of competing forward and backward linear predictors
and (possibly nonlinear) smoothers, along with a nonlinear
combiner or decision rule. Their means are different from
ours, yet their aim is close in spirit to ours; interested readers
should consult [69]. The work of Restrepo and Bovik [70] is

7This simplified model amounts to optimizing filter behavior in regions
where the signal is approximately constant, and relying on the structural
constraints to control behavior at or close to discontinuities. This compromise
is motivated by the need to circumvent analytical difficuities.

another interesting reference. In their formulation, the set of
all locally monotonic (lomo) signals of length N and lomo-
degree o plays the role of Pi} in our formulation. Theirs is
a wider class of admissible signals, which may or may not
be proper for a particular application. They provide an elegant
mathematical framework in which they consider existence and
uniqueness of solutions. However, the complexity of their
algorithms is combinatorial in V. In contrast, the complexity
of our algorithm is linear in N.

Let us now shift gears and present a concrete example. Let
{z(n)}=} be a finite-duration sequence of binary variables.
This is our signal. Suppose that it is piecewise-constant
of plateau (run) length >M. Assume that {z(n) 71212—01 is
transmitted over a memoryless Binary Symmetric Channel
(BSC), of symbol inversion probability p. We may assume,
without loss of generality, that p < 0.5 (otherwise, we simply
invert the channel outputs). The output (observable) sequence
is {y(n)}Y-!. We wish to recover (i.e., form an estimate of)
{z(n)}=) on the basis of {y(n)}Y_}. It is easy to see that,
in accordance with Claim 2, the ML principle leads in this
case to the optimization given by (3), (4). The optimal (ML)
solution is given by the VORCA.

“Standard” approaches of smoothing the output data in this
case, while hopefully remaining “close” to the true signal
(i.e., preserving plateaus), include using a median, recur-
sive median, morphological openclose, or closopen filter [1],
[71]-{73]. Let medp(-) denote the median with respect to
a convex symmetric window, D, of size 2(M — 1) + 1,
and v (+), dw (+) denote morphological opening, and closing,
respectively, with respect to a convéx structural element, W,
of size M. Opening and closing are idempotent filters [1].
They have been shown to be optimal with respect to'the
given criteria under one-sided noise [74], [75]. The median is
not idempotent, so let med35(-) denote the median root (one
always exists in this case, since we have assumed finite-extent
signals [7]). Obviously, med3 (-) € Inv(medp) (meaning that
the output of the operator for any input will be in Inv(medp)),
which in this special case is known to be exactly Pﬁ [7],
[76]-[78). Therefore, medy () € Pj}, ie., the set of all
piecewise-constant sequences of plateau length >M. Thus,
filtering {y(n)}Y -4 using iterations of the median will result
in a sequence satisfying constraint (4). But how close is this
final result to the true data?

Inv(yw) is the collection of all binary sequences having
plateaus (runs) of 1’s of length >M [73], [1]. Similarly,
Inv(¢w) is the collection of all binary sequences having
plateaus of 0’s of length >M. Clearly, Inv(vyw ) NInv(¢w) =
PYY, ie., the collection of all binary sequences which are
piecewise constant of plateau length >M. The composite
filters dw (yw (+)), yw (¢w(-)) are known as openclose, and
closopen, respectively [1]. In this special case, they are both in-
variant under further application of ¢w () or vy (+) [761-[78],
and, therefore

dw (v (") € Inv(yw) NInv(¢w) = Py
and

yw (dw(+)) € Inv(yw) ﬂInV(¢w) = Py



596

Thus, filtering {y(n)}X - using either @pw(yw(-)), or
yw (dw (+)) will also result in a sequence satisfying constraint
(4). Furthermore, the final output of iterations of the median
will obey the following pointwise order relation (note that this
is not true in general) [1], [76]-[78]

ow(w ({y(n)1255)) < medm({y(n)}n—o
<w (¢w({y(n)}ng)-

Since opening and closing are known to be optimal in the
case of one-sided noise [74], is it possible that any one of the
three filters above (openclose, iterations of the median, and
closopen) is optimal in the more general setting of two-sided
noise? The answer is a resounding no. Consider the simple
example of Fig. 1. For this choice of {y(n 'n,—O , all three
filters above result in a sequence of all 1’s, which is clearly
suboptimal. The same is true for the recursive median.

B. Edge Detection

As mentioned earlier, there exists an almost endless list of
variational as well as ad hoc approaches to edge detection and
image segmentation, and we certainly do not make any strong
claims here. The reader is referred to Morel and Solimini [55]
for an up-to-date exposition. However, we do want to point out
that, in the context of edge detection, a minimum plateau (run)
length constraint is more natural, robust, and effective than a
constraint on the number of edges. The latter requires one to
come up with a good a priori estimate of the true number of
edg/es in the data (i.e., the complexity of the data) before one
can apply a dynamic programming algorithm with sufficiently
good results. If one overestimates the true number of edges in
the data, one is likely to end up with many spurious and locally
inconsistent noisy edges. On the other hand, the former method
merely requires one to define what he or she considers to be
the minimum acceptable plateau (run) length in the true data,
i.e., where to “call it;” any structure below this prespecified
threshold will be classified as noise and eliminated.

C. Polygonalization of Shape Boundaries

As previously mentioned in Section II, polygonalization of
planar shape boundaries is a classic problem in the literature on
shape representation and recognition and for a good reason:
it offers an intuitive and practical means of obtaining com-
pact shape descriptions which can capture “essential” shape
structure, while eliminating unimportant details and/or noise
artifacts. After all, there is ample evidence (e.g., the popular
family game Pictionary® is one example that comes immedi-
ately to mind) that humans can effectively communicate visual
information by means of sketches or line drawings.

One can map the boundary of a shape in 2-D discrete space
into a 1-D equivalent description, using a standard tool, namely
‘the so-called turning sequence (which is related to chain
coding). Roughly speaking, one starts from a conveniently

chosen point on the curve (e.g., the lowest-rightmost point)

and follows the curve (e.g., clockwise) while recording the
slope of point-tp-point transitions. Given the turning sequence,
it is possible to reconstruct the original boundary, modulo a
rotation and/or translation. Observe that straight line pieces of
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the boundary manifest themselves as plateaus in-the turning
sequence. We may therefore pose the problem of polygonal
boundary approximation as a piecewise-constant sequence
approximation problem in terms of the associatéd turning se-
quence. In effect, this is a landmark-based approach, in that the
final polygonal approximation is formed by connecting points
on the original shape boundary, selected according to an edge
consistency criterion, i.e., the selected points are “vertices”
in-between two boundary pieces of sufficient (>M) length,
which can be well approximated by linear segments. This
approach provides an alternative polygonalization method,
based on a formal definition of edge saliency, as opposed
to previous landmark-based approaches, which were largely
heuristic. This work is currently in progress, and results will
be reported elsewhere.

VII. CONCLUSIONS AND FURTHER RESEARCH

Motivated in part by an observation related to some open
problems in modern nonlinear filtering, we have posed and
investigated a new formal optimization problem, namely,
that of optimally approximating a sequence by a runlength-
constrained sequence. We have demonstrated that a simple
recasting of this latter problem leads to an efficient Viterbi-type
optimal algorithmic solution.

We call the resulting input-output operator the Viterbi
optimal runlength-constrained approximation filter. This filter
is optimal by design, has reasonable complexity, and can be
efficiently implemented in dedicated Viterbi hardware, as well
as in general-purpose workstations. Its fundamental properties
have been studied by adopting a nonlinear filtering viewpoint.
In particular, we have shown that, under mild conditions, the
VORCA is idempotent and, without loss of optimality, can be
designed to be self-dual. We have also demonstrated that it is
not increasing, by means of a counterexample. This implies
that the VORCA is not a morphological filter and, therefore,
any morphological filter provides a suboptimal solution to our
optimizaiion problem. This result is rather surprising, given-
our earlier results on the optimality of certain elementary
morphological filters for some special cases of the problem at
hand. The same suboptimality remark holds for all increasing
nonlinear filters, including the median, the recursive med1an
rank-order, and stack filters.

A complete simulation experiment that corroborates. our
theoretical findings has also been presented. The results are
quite impressive. We have also highlighted some potential
applications, including edge detection, and polygonalization of
planar shape boundaries. The latter is of interest to us, and it
warrants further investigation. Finally, we have hinted at pos-:
sible extensions (e.g:, piecewise-linear runlength—constralned
approximation), and these are also of interest.

ACKNOWLEDGMENT

The author wishes to thank the‘anonymous reviewers, whose
comments helped improve this manuscript. Thanks are also
due to Prof. J. S. Baras for providing suggestions, support,
and several references [79], Prof. C. A. Berenstein for several



SIDIROPOULOS: VITERBI OPTIMAL RUNLENGTH-CONSTRAINED APPROXIMATION NONLINEAR FILTER

technical discussions, and Prof. A. Makowski for a fruitful
technical discussion.

[1]
[2]

[3]

4

[5]

(6l
[71
(8]
9]
[10]
[11]
[12]
[13]
(14]
[15]
[16]
[17]
[18]

(191
[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

28]

[29]

[30]

REFERENCES
H. J. A. M. Heijmans, Morphological Image Operators. Boston: Aca-
demic, 1994.
N. C. Gallagher Jr. and G: W. Wise, “A theoretical analysis of the prop-
erties of median filters,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-29, pp. 1136-1141, Dec. 1981.
B. I Justusson, “Median filtering: Statistical properties,” in Two-
Dimensional Digital Signal Processing II: Transforms and Median
Filters, T. S. Huang, Ed. Berlin: Springer-Verlag, 1981, pp. 161-196.
T. A. Nodes and N. C. Gallagher, “Block median filters: Some mod-
ifications and their properties,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-30, pp. 739-746, 1982.
A. C. Bovik, T. S. Huang, and D. C. Munson Jr., “The effect of median
filtering on edge estimation and detection,” IEEE Trans. Patt. Anal.
Machine Intell., vol. PAMI-9; pp. 181-194, Mar. 1987.
N. C. Gallagher Jr., “Median filters: A tutorial,” in Proc. IEEE Int. Symp.
Circ., Syst., ISCAS-88, 1988, pp. 1737-1744.
L. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters: Principles
and Applications. Boston: Kluwer, 1990. ‘
G. Qiu, “Functional optimization properties of median filtering,” IEEE
Signal Processing Lett., vol. 1, pp. 6465, 1994.
R. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univer-
sity Press, 1957.
R. Bellman and S. Dreyfus, Applied Dynamic Programming. Prince-
ton, NJ: Princeton University Press, 1962.
S. Dreyfus and A. Law, The Art and Theory of Dynamic Programming.
New York: Academic, 1977.
H. Stone, “Approximation of curves by line segments,” Math. Comput.,
vol. 15, pp. 40-47, 1961.
R. Bellman, “On the approximation of curves by line segments using
dynamic programming,” Commun. ACM, vol. 4, pp. 284, 1961.
B. Gluss, “A line segment curve-fitting algorithm related to optimal
encoding of information,” Inform. Contr., vol. 5, pp. 261-267, 1962.
, “Further remarks on line segment curve-fitting using dynamic
programming,” Commun. ACM, vol. 5, pp. 441-443, 1962.
——, “Least squares fitting of planes to surfaces using dynamic
programming,” Commun. ACM, vol. 6, pp. 172-175, 1963.
, “An alternative method for continuous line segment curve-
fitting,” Inform. Contr., vol. 7, pp. 200-206, 1964.
R. Bellman, B. Gluss, and R. Roth, “On the identification of systems
and the unscrambling of data: Some problems suggested by neurophys-
iology,” P. NAS US, vol. 52, pp. 1239-1240, 1964. :
M. G. Cox, “Curve fitting with piecewise polynomials,” J. Inst. Math.
Applications, vol. 8, pp. 36-52, 1971.
J. G. Dunham, “Optimum uniform piecewise linear approximation of
planar curves,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8,
pp. 67-75, Jan. 1986.
Y. Kurozumi and W. A. Davis, “Polygonal approximation by the
minimax method,” Comput. Graphics Image Processing, vol. 19, pp.
248-264, 1982.
U. Montanari, “A note on minimal length polygonal approximation to
a digitized contour,” Commun. ACM, vol. 13, pp. 4147, Jan. 1970.
U. E. Ramer, “An iterative procedure for the polygonal approximation of
plane curves,” Comput. Graphics Image Processing, vol. 1, pp. 244-256,
1972.
R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.
J. Slansky, R. L. Chazin, and B. J. Hansen, “Minimum perimeter
polygons of digitized sithouettes,” IEEE Trans. Comput., vol. C-21, pp.
260-268, Mar. 1972.
1. Slansky and V. Gonzalez, “Fast polygonal approximation of digitized
curves,” Patt. Recog., vol. 12, pp. 327-331, 1980.
1. Tomek, “Two algorithms for piecewise linear continuous approxima-
tions of functions of one variable,” IEEE Trans. Comput., vol. C-23, pp.
445-448, Apr. 1974.
A. Rosenfeld and J. S. Weszka, “An improved method of angle detection
on digital curves,” IEEE Trans. Comput., vol. C-24, pp. 940-941, Sept.
1975.
K. A. Narayanan, D. P. O’Leary, and A. Rosenfeld, “Image smoothing
and segmentation by cost minimization,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-12, no. 1, pp. 91-96, 1982.
T. Pavlidis and S. L. Horowitz, “Segmentation of plane curves,” IEEE
Trans. Comput., vol. C-23, pp. 860-870, Aug. 1974.

31]

[32]

[33]

[34]

[35]

[36]

597

T. Pavlidis, “A review of algorithms for shape analysis,” Comput.
Graphics Image Processing, vol. 7, pp. 242-258, 1978.

- , “Algorithms  for shape analysis of contours and waveforms,”
IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-2, pp. 301-312,
1980.

D. Lee and T. Pavlidis, “One-dimensional regularization with disconti-
nuities,” IEEE Trans. Patt. Anal. Machine Intell., vol. 10, pp. 822-829,
Nov. 1988.

1. Vandewalle, “On the calculation of the piecewise linear approximation
to a discrete function,” IEEE Trans. Comput., vol. C-24, pp. 843-846,

1975.
C. M. Williams, “An efficient algorithm for the piecewise linear approx-

imation of planar curves,” Comput. Graphics Image Processing, vol. 8,
pp. 286-293, 1978.
, “Bounded straight-line approximation of digitized straight

. curves and lines,” Comput. Graphics Image Processing, vol. 16, pp.

371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53] .

[54]
[551
[56]

{571
[58]

370-381, 1981.

F. Badi’i and B. Peikari, “Functional approximation of planar curves via
adaptive segmentation,” Int. J. Syst. Sci., vol. 13, no. 6, pp. 667-674,
1982.

L. D. Wu, “A piecewise linear approximation based on a statistical
model,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-6, pp.
41-45, Jan. 1984.

J. C. Bezdek and M. Anderson, “An application of the c-varieties
clustering algorithm to polygonal curve fitting,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-15, pp. 637-641, Sept. 1985.

H. Imai, “Computational-geometric methods for polygonal approxima-
tions of a curve,” Comput. Graphics Image Processing, vol. 36, pp.
31-34, 1986.

0. Baruch, “Segmentation of 2-D boundaries using the chain code,” in
Proc. SPIE Visual Commun. Image Processing II, vol. 845, 1987, pp.
159-166.

C. H. Teh and R. T. Chin, “On the detection of dominant points on
digital curves,” IEEE Trans. Patt. Anal. Machine Intell., vol. 11, no. 8,
pp- 859-872, Aug. 1989.

. S. Fahn, J. F. Wang, and J. Y. Lee, “An adaptive reduction procedure
for piecewise linear approximation,” IEEE Trans. Patt. Anal. Machine
Intell., vol. 11, pp. 967-973, Sept. 1989.

D. Geman and G. Reynolds, “Constrained restoration and the recovery
of discontinuities,” IEEE Trans. Patt. Anal. Machine Intell., vol. 14, no.
3, pp. 367-384, Mar. 1992.

D. Geman, S. Geman, C. Graffigne, and P. Dong, “Boundary detection
by constrained optimization,” IEEE Trans. Patt. Anal. Machine Intell.,
vol. 12, no. 7, pp. 609-627, 1990.

U. Montanari, “On the optimal detection of curves in noisy pictures,”
Commun. ACM, vol. 14, no. 5, pp. 335-345, 1971.

D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic program-
ming for detecting, tracking, and matching deformable contours,” /EEE
Trans. Patt. Anal. Machine Intell., vol. 17, no. 3, pp. 294-302, Mar.
1995.

D. Terzopoulos, “Regularization of inverse visual problems involving
discontinuities,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8,
no. 4, pp. 413424, Jul. 1986.

A. A. Amini, T. E. Weymouth, and R: C. Jain, “Using dynamic
programming for solving variational problems in vision,” IEEE Trans.
Patt. Anal. Machine Intell., vol. 12, no. 9, pp. 855-867, Sept. 1990.

K. Konstantinides and B. K. Natarajan, “An architecture for lossy
compression of waveforms using piecewise linear approximation,” IEEE
Trans. Signal Processing, vol. 42, no. 9, pp. 2449-2454, Sept. 1994.
G. Papakonstantinou, P. Tsanakas, and G. Manis, “Parallel approaches
to piecewise linear approximation,” Signal Processing, vol. 37, pp.
415423, 1994.

D. Mumford and J. Shah, “Boundary detection by minimizing function-
als,” in Proc. IEEE Conf. Comput. Vision Patt. Recogn., San Francisco,
1985.

__, “Optimal approximations by piecewise smooth functions and
associated variational problems,” Commun. Pure Appl. Math., vol. 42,
pp. 577685, 1989.

A. Blake and A. Zisserman, Visual Reconstruction.
MIT Press, 1987.

J.-M. Morel and S. Solimini, Variational Methods in Image Segmenta-
tion. Berlin: Birkhauser, 1994,

A. J. Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol.
IT-13, pp. 260-269, Apr. 1967.

J. K. Omura, “On the Viterbi decoding algorithm,” IEEE Trans. Inform.
Theory, vol. IT-15, pp. 177-179; Jan. 1969.

B. Sklar, Digital Communications Englewood Cliffs, NJ: Prentice-
Hall, 1988.

Cambridge, MA:



598

[59]

[60]

[61]

[62]

[63]

[64]

(651

[66]

[67]

[68]
(691

[70]
(711
{72]
(73]

[74]

[75]

P. D. Wendt, E. J. Coyle, and N. C. Callagher, “Stack filters,” IEEE
Trans. Acoust,, Speech, Signal Processing, vol. ASSP-34, pp. 898-911,
1986.

G. Feygin, P. G. Gulak, and P. Chow, “A multiprocessor architecture for
Viterbi decoders with linear speedup,” IEEE Trans. Slgnal Processing,
vol. 41, no. 9, pp. 2907-2917, Sept. 1993.

P.G. Gulak and E. Shwedyk, “VLSI structures for Viterbi receivers: Part
T—General theory and applications,” IEEE J. Selected Areas Commun.,
vol. JSAC-4, pp. 142-154, Jan. 1986.

S. Kubota, S. Kato, and T. Ishitani, “Novel Viterbi decoder VLSI
implementation and its performance,” IEEE Trans. Commun., vol. 41,
no. 8, pp. 1170-1178, Aug. 1993. ]

K. K. Parhi, “High-speed VLSI architectures for Huffman and Viterbi
decoders,” IEEE Trans. Circ. Syst. I, vol. 39, no. 6, pp. 385-391, June
1992.

T. K. Truong, M. T. Shih, I. S. Reed, and E. H. Satorius, “A VLSI

design for a trace-back Viterbi decoder,” IEEE Trans. Commun., vol.
40, no. 3, pp. 616-624, Mar. 1992.

E.J. Coyle and J. H. Lin, “Optimal stacking filters and mean absolute er-
ror nonlinear filtering,” IEEE Trans. Acoust. Speech, Signal Processing,
vol. 36, no. 8, pp. 1244-1254, Aug. 1988.

E. J. Coyle, J. H. Lin, and M. Gabbouj, “Optimal stack filtering and the
estimation and structural approaches to image processing,” IEEE Trans.
Acoust. Speech, Signal Processing, vol. 37, no. 12, pp. 2037-2066, Dec.
1989.

M. Gabbouj and E. J. Coyle, “Minimum mean absolute error stack
filtering with structural constraints and goals,” IEEE Trans. Acoust,
Speech, Signal Processing, vol. 38, no. 6, pp. 955-968, June 1990.

L. Yin, “Stack filter design: A structural approach,” IEEE Trans. Signal
Processing, vol. 43, no. 4, pp. 831-840, Apr. 1995.

M. Niedzwiecki and W. A. Sethares, “Smoothing of Discontinuous
Signals: The Competitive' Approach,” IEEE Trans. Signal Processing,
vol. 43, no. 1, pp. 1-13, Jan. 1995.

A. Restrepo and A. C. Bovik, “Locally monotonic regression,” IEEE
Trans. Signal Processing, vol. 41, no. 9, pp. 2796-2810, Sept. 1993.

J. Serra, Ed., Image Analysis and Mathematical Morphology. New
York: Academic, 1982.

, Image Analysis and Mathematical Morphology, vol. 2, Theoret-
ical Advances. -San Diego: Academic, 1988.

G. Matheron, Random Sets and Integral Geometry. New York: Wiley,
1975.

N. D. Sidiropoulos, J. S. Baras, and C. A. Berenstein, “Optimal filtering
of digital binary images corrupted by union/intersection noise,” IEEE
Trans. Image Processing, vol. 3, no. 4, pp. 382-403, 1994.

, “An algebraic analysis of the generating functional for discrete
random sets, and statistical inference for intensity in the discrete boolean
random set model,” J. Math. Imag., Vision, vol. 4, pp. 273-290, 1994,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 3, MARCH 1996

[76] P. Maragos, “Unified theory of translation-invariant systems with ap-
plications to morphological analysis and coding of images,” Ph.D.
dissertation, School of Elect. Eng., Georgia Inst. of Technol Atlanta,
1985.

P. Maragos and R. W. Schafer, “Morphological filters—part I : Their
set-theoretic analysis and relations to linear shift-invariant filters,” JEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, no. 8, pp.
; 1153—1169, Aug. 1987.

[78] , “Morphological filters—part II: Their relations to median, order-
stahsnc and stack filters,” JEEE Trans. Acoust., Speech, Signal Process-
ing, vol. ASSP-35, no. 8, pp. 1170-1184, Aug: 1987.

D. C. MacEnany and J. S. Baras, “Scale-space polygonalization of target
silhouettes and applications to model-based ATR,” in Proc. 2nd ATR
Syst. Technol. Conf., Center for Night Vision and Electro-Optics, Ft.
Belvoir, VA, vol. II, Mar. 1992, pp. 223-247. '

771

[79]

Nicholas D. Sidiropoulos (S’90-M’92) received
the Diploma in electrical engineeting from the Aris-
totelian University of Thessaloniki, Greece, in 1988
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Maryland at College
Park, in 1990 and 1992, respectively.

From 1988 to 1992, he was a Fulbnght Fel-
low and a Research Assistant at the Institute for
Systems Research of the University of Maryland.
From September 1992 to June 1994, he served
in the- Hellenic Air Force. From October 1992 to
October 1993, he served as a Lecturer at the Hellenic Air Force Academy.
From October 1993 to June 1994, he was also a Member of the Technical
Staff, Systems Integration Division, G-Systems Ltd., Athens, Greece. Since
August 1994, he has been a Post-Doctoral Research Associate with the
Institute for Systems Research of the University of Maryland at College
Park. Since January 1995, he has also been an Adjunct Professor with
the Department of Electrical Engineering of the University of Maryland at
College Park. His research interests aré in signal and image processing,
nonlinear ﬁltermg, estimation and detection, random set theory, morphology,
and medical imaging.

Dr. Sidiropoulos is a member of the Technical Chamber- of Greece and is
a registered Professional Engineer in Greece.

& e



