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Abstract— We model digital binary image data as realizations
of a uniformly bounded discrete random set (or discrete random
set, for short), which is a mathematical object that can be directly
defined on a finite lattice. We consider the problem of estimating
realizations of discrete random sets distorted by a degradation
process that can be described by a union/intersection noise model.
Two distinct optimal filtering approaches are pursued. The first
involves a class of “mask” filters, which arises quite naturally
from the set-theoretic analysis of optimal filters. The second
approach involves a class of morphological filters. We prove
that under i.i.d noise morphological openings, closings, unions of
openings, and intersections of closings can be viewed as MAP esti-
mators of morphologically smooth signals. Then, we show that by
using an appropriate (under a given degradtion model) expansion
of the optimal filter, we can obtain universal characterizations
of optimality that do not rely on strong assumptions regarding
the spatial interaction of geometrical primitives of the signal and
the noise. The results generalize to gray-level images in a fairly
straightforward manner.

I. INTRODUCTION

N important problem in digital image processing and
Aanalysis is the development of optimal filtering proce-
dures that attempt to restore a binary image (“signal”) from its
degraded version [25], [8]. Here, the degradation mechanism
usually models the combined effect of two distinct types
of distortion, namely, image object obscurations because of
clutter and sensor/channel noise. It is typically assumed that
the degraded image can be accurately modeled as the union of
the uncorrupted binary image with an independent realization
of the noise process, which is a binary image itself [15].
This degradation model is known as the union noise model.
Other models exist, such as the intersection noise model,
and the union/intersection noise model, which are defined
in the obvious fashion. The assumption of independence is
crucial for the theoretical analysis of optimal filters, and it is
plausible in many practical situations. These models are rather
general in that they can be tailored to describe most popular
types of signal-independent noise, e.g., salt-and-pepper noise
(also known as binary symmetric channel (BSC) transmission
noise), burst channel errors, noise with a geometric structure
[15], occlusion, etc.

This research has been largely motivated by the works
of Haralick et al. [15] and Schonfeld and Goutsias [25].
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Their approach is model based in that they assume specific
probabilistic/geometrical models that govern the behavior of
both signal and noise “patterns,” i.., the elementary geo-
metrical primitives from which the signal and noise images
are constructed. Haralick er al. assume that the signal and
noise patterns are “noninterfering” with one another, meaning
that each signal or noise pattern is disconnected from all
remaining signal and noise patterns. Schonfeld and Goutsias
make a stronger assumption concerning the separability of
noise patterns. These assumptions are reasonable if the image
is sparse, i.e., the signal and noise patterns are most likely
to remain uncluttered. Haralick ef al. adopt the area of the
symmetric set difference between the ideal image and its
reconstruction as their choice of distance metric and work
with a union noise model to derive the optimal (in the sense
of minimizing the expected distance between the signal and
its reconstruction) value of a “size” parameter that determines
the optimal filter within a restricted family of morphological
opening filters [22], [26], [7]. In their work, the signal and
noise patterns are all assumed to be of the same basic shape,
and only their size varies. Schonfeld and Goutsias consider
morphological alternating sequential filters (ASF’s) [22], [26],
[7] and work with the union/intersection noise model. They
adopt an implicit least mean difference “uniform” optimality
criterion (i.e., the best filter, within a family of filters, is
defined to be the one that minimizes an average (over the
family) distance metric between the outputs of all the filters
in the family for a given class of inputs). They derive the
“optimal” ASF by means of minimizing an upper bound on
their cost function. Related work can also be found in a series
of papers by Dougherty et al. [8]-[10].

This work “ocuses on a different viewpoint. As it turns
out, by restricting our attention to suitable classes of fil-
tering operations and uniformly bounded discrete random
sets (defined below), we can obtain optimal filtering results
under considerably milder assumptions on the signal and noise
patterns, i.e., results that are applicable for all signal and noise
models under the assumption of mutual independence of the
signal and the noise. Specifically, one need not assume that
signal and noise patterns are “noninterfering.” Furthermore,
it is possible to obtain simple, closed characterizations of the
optimal filter. "he resulting formulas are intuitively appealing,
and directly amenable to design and implementation.

Some motivating comments are in order. A fair question to
ask is whether it is necessary for the purposes of filtering
to model binary image data as random sets. We feel that
it is for two reasons. First, this enables us to formulate

1057-7149/94$04.00 © 1994 IEEE



SIDIROPOULOS er al.: OPTIMAL FILTERING OF DIGITAL BINARY IMAGES

the optimal filtering problem within a rigorous statistical
framework. Second, random set theory is closely related to
mathematical morphology, which is a nonlinear image algebra
that effectively addresses the problem of quantitative shape
description. Thus, random set theory allows the simultaneous
modeling of two important aspects of binary images: geometric
structure and statistical behavior. In and by itself, neither one
of the two can provide a complete summary of the images
under consideration. In the terminology of nonlinear filtering,
our unified approach allows the joint optimization of both the
syntactical and the statistical properties of a filter structure.

Another important question is how much common ground
exists between the optimal filtering problem for discrete ran-
dom sets and standard optimal filtering theory for the case of
real or vector-valued random variables. To what extent can
we translate well established results (e.g., the orthogonality
principle) in the discrete random set setting? The answer is that
the analogy is rather superficial. The major difference is that
our problem does not have the nice vector space structure that
underscores classical optimal filtering theory. We will explain
this in detail.

It is important to note that our results can be extended
to finite-gray-level digital images of compact support and
sup/inf noise via threshold decomposition of functions and/or
by treating functions as sets via their umbrae! (cf. [20], [7].
|61, [27] among others), which allow for a rigorous treatment
of random finite-gray-level digital images of compact support
as uniformly bounded discrete random sets defined on a 3-D
finite lattice B C Z3. This is achieved as follows. Since the
number of gray levels is finite, we can assume, without loss
of generality, that the range of gray levels is A =1,.... V.
Then the umbra of a gray-level digital image f of compact
support D C Z? is the subset of B = D x A C Z* beneath
the graph of f. It is easy to see that f completely determines,
and is completely determined by, its umbra.

The rest of this paper is organized as follows. Section
IT contains some discrete random set fundamentals, whereas
Section III contains a formalization of the optimal filtering
problem, including a discussion of our choice of distance met-
ric. Some connections with classical optimal filtering theory
are also made, and the fundamental differences are pointed
out. Section IV contains results on optimal mask filtering,
which is motivated by the set-theoretic analysis of optimal
filters. Section V takes on a morphological filtering approach,
which is motivated by the widespread use of morphological
filters, their well-known shape-preservation properties, and a
fresh statistical insight into some “folk theorems” of applied
morphological filtering. Some simulation experiments are also
included. Finally, Section VI offers some conclusions.

1I. DISCRETE RANDOM SET FUNDAMENTALS

Intuitively, a random digital binary image X is an object that
takes on “values” in the set of all subsets of a finite (e.g., 512
x 512) pixel lattice, which we will denote by B, according
to some probability law Px on a suitable o algebra. Each

!"The umbra of a function of n variables is the set of all points beneath the
graph of the function in n + 1 space.

instance K C B of image data? is thus viewed as a realization
of the random object under consideration, and it is assigned
a probability Py(X = K) by the law Py. Knowledge
of Py(X = K) for all K C B completely specifies the
random object X because it allows the computation of the
probabilities of all conceivable events of interest (e.g., What
is the probability of X N L = § for some (given) L C
B? What is the expected area of X? etc.). However, for
all practical purposes, this specification is not convenient to
work with. There exist alternative (but equivalent) means
to accomplish this specification (in terms of the so-called
generating functional or other suitable functionals of the law
Px), which are naturally more convenient for modeling and
design purposes. We will argue for this point as we move on.

Mathematically, a random digital binary image of compact
support can be formally defined as a uniformly bounded
discrete random set.

Definition 1: Let B be a bounded subset of ZZ. Assume
that B contains the origin. Let X(£2) denote the o algebra
on . Let ¥(B) denote the power set (i.e. the set of all
subsets) of B, and let £(X(B)) denote the power set of £(B).
A uniformly bounded discrete random set, or, for brevity,
discrete random set (DRS) X on B is a measurable map-
ping of a probability space (£, 2(Q), P) into the measurable
space (2(B),2(X(B))). A DRS X on B induces a unique
probability measure Py on X(X(B)).

Definition 2: The functional

Tx(K)=Px(XNK #0),K € £(B)

is called the capacity functional of the DRS X.
Definition 3: The functional

Qx(K)=Px(XNK=0)=1-Tx(K), K¢eX(B)

is called the generating functional of the DRS X.

In the context of DRS’s, the generating functional plays a
role analogous to the one played by the cumulative distribu-
tion function (cdf) in the context of scalar discrete random
variables. The following lemma will be useful. Its proof can
be found in the Appendix. See [1] for basic Moebius inversion.

Lemma {: (Variant of Moebius inversion for Boolean alge-
bras) Let v be a function on X(B). Then, v can be represented
as

v(A) = Z u(S) external decomposition.”
5CA¢

The function u is uniquely determined by v, namely

u(§) =Y (-DI(suC)

cCs

where © denotes complement with respect to B.

The capacity functional T’y (or, equivalently, the generating
functional QQx) carries all the information about a DRS X.
This is clearly stated in the following theorem.

2By convention, A is taken to be the set of all black pixels in the image.
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Theorem 1: Given Qx(K),VYK € ¥(B), Px(A),VA €
L(X(B)) is uniquely determined and, in fact, can be recovered
via the measure reconstruction formulas

=Y Px(X =K)
KeA
with
Px(X=K)= > (-)"Qx(K UK.
K'CK
Proof: The functional @ x can be expressed in terms of
Px as

- ¥ A=K

K'CK¢«

This observation, along with Lemma 1, establishes the validity
of the theorem. 0

The uniqueness part of this theorem is originally due to
Choquet [3], and it has been independently introduced in the
context of continuous-domain random set theory by Kendall
[17} and Matheron [21], [22]. Related results can also be found
in Ripley [24]. However, the measure reconstruction formulas
are essentially only applicable within a uniformly bounded
discrete random set setting. In the case of (uncountably or
countably) infinite observation sites, the uniqueness result
relies heavily on Kolmogorov’s extension theorem, which
is nonconstructive. See [12]-[14], [28]-[33] for some other
interesting results on DRS’s. (In [13] and [14], DRS’s are
defined on the infinite lattice Z2, and the results evolve in
different directions than ours.)

The capacity functional plays an important role in the study
of statistical inference problems for DRS’s. This is especially
true for a class of DRS models known as germ-grain models
and the Boolean model in particular, whose capacity functional
has a simple, tractable form. We will see that the capacity
functional has an equally fundamental role in the study of
optimal filtering.

III. FORMULATION OF THE OPTIMAL FILTERING PROBLEM

Let X,N,Y be DRS’s on B. X models the “signal,”
whereas N models the noise. Let g : (B)x E(B) — X(B) be
a mapping that models the degradation (measurability is auto-
matically satisfied here since the domain of g is finite). The ob-
served DRSis Y = g(X,N). Letd: ©(B) x X(B) — Z, be
a distance metric between subsets of B. In this context, the op-
timal filtering problem is to find a mapping f : ¥(B) — X(B)
such that the cost (expected error)

X = J(Y) = f(g(X. N))

is minimized over all possible choices of the mapping (“filter”)
f. This problem is in general intractable. The main difficulty
is the lack of structure on the search space. The family of all
mappings f : ¥(B) ~ X(B) is just too big. It is common
practice to impose structure on the search space, i.e., constrain
f to lie in F, which is a suitably chosen subcollection of
admissible mappings (family of filters), and optimize within

E(e) 2 Bd(X, X),
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this subcollection. The resulting filter is the best among its
peers, but it is not guaranteed to be globally optimal.

We adopt the following distance metric (area of the sym-
metric set difference)

d(X, X) = |(X\X) U (X\X)|
= (X\X)] + [(X\X)|
=|(X UX\(X nX)|
=|(XUX)-|(XnX)

where | | staads for set cardinality, \ stands for set difference,
ie, X\Y = X NY*, and ° stands for complementation with
respect to the base frame B. This distance metric is essentially
the Hammmg, distance [23] when X, X are viewed as vectors
in {0, 1}‘ . Since the component variables are binary, it can
also be interpreted as the square of the L, distance of vectors
in {0, 1}‘ | i.e., with some abuse of notation

dX,X)=(X -X)T(x - X)

where on the left-hand side symbols are interpreted as sets,
whereas on the right- hand SIde symbols are interpreted as
column vectors in {0, 1} |, and 7 stands for transpose. In
this setting, the sufficiency part of the orthogonality principle
(OP) [23] applies. It states that a sufficient condition for the
existence of an f* € F such that

E[(X - fFYNT(X - f(¥))]
SE[(X - fOY))T(X - f(Y)),VfeF

is that
E[(X - 1Y) (f(v)-

However, unlike the case of vectors in R", where F is a
vector space over the field of reals (known as the space of
square integrable estimators), here, F is not a vector space.
The proof of the necessity part of the OP strongly depends
on F having a vector space structure. When F does not have
a vector space structure, the key notion is that of conditional
expectation. Here, however, we run into trouble defining what
we mean by conditional expectation of a DRS X given a DRS
Y, let alone computing it. Fortunately, it turns out that it is
often possiblz to write down an expression for E[d(X, X)]
and optimize over F by brute force.

Technically speaking, d(X,X) can be considered as a
quadratic distance measure when we view X, X as vectors
in {0,1}/B | From a set-theoretic point of view, d(X, X) is
clearly not a quadratic distance measure since it penalizes
errors in a linear fashion. However, the squared area of
the symmetric set difference (which is a quadratic distance
measure in the set-theoretic sense) does not yield useful
optimality conditions. This is partly due to the lack of a
meaningful and tractable definition for the expectation of a
DRS X. In the continuous case, there exists such a definition.
The expectation of a random compact set X can be defined via
the expectation of random selections, i.e., random vectors that
are a.s. contained in X. The expectation of X is defined as
the union of expectations of all its random selections. Random

Y)) =0,¥f € F.
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selections exist, and the resulting notion of expectation of a
random compact set is well defined. This definition is adapted
to the development of strong limit theorems [40], [41], [2],
[371, [36], [39], [38], [4]. However, it is not convenient for our
purposes. Consider a uniformly bounded DRS X defined on a
finite lattice B C Z2. A random selection from X is a random
vector taking values in B; however, its expectation is not
necessarily a point in B. Thus, the resulting expectation of X
will not necessarily be a subset of B. Furthermore, in contrast
to the expectation of a random variable or random vector, this
notion of expectation of a random compact set (measurable
mapping) depends not only on the induced distribution over
the space of realizations but also on the mapping itself. This
surprising fact has interesting ramifications [41]. However,
in our case, it introduces unnecessary complications. Finally,
here we are not interested in asymptotics when the lattice
goes to infinity; instead, we focus on filtering. For this, we
need an alternative definition of expectation. From a quadratic
estimation-theoretic point of view, a proper formal definition
of the expectation of a DRS X would be as follows:

EX 2 in E[d(X, W)
arg  min [d(X, W)]

However, there exist several flaws with this formal definition.
It can be shown [28] that
in  E[d(X,W)]
arg wlenéI(IB) [4(X, W)

=arg min {|W|2
WeZ(B)

+2|W( Y PrzeX)- ) Pr(ze X))

zEWe zeW
-4y > Pz eX,yeX)}.
zeWe yeW

If we assume that Pr(z € X) =p,Vz € B, Pr(z € X,y € X)
=Pr(z € X)Pr(y € X) = p*,Vz,y s.t. z # y, and p < 0.5,
then EX = 0, regardless of the specific value of p. If p = 0.5,
then any W € X(B) will do. However, the single most
important problem is that, given a specification of the first
and second-order statistics of X, it is not clear how to find
an explicit solution to the above minimization problem. On
the other hand, the median of a DRS X, which is formally
defined as

MX & in E[d(X,W
arg min [d( )]

is much easier to deal with. Although the solution to this latter
minimization problem is not (in general) unique, it can be
forced to be unique by means of a simple regularization. Let
C(z) be a Boolean proposition that, for each point z € B, is
either true or false. Define the indicator function

a 1, if C(z)is true at z
1(C(2)) = {O, otherwise

Let supp 1(C(z)) stand for the support set of the indicator
function 1(C(z)), i.e., the subset of B where C(z) is true.
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Then, it can be shown [28] that
MpX £ supp 1(1 - Tx ({z}) < Tx({z}))

is the unique minimum cardinality solution to the minimization
problem

ngzl?B) E[d(X, W)].

These considerations essentially dictate our choice of distance
metric. In terms of the degradation, we assume that N is
independent of X and that the mapping g is given by

9(X,N)=XUN (union noise model)

or
g(X.N)=X NN (intersection noise model).

Although we shall be mainly concerned with either union or
intersection noise, on some occasions, we will allow g to be
a mapping from £(B) x E(B) x £(B) to £(B)

g(X, N1, N2) = (X N N1)U Ny

(union/intersection noise model )

where X, N7, N2 will be assumed to be mutually independent.

IV. OPTIMAL MASK FILTERS

In the case of union noise, we can assume, without loss of
generality, that the optimal filter is of the form

) =fw¥)=YNW=(XUN)NW,
for some W € £(B).

Similarly, in the case of intersection noise, we can assume that
the optimal filter is of the form

) =fYY)=YuW=(XNN)UW,
for some W € ¥(B).

Finally, in the case of combined union/intersection noise, we
can assume that the optimal filter is of the form

JV) = [ (¥) = (Y nWa) U W,
= ((((X N N1) U Nz) N W) U WY,
for some Wy, Wy, both in E(B).

We will collectively refer to these filters as mask filters.
For example, in the case of union noise, the optimal filter
should retain a subset of the observation points and reject the
rest; this should be done in some sort of statistically optimal
fashion. This is achieved by intersecting the observation with
a suitably chosen “mask” W, which, in general, depends on
the observation.

As a first step, we might want to investigate how much
we can achieve using a fixed mask W, i.e., one that does
not depend on the observation, and optimize the choice of
this fixed mask over all possible observations. We will call
the resulting constrained optimal filter the optimal fixed mask
filter. The second step would be to allow W to depend on
the observation via some suitable adaptation strategy. The
ideal situation would be to optimize the mask pointwise,
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i.e., construct a mapping W (-):X(B) — 3(B), which takes
an observation and maps it to the best mask for the given
observation. However, it seems that in general, this opti-
mization is intractable. Furthermore, the implementation of
such a pointwise optimal strategy requires a realization of
the mapping W{(-), which seems impractical. Nevertheless,
we will show that explicit optimization is possible under
some restrictions on the adaptation strategy. We will call the
resulting constrained optimal filter the optimal adaptive mask
filter.

Let us first consider fixed mask filtering. Here, we only work
with the union/intersection noise model. The other two noise
models are special cases. We have the following proposition.

Proposition 1: Under the expected symmetric set difference
measure, an optimal fixed pair of masks (W, W5) is given by

Wy = supp 1(Tx({2}) > max(Ty({z}), Ta({2))))
Wy = supp L(Tz({2}) < min(Tx ({z}), Ty ({z}))

whereas the associated minimum cost achieved by such an
optimal pair of masks is

E(e*) =Y min(Tx({z}), Ti({z}). Ta({2}))

z€eB
with
Ti({z}) = Tx({z}H)(1 = T, ({2}))
X (L=Tn,({z}) + (1 = Tx ({z})) T, ({2})

and
Tr({z}) = Tx({z)(1 = T, ({z}) + (1 = Tx({2}))-

Proof: See the Appendix.

If the first-order statistics (pixel hitting probabilities) of the
signal and noise DRS’s are spatially invariant, then obviously,
the optimal pair of masks is either (@, B), (8,), or (B, B).
In this case, fixed mask filtering is not appropriate. It is
exactly when the signal and/or the noise statistics are highly
nonstationary (meaning not even first-order stationary) that this
filtering approach makes sense. In such a highly nonstationary
environment, traditional shift-invariant neighborhood filtering
operations (e.g., local mean, median, order statistics) typically
fail to provide adequate filtering, and their optimization is
very difficult. On the other hand, the optimization of the
masks is based on simple statistics, which can be efficiently
estimated from training data. A potentially big gain in quality
of restoration rests exactly with proper use of the nonstationary
nature of the signal and/or the noise.

An obvious drawback of fixed mask filtering is that it does
not exploit the autocorrelation structure of the signal and
the noise. Furthermore, it is nonadaptive. Whenever higher
order statistics are available, we would like to use them.
We would also like to allow for an adaptation of the mask
using information extracted from the given input. Adaptive
mask filtering fits both bills. The tradeoff is an increase in
design/implementation complexity.

Let us first consider the case of union noise. Assume
that we are presented with a specific input L, i.e. we are
given that Y = X U N = L. One adaptation strategy is to

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3, NO. 4, JULY 1994

incorporate this information into the cost function. This is
done by considering the conditional expectation of d(X, X )
conditioned on ¥ = X U N = L. However, this does not
lead to a closed-form solution for the optimal filter. The
reason is that the minimization of this conditional expectation
requires the explicit computation of a pseudo-convolution of
likelihoods on the lattice of realizations. This computation is,
in general, intractable. Instead, suppose we can upper bound
the observable DRS Y, i.e., suppose that Y = X UN C K
for some K C B. Given this information, we would like to
pick W to rinimize the conditional expectation

E(e]Y = XUN C K).

The following proposition addresses this minimization prob-
lem.

Propositicn 2: Given that X U N C K, an optimal inter-
section mask W for filtering out the noise component N is
given by
W =K Nsupp 1([1-Tx (K°U{z})][Tn (K°U{z})~Tn(K°)]

ST (KU {z}) = T (KO)[L = T (K9))).
The corresponding minimum conditional cost achieved by
such an optimal choice of W is given by?

. _ 1
E(¢' I XUNCK)= 0= Tx(K)(1 < T (K%)
X z: min {[1 — Tx (KU {z})]
z€X
X [Tw(K° U {z}) — T (K°)).
[Tx (KU {z}) = Tx (K)][1 = Tw (K]}

Proof: See the Appendix.

Observe how information about the higher order statistics of
the signal and the noise is incorporated into the filter structure
by means of the capacity functionals of the signal and the
noise. Note that the minimum conditional cost achieved by an
optimal choice of W is not necessarily increasing in K; in the
expression for the minimum conditional cost, we can show
that the sum is increasing in K, but the normalizing factor
1/((1 = Tx(K))(1 — Tn(K*))) is decreasing in K. Given
an observation, i.e., given that Y = X U N = L, the obvious
(and tightest: upper bound is the observation itself. However,
by virtue of the previous remark, this tightest upper bound
is not necessarily the best choice. Nevertheless, we will see
(cf. Section 1V-A) that it is a good choice under a low-noise
scenario.

The case of intersection noise can be addressed by appealing
to duality. One can simply take the complement of all the sets
and operatioas involved and apply the result that has been
obtained for the case of union noise. This is clear because

d(X1, Xp) = d(X7, X5)

and ((X N N)UW)® = (XU N)nWe.

Hence, by conditioning on the event X< U N¢ C K°, ie.,
(X°UN°®)ri K =, we obtain the following result:

3We assume “hat Pr(X U N C K) > 0. Note that this, in turn, implies
that Tx (K€) < 1, and Ty(K°) < 1.
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Proposition 3: Given that X U N° C K¢, an optimal
union (“fill”’) mask W for filtering out the intersection noise
component N is specified by

W/(‘:
K nisupp 1([1— T (KU{z})][Txe (KU{2}) ~ T (K]
< [Txe (K U{2}) = Te (K)][1 - T (K)).

The corresponding minimum conditional cost achieved by
such an optimal choice of W is given by*

1
(L= Txe(K))(1 - Tn-(K))

X Z min {[1 = Tx-(K U {z})]

z€Ke
X [T (K U {z}) = Tw- (K],
[Tx<(K U {z}) — Tx<(K))
X [1 — TNc(K)]}

E(¢"|X°UN° C K°) =

A. An Example: The Discrete Radial Boolean Random
Set (DRBRS)

The Boolean random set is by far the most important random
set model to date. Its importance stems from its power to
model many interesting phenomena as well as its analytical
tractability. This model has received considerable attention in
the literature (see {35] for a review). In a sense, the Boolean
random set is a generalization of white noise for the case of
spatial processes. Therefore, it is well suited to model random
noise and obscuration under any of the degradation models
which have been adopted so far. Here, we develop a restricted
discrete-case analog of the Boolean model and compute its
capacity functional.

The theory of mathematical morphology has been devel-
oped mainly by Serra [26], [11], Matheron [22], and their
collaborators during the 1970’s and early 1980’s. Since then,
mathematical morphology and its applications have become
very popular. The theory is concerned with the quantitative
analysis of shape with an emphasis on geometric structure. It is
founded on certain elementary set-to-set mappings, namely, set
dilation/erosion, which are inherently nonlinear. These map-
pings are defined in terms of a structuring element, which is a
“small” primitive shape (set of points) that interacts with the
input image to transform it and, in the process, extract useful
information about its geometrical and topological structure. Let

Wee{zeZ?-2zeW}

The dilation of a set Y C Z? by a structuring element W is
defined as’

YoW={zeZW.NnY #0}

4 Again, we assume that Pr(X< U N“ C K'©) > 0, and this implies that
Tx<(R) < 1, and Tnc(K} < 1. In addition, similar remarks hold here
regarding the best choice of K.

SHere, we follow the original definitions of Serra [26]. In his work, the
symbol ¢ stands for Minkowski set addition, and the symbol = stands for
Minkowski set subtraction.
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whereas the erosion of a set Y C Z? by a structuring element
W is defined as

YeW*={:eZ*|W.CY}

Erosion and dilation are dual operators in the sense that Y ©
Ws = (Y @ W?)°, where here, © stands for complementation
with respect to Z?. Two fundamental composite morphological
operators are opening and closing. The opening Y o W of a
set Y C Z? by a structuring element W is defined as

YoW&(Yewhew=|J
2€Z2|W.CY

W..

Similarly, the closing Y ¢ W of a set Y C Z? by a structuring
element W is defined as

YeW2(YaW oW

By duality of erosion/dilation, it follows that opening and
closing are dual operators. Both can be viewed as nonlinear
smoothing operators. Opening and closing are idempotent
(stable) operators in the sense that (Y oW)oW =Y oW, and
(YeW)eW =YeW. AsetY is said to be (morphologically)
open (closed) with respect to the structuring element W iff
YoW =Y (YeW =Y). We shall say that a set Y is smooth
with respect to W iff ¥ can be expressed as a union of shifted
replicas of W. Y is open with respect to W iff Y is smooth
with respect to W. Y is closed with respect to W iff Y is
smooth with respect to W.

Let H be a convex® structuring element that contains the
origin. In the discrete case, the notion of size of a convex
structuring element can be formalized via the & operation.
Let {0} denote the origin, and define

s [{0}oHOH® --H, (r
TH_{WL

Definition 4: Let ¥ be a generalized Bernoulli lattice
process (or Bernoulli DRS or binary Bernoulli random field)
on B constructively defined in the following manner: Each
point z € B is contained in ¥ with probability A,(z)
independently of all others. Let {G1,G3,...} be a set of
nonempty, convex i.i.d. DRS’s on B, where each is given by
G; = R;H, where {R;,Ro,...} form an i.i.d. sequence of
Z, valued r.v.’s, which is independent of ¥, and each R;
is distributed according to a pmf fr(r), which is compactly
supported on {0,1,..., R}. Define

X = U Gi @ {y:}

1=1,2,...

times), r=1,2,...

r=0

where ¥ = {y;,92,...}. Then, X will be called a discrete
radial Boolean random set (DRBRS) and will be denoted by
(As, H, fr) DRBRS. The points {y1, ¥z, . ..} will be called the
germs , and the DRS’s {G1, Go, ...} will be called the primary
grains of the DRBRS X. The function A, will be called the
intensity function (or simply the intensity) of both the DRBRS
and the underlying Bernoulli lattice process.

S1n digital topology [18], [26], [13], [12], the convex hull of a bounded set
H C 772 is defined as the intersection of the convex hull of H in the topology

of R2, with Z2. A bounded set H C Z? is convex if it is identical to its
convex hull.
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Remark: For brevity, we assume that for the purposes
of this section the result of a @ operation is automatically
restricted to B. In addition, ¢ stands for complement with
respect to B. A sample realization of a DRBRS is given in
Fig. 7.

In order to compute the capacity functional of a (X, H, fr)
DRBRS, let us define

47 (2, K) = minllz — k|

where
[l = Kl = min{n > 0/({z} @ nH) N {k} # 0}.

Observe that for z € K, d¥(z,K) = 0 since H contains
the origin. With this notation in place, and employing some
geometric arguments, it can be shown [28] that

1

z€K®DRHs

Tx(K)=1- (1= X(2)+As(2) Fr(d¥ (2, K) —1)]

where
Fr(m) =" fr(l)
1=0

and Fr(—1) = 0 by convention.

If we assume that both the signal X and the noise N can
be modeled as DRBRS’s (possibly with different structuring
elements), then we can simply plug this expression into the
formulas of propositions 1-3 and obtain the optimal filter as
a function of the signal and noise parameter.

A simple simulation experiment is presented in Figs. 1 and
2. Fig. 1 depicts a realization of a DRBRS model (“the signal”)
of constant intensity and deterministic primary grain corrupted
by i.i.d. union noise (an independent realization of a Bernoulli
lattice process of constant intensity). Fig. 2 depicts the restored
image, which was obtained by applying the optimal adaptive
mask filter of proposition 2 to the noisy observation (K was
taken to be the observation itself). To the trained eye, the
restored image appears to be the morphological opening of
the observed image using the primary grain of the signal as
structuring element. This is, indeed, the case. Let 1 — gy,
1 — g be the intensities of the DRBRS and the i.i.d. union
noise, respectively. It can be shown [28] that if g5 > 2 — q;—l,
then, modulo edge effects, the optimal adaptive mask filter
of proposition 2 is exactly a morphological opening using
the primary grain of the signal as structuring element, that
is, if the noise intensity is below a given threshold (which
solely depends on the intensity of the signal), then the optimal
adaptive mask filter is simply a morphological opening. This
identification is important for two reasons. First, we will
soon see (cf., Section V-A) that under our suppositions for
the signal and the noise, the morphological opening is the
maximum likelihood estimator of the signal based on the noisy
observation. Second, the morphological opening is generally
considered a good choice for the given filtering problem (e.g.
see [15], (8], [7D.

This identification can be generalized as follows. Consider
the case of two DRBRS’s X, N of constant intensities and
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Fig. 1. Realizaiion of a DRBRS corrupted by i.i.d. union noise:

Fig. 2. Restored image obtained by using the optimal adaptive mask filter.

deterministic primary grains 1 — qx, 1 — qn, and Hy, Hy,
respectively. ]t can be shown [28] that if

HY

2= gt H|

<oy (= ay Y 22-43")

then, modulo edge effects and taking K to be the observation
itself, the optimal adaptive mask filter of proposition 2 reduces
to the morpho-ogical opening of the observation by Hx, which
is the (deterministic) primary grain of the signal DRBRS X.
This is no longer guaranteed to be the ML estimator of X on
the basis of the observation; however, it is widely believed
to be a good estimator (e.g. see [15], [8], [7]. For example, if
|Hwn| < |Hx|. then opening by Hx will eliminate all instances
of isolated noisy patterns.

An example is given in Figs. 3 and 4. Fig. 3 depicts a
realization of the observable DRS X U N, where Hx, Hy
were taken to be a discrete hexagon of size 12 and a discrete
square of size 10, respectively. Fig. 4 depicts the opening of
the DRS realization of Fig. 3 using Hx as structuring element.
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Fig. 3. Realization of the union of two DRBRS’s.
Fig. 4. Restored image, obtained byusing the optimal adaptive mask filter.

This somewhat surprising identification of the optimal adap-
tive mask filter of proposition 2 with the morphological
opening filter is rather interesting. We have started with the
objective of optimizing the statistical behavior of a mask
filter structure and ended up with a morphological filter,
which is the intuitively “obvious” choice from the viewpoint
of syntactical optimization. This reflects the ability of the
statistical optimization procedure to pick up the morphological
structure of the signal and the noise, and, in effect, take both
statistical and syntactical properties into consideration. This
is the first example of such a joint optimization. We will see
more of it as we move on. Note that this identification provides
some independent corroborating evidence of the usefulness of
optimal adaptive mask filters.

V. OPTIMAL MORPHOLOGICAL FILTERS

Complex morphological filters can be constructed by com-
posing more elementary operators. For example, the family
of alternating sequential filters (ASF’s) is constructed by
alternating openings and closings with structuring elements
of increasing size.” One good reason for the widespread use

7See [27] for a recent survey of morphological filtering.
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of morphological filters is their excellent shape-preservation
(syntactic) properties. Important characterizations (e.g., root
signal structure) are well developed and easily understood
[34], and this has helped build valuable intuition in the image
processing community. Consequently, the empirical design of
these filters has been greatly facilitated, and the resulting filters
perform surprisingly well in a variety of noisy environments.
However, with few exceptions [25], very little has been
done in terms of “generic” DRS-theoretic optimization of
morphological filters.

A. Some Results on Constrained Optimality
or Why Morphology is Popular

Morphological filters are very flexible, mainly because of
the freedom to choose the structuring element(s) to meet
specified criteria. Among other things, morphological filters
have been widely used to filter out certain kinds of impulsive
noise, such as the so-called salt-and-pepper noise, in both
binary and gray-scale images [25], [7], [10], [9], [5]. [6], [34].
For example, it is widely believed that opening is suitable
under a union noise model, whereas closing is suitable under
an intersection noise model. ASF’s are deemed appropriate
under a combined union/intersection noise model. Indeed,
these filters are used extensively, and they deliver adequate
filtering in a variety of noisy environments. The natural ques-
tion, then, is whether we can provide some sort of theoretical
justification for their use. As it turns out, these filters are
indeed optimal under a reasonable worst-case scenario. In
particular, if we assume that the signal X is sufficiently
smooth and the noise is i.i.d., then these operators provide the
maximum a posteriori (MAP) estimate of X on the basis of the
observation Y. For the rest of this subsection, we assume that
structuring elements contain the origin. We have the following
results.

Theorem 2: Let Ow (B) denote the collection of all W
open subsets of B. Assume that the signal DRS X on B
induces the following probability mass function on X(B):

==, if K € Oy (B)
(X =K)={owm ! W
Px(X = K) {0‘ " otherwise

where || stands for set cardinality. Furthermore,
assume that the observable DRS is ¥ = X U N,
where N is a homogeneous Bernoulli lattice process of
intensity r € {0,1) (i.e., each point z € B is included in N
with probability 7 independently of all other points), which is
independent of X. Then, Y o W is the unique MAP estimate
of X on the basis of Y, regardless of the specific value of .

Proof: Let Xyiap(Y') denote the MAP estimate of X on
the basis of Y. Then, by definition

Xmap(Y) = arg X {Pr(X = K|Y)}
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Using Bayes’ rule

Xuap(Y) = arg e {Pr(Y|X = K)Px(X = K))

1
= PriYi X =K)———
argKerga,x(B){ (¥l )IOW(B)’}

= argKEIgi_x(B) {Pr(Y|X = K)}

= arg

; PriYI X =K
reol B oy (PIYVIX = KO}
arg max

{Tm—um(l - T)IBI—IYI}
KeOw(B),KCY

g max {r‘“‘l}
KeOw(B),KCY

{IK]}.

ar

= arg max

KeOw(B),KCY

Therefore, )’(\MAP(Y) is the largest W-open subset of Y,
which is by definition the opening of Y by W, i.e.

Xvap(Y)=Y oW

and the proof is complete. O
A little reflection on the above result is in order. First,
observe that the proof crucially depends on |B| being finite.
Indeed, theorem 2, as well as the three theorems that follow,
do not make sense when the lattice extends to infinity. Thus, a
uniformly bounded discrete random set approach offers a fresh
statistical perspective of morphological filtering, one that is
not apparent within other formulations. The suppositions of the
theorem indeed correspond to a worst-case statistical scenario:
If all that is known about the signal is that it is almost surely
(a.s.) smooth (open) with respect to W, then it is reasonable
to model this knowledge using a uniform distribution over
the set of all W-open subsets of B to reflect the fact that
the signal exhibits no other (known) probabilistic structure. In
addition, i.i.d. noise is the worst kind of noise in the sense of
maximizing the Shannon entropy of the noise DRS N. Both
these suppositions are plausible in practice, and this explains
why the opening filter is successful under a union noise model.
It is worth noting that the MAP estimate does not depend on
the noise level r. Similarly, we have the following theorem.
Theorem 3: Let Cw(B) denote the collection of all W-
closed subsets of B. Assume that the signal DRS X on B
induces the following probability mass function on X(B)

=, if K € Cw(B)
(X=K)={Gw@mTl ! w
Px(X = K) {0, v otherwise

Furthermore, assume that the observable DRS is Y = X N
N, where N is a homogeneous Bernoulli lattice process of
intensity r € [0, 1], which is independent of X. Then, Y ¢ W
is the unique MAP estimate of X on the basis of ¥ regardless
of the specific value of r.
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Proof: By definition
Xyap(Y) = arg jnax {Pr(X = K|Y)}
= Y|X = K)Px(X =
arg max {Pr(Y| )Px(X = K)}

1

{Pr(YlX = K)—-}

= ar
8 |Cw (B)|

max
KeCw(B)

a X =
arg | max {Pr(Y]X = K)}

{Pr(Y|X = K)}

{rm(l - ,.)|1<|—|Y\}

ma, {(l—r)“ﬂ}
K€Cw (B). KDY

{IK]}.

arg max
KeCw (B), KDY

= arg max

KeCw (B),K2Y

arg

min

= arg
KeCw (B),KDY

Therefore, X viap(Y) is the smallest W-closed superset of Y,
which is, by definition, the closing of Y by W, i.e.

XMAP(Y) = Y L] W

and the proof is complete. O
The following two theorems are straightforward extensions
of the above theorems. We state them here without proof.
Theorem 4: Let Ow, _w,, (B) denote the collection of all
subsets K of B that can be written as

K= |) Ki.Ki€Ow(B)i=1,. M.
=1,....M

Assume that the signal DRS X on B induces the following
probability mass function on X(B):

— 1 _ if K€ Ow v (B)
. _ = d Owywy (B 1 Wi, Wy
Px(X =K) {(), ' Y otherwise

Furthermore, assume that the observable DRS is ¥ = X U
N, where N is a homogeneous Bernoulli lattice process of
intensity » € [0, 1), which is independent of X. Then,

Xuar(Y)= | Yow.
i=1,....M

Theorem 5: Let Cw, _w, (B) denote the collection of all
subsets K of B that can be written as
K= [\ KiKi€Cw(B)i=1,.. M.
i=1,..,M
Assume that the signal DRS X on B induces the following
probability mass function on X(B):

1 .
Px(X = K) = [Cwy gy (B if K € Cw,, . .wy(B)
! 0, otherwise

Furthermore, assume that the observable DRS is Y = X N
N, where N is a homogeneous Bernoulli lattice process of
intensity r € [0,1), which is independent of X. Then

)?MAP(Y) = ﬂ Y.Wi.
i=1,....M

A natural question that arises is what happens if we loose
the uniform probability structure over the collection of smooth
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realizations. The answer is that the MAP estimate will typically
be intractable. However, we can still claim that the proposed
estimate in any of the above theorems is the maximum
likelihood (ML) estimate of X on the basis of Y. For example,
a (As, H, fr)-DRBRS X, with fgr(R = 0) = 0, and primary
grains that are properly contained in B, induces a pmf that
satisfies Px(X = K) = 0, iff K € X(B)\Og(B), but
Px(X = K) is not uniform over Oy(B). Nevertheless,
we can still claim that, under the remaining assumptions of
theorem 2, Y o H is the ML estimate of X on the basis of Y.
In general, if we assume that X satisfies some arbitrary
(not necessarily morphological) smoothness conditions, i.e.,
X € &, which is a class of smooth subsets of B, and
that X is uniformly distributed over S, then under an i.i.d.
symmetric (binary symmetric channel (BSC)) noise model of
pixel inversion probability » < 0.5, it is easy to see that

Xuap(Y) = arg win d(Y, K)

where d(Y, K) is the area of the symmetric set difference
distance between Y and K. In other words, X\'MAP(Y) is
the “projection” of the data Y onto S. However, it is not
clear how to compute this projection under general smoothness
conditions. Furthermore, quite often, the noise is not i.i.d.,
and the signal is nonsmooth or only approximately smooth.
The lack of a rigorous DRS-theoretic optimization approach
for this general case has been evident in the literature. Our
program is to develop such an approach. Specifically, for each
degradation model, we will construct a suitable class of mor-
phological operators, argue about its merits, and derive results
that explicitly characterize the optimal choice of structuring
element(s) in terms of the fundamental functionals of random
set theory, namely, the generating functional of the signal and
the generating functional of the noise.

B. Optimal Increasing, Shift-Invariant Filters
with a Basis Constraint

A surprising result, which was originally due to Matheron
[22] and subsequently improved on and used by Maragos [20],
Dougherty et al., and Giardina [7]-[10], is that a very large
class of (linear and nonlinear) shift-invariant operations can be
decomposed into a union of erosions by suitable structuring
elements.

Let £ = Z2, and let ©(E) denote the power set of E.
Let ¥ : 3X(E) ~ X(E). Recall that ¥ is increasing iff
X1 C Xy = ¥(X,) C ¥(X0),VX; € X(F), X2 € (E).
We now reproduce some key theorems, which were taken
from [20] and [22].

Theorem 6 [22]: For any shift-invariant and increasing
mapping ¥ : ¥(E) — I(E) and for all X € E(F)

U(X) = Xow*
WeKer(¥)

where the kernel of U, Ker(¥) is defined as

Ker(¥) 2 {W € B(E)|0 € ¥(W)}.
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Theorem 7 [20]: For any shift-invariant and increasing
mapping ¥ : £(F) — X(FE) and for all X € L(E)

lJ xews
WeBas(¥)

U(X) =

where the erosion basis of ¥, Bas(V), is defined as

Bas(V)
2 (WeKer(W)W'eKer(V) and WCW =W =W}.

As a result of the latter theorem, the number of structuring
elements that are needed for the decomposition is greatly
reduced. Dougherty et al. [8]-[10] have made extensive use of
this result to reduce the complexity associated with the design
and implementation of optimal mean-square morphological
filters. By duality, there exists an equivalent decomposition of
any shift-invariant and increasing mapping as an intersection
of dilations [5] over a dilation basis.

Strictly speaking, these theorems cannot be used with
bounded domains. However, modulo some modifications that
account for edge effects, they can be utilized. Then, the
question of finding the optimal shift-invariant and increasing
filter reduces to the problem of optimal basis design. This
reduction is a significant one; the former problem is highly
unstructured, whereas the latter admits a natural hierarchical
decomposition in terms of a basis size constraint. In other
words, we can consider a sequence of problems characterized
by an increasing basis size. The performance of the optimal
constrained filter is necessarily a nondecreasing function of
the size of the basis. The upper bound on the size of the
basis is usually determined by design and implementation
considerations. However, under a basis size constraint, we
are faced with an additional problem: Should we choose
the expansion in terms of an erosion basis or in terms of a
dilation basis? We will argue for the following point: Under an
intersection noise model, contrary to our intuition, we should
think of the optimal filter as a union of erosions, whereas under
a union noise model, we should think of the optimal filter as
an intersection of dilations. In both cases, we can work out
theoretical formulas for the cost function.

C. Optimizing a Single Structuring Element

In the case of union noise, the simplest nontrivial expansion
in terms of a dilation basis involves two structuring elements,
one of which is constrained to be the origin. This is because
we want the overall operation to be antiextensive, i.e., the
output must be contained in the input. Dilation by the origin
simply yields the input itself. Therefore, the simplest nontrivial
class of constrained dilation basis filters for union noise can
be written as follows:

=)= aeW)nY
=[(XUN)s W INn(XUN),
for some structuring element, W.
Similarly, in the case of intersection noise, the simplest

nontrivial expansion in terms of an erosion basis involves two
structuring elements, one of which is constrained to be the
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Fig. 5. Some structuring elements that can be used in a “gap-filling” mode.

(a) (b) ()

Fig. 6. (a) Original image; (b) intersection of the image in (a) with a
Bernoulli random field; (c) restored image.

origin (because we want the overall operation to be extensive,
i.e., the output must contain the input). Again, since erosion by
the origin yields the input itself, the simplest nontrivial class
of constrained erosion basis filters for intersection noise can
be written as follows:

f¥)=f"y)=(yewuy
=[(XNN)eWJU(XNN),
for some structuring element, W.

Some motivation is necessary at this point. Let us first consider
the case of intersection noise. Intuitively, since the noise
removes points from the signal, we should use some sort of
“fill-in” operation to cancel the effect of noise. By definition

Yo WS = {zjW. CY).

If the structuring element W is appropriately chosen (in
particular, it must not contain the origin), then the erosion
operation is a fill-in operation, i.e., it fills gaps in the “body” of
the observation. However, it also introduces new gaps, which
is an undesired side effect. Nevertheless, we can easily get rid
of these “spurious” new gaps by simply taking the union of
the resulting eroded set with the input set (i.e., the observation
Y) itself. Some structuring elements that can be used in this
mode are depicted in Fig. 5 (a cross indicates the location of
the origin). An example is given in Fig. 6. Fig. 6(a) depicts a
test image, whereas Fig. 6(b) depicts a degraded version of the
test image, which is obtained by intersecting it with the set of
points that make up a realization of a homogeneous Bernoulli
random field of intensity 0.9. Fig. 6(c) depicts the estimate
X = (XNN)eWs]U (X NN), where X is the original
test image depicted in Fig. 6(a), IV is the set of points of the
Bernoulli field, X NV is the observation depicted in Fig. 6(b),
and W is the leftmost of the structuring elements that appear
in Fig. 5. For this example, the structuring element was not
optimized.

In loose terms, if a structuring element does not contain
a neighborhood of the origin, then it can be used in a gap-
filling mode. The larger this neighborhood is, the wider the
gaps that can be (partially) filled by an erosion with the given
structuring element can be.

Similarly, by duality, if the structuring element is appropri-
ately chosen (again, it must not contain the origin), dilation
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can remove points from the observation, and therefore, it can
be appropriate under a union noise model. After performing a
dilation with a suitably chosen structuring element, we take the
intersection of the resulting set with the input (observation) set
to eliminate points that have been introduced by the dilation
operation.

This mode of use of the two basic morphological operations
may seem strange at first since, for example (and partially
because of its name), most people think of erosion as a shrink-
type operation. However, one should keep in mind that this is
only true if the erosion structuring element contains the origin.
In fact, most people would consider using the operations
in a reverse fashion: dilation for the case of intersection
noise® and erosion for the case of union noise. The reason
for our “unconventional” approach is that this way, we can
take advantage of certain distributivity properties and obtain
closed-form characterizations of the optimal filters.

Let us first consider intersection noise. Here,?

g X, N)=XnN
and

X =fY)=fY({Y)
=Y eWHUY =[(XNN)o WU (X NN),

for some structuring element, W € W

where W is the collection of structuring elements over which
we intend to optimize. We need to make a small modification
to our fidelity criterion in order to account for incomplete data
close to the border of B. Towards this end, define

N BeW*")

B\d0B =Bn (
WwWew

where B\OB is exactly the set of points = € B with the
property that W, C B,VW € W. Then, we only consider
the total expected error restricted to B\0B. We also assume
that estimates of X are only valid within B\dB. For brevity,
we use the same symbol to denote a DRS and its restriction
to B\OB. The meaning is clear from context. We have the
following proposition.

Proposition 4: Under the assumption of mutual indepen-
dence of the signal and noise DRS’s X, N, the value of
the expected error E(e) = Fd(X, )?) incurred when X is
estimated by X = [(X N N) & WU (X N N) is given by

E(e)= Y {Qx-({zh(1 - Qn-({z})

2€B\OB
+ QN (W2 )(Qx-(W,) — Qx-({z} UWL))
+ Qx-({z} UW)(@n-({z} UW.) — Qne(W2))}.

8See [16] for an account of such an approach, when the intersection mask N
is a deterministic, regularly spaced grid, which undersamples the observation.
9This operation can be viewed as random sampling the DRS X. In this

context, our results characterize the optimal (within a class) morphological
reconstruction filter for DRS’s that have undergone random sampling.
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Proof: See the Appendix.

The structuring element W should be chosen to minimize
this expression. Observe that the total expected error is equal
to the sum of the probabilities of individual pixel errors. If
we make the natural'® assumption that both X and N are
obtained by sampling stationary random sets [22], then all the
functionals in the above sum are independent of the location
{z}, and we obtain the following result.

Corollary 1: Under the condition of mutual independence
of the signal and noise DRS’s X, N, assuming that X, N
are obtained by sampling stationary random sets and that X
is estimated by X = [(X N N) & W*]U (X NN), the optimal
choice of the structuring element W is the one that minimizes
the probability of pixel error

Pyixel error(W) = Qx<({0})(1 — Qx-<({0}))
+Qv( NQx<(W) — Qx-({0} UW))
- Qx-({0yuw)
X (Qn+(W) = Qn-({0} U W))

Let us examine the individual terms of this sum. The first
term Qx-({0})(1 — Qn<({0})) of the probability of pixel
error Ppixel error (W) is exactly the probability of pixel error
between the signal X and the observation X N N (this can be
seen by setting W = {0}, which corresponds to no filtering
of the observation). This first term is independent of W, and
therefore, it is not under our control. The remaining two terms
of the sum are both nonnegative functions of W (it can be
easily shown that the generating functional of an arbitrary DRS
is constrained to be decreasing). When considered as a function
of W, this sum clearly brings out the interplay between
“signal power” and “noise power” and how it determines the
structuring element that achieves the optimal tradeoff between
eliminating gaps introduced by noise and retaining gaps that
are present in the signal itself.

Some notes on the applicability of this result are in order. If
the generating functionals Qx-(-), @n-(-) (or, equivalently,
the capacity functionals T'x-(-), Tn<(-)) are given, then opti-
mization of W over a relatively small collection of allowable
W's is straightforward. In general, for large collections of
candidate structuring elements, some sort of suboptimal search
must be pursued to avoid a potentially difficult exhaustive
search. See [19] for an “expert” structuring element library
design approach. We shall return to this point later on. At
any rate, even if the generating functionals are not available
(which is the case in most applications), all the quantities that
are relevant to our optimization problem can be efficiently and
accurately estimated from running (sample) averages by virtue
of stationarity and the law of large numbers. For example,
Qx< (W) can be estimated by “sliding” the structuring element
W across a realization of X ¢ and counting the number of times
that the two have an empty intersection and similarly for the
others.

Let us now turn to union noise. Here

gX,N)=XUN

10This is because we are using a shift-invariant filtering operation.
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and X = f(Y) = fw(/) = Y@ W)NnY =
(XUN)® W] N (X UN), for some structuring element
W € W. As expected, we can once more resort to duality.

In particular, since

X)°=([(XUN)&W]n(XUN))
={(XUN)a W) u(XuN)
=[(XUN) e W lu(X°nN°)
=[(X*NN)e WU (X NN

and
d(X1, Xo) = d(X7, X3)

we can easily reduce this case to the case of the previous
subsection by replacing X, N by their complements X, N.
Thus we have the following result.

Proposition 5: Under the assumption of mutual indepen-
dence of the signal and noise DRS’s X, N, the value of
the expected error E(e) = E[d(X, X)] incurred when X is
estimated by X = [(X UN) @ W*]n (X U N) is given by

Y {Qx({h(1 - Qu({zD)

z€B\&B
+ QW) (Q@x(W:) — @x ({2} UWL))

+ Qx({zP U W) QN ({z} UW.) - Qn(W2))}

Again, if we make the assumption that both X and N are
obtained by sampling stationary random sets, then we obtain
the following result.

Corollary 2: Under the condition of mutual independence
of the signal and noise DRS’s X, N, assuming that X, NV
are obtained by sampling stationary random sets and that X
is estimated by X = [(X UN) @ W*]N(X UN), the optimal
choice of the structuring element W is the one that minimizes
the probability of pixel error

Ppixel error(W) = @x ({0}1)(1 — @ ({0}) )
+ QN (W)(Qx (W) -
- Qx({0}uW)
X (Qn(W) - Qn({0} UW))

As in the case of intersection noise, similar remarks hold
here regarding the interpretation of the individual terms of the
sum. Again, if the generating functionals Qx(-),Qn(:) are
given, then optimization over a small collection of candidate
structuring elements is straightforward. If these functionals
are not available, their values can be estimated from running
averages as before.

Let us now show how one can reduce the complexity of
the search for the optimal structuring element by assuming
that the signal DRS X is smooth (i.e., morphologically open)
with respect to some structuring element. We will need the
following.

Definition 5: A DRS X is H-open iff!!

Qx({0}uw))

Px(X = K) = Pxon(X o H = K),VK € 5(B).

"1 Observe that this definition asserts that X is H open iff X o H = X in
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Lemma 2: X is H-open iff Qx(K) = Qxen(K @
H*),VK € X(B).

Proof: See the Appendix.

Therefore, now let us assume that the signal DRS X is
H-open, where H is convex and contains the origin. Let W
denote the collection of candidate structuring elements over
which we intend to optimize. Consider the second term of the
sum for the probability of pixel error. Using the above lemma,

Qx (W) = Qx ({0} UW) = Qe (W & HY)
— Qxer- ({0} UW) & H?).

By distributivity of dilation over union

Qxem ({0 W)SH*) = Qxen- ({0} & HY ) U(W @ H?))
=Qxon:(H*U(W & H7)).

Thus, under the condition

H'CWaH, YWeWw

the second term of the sum for the probability of pixel error is
zero. In loose terms, this condition amounts to requiring H to
be “large enough” relative to the structuring elements in W.
Since the signal is usually associated with the more prominent
patterns in the image, this requirement is not very restrictive.
For example, if W is the collection of structuring elements
depicted in Fig. 5 and H is a square of side 3 pixels centered
at the origin, then the above condition is satisfied. Therefore,
the optimal W € W should maximize the third term of the
sum, namely

G(W) 2 Qx({0} UW)(QN(W) — Qn({0} UW))

Now!2

(@NW) - Qn({0}U W) =Tn,1(W: {0})
=Py(NNW =0,Nn{0} #0)

which is clearly decreasing in W. Furthermore, Q x ({0} UW)
is decreasing in W. Thus, G(W) is decreasing in W, i.e.

W, CWy = G(WQ) < G(W'l)

Hence, since we seek to maximize G(W), we can eliminate
from consideration all structuring elements in W that properly
contain other structuring elements in W, i.e., it suffices to
optimize over the subcollection

W={(WeW|WeWadW CW =W = W).

Thus, we have proven the following.

the sense of distributions. However, this implies that

Px(XoH#X)= Z Py(X=R)= Z Pxopf(NoH=K)=0
KoH#K KNoH#K

ie, Px(X oH = X) = 1, which implies X o H = X, Py — a.s. Thus,
we do not make any distinction.

12For the definition of the functional I, see the proof of proposition 4 in
the Appendix.
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Corollary 3: Under the condition of mutual independence
of the signal and noise DRS’s X, N, assuming that X, N
are obtained by sampling stationary random sets, X is H-
open, where H is convex, containing the origin, and such
that H* C W @ H*, YW € W and that X is estimated by
X = [(XUN)® W] n (X UN), the optimal structuring
element is

(W™ = arg minPyizei error(W) = arg maxG(W).
Wew Wew

This elimination can translate to a significant reduction in
search complexity. For example, if W is the collection of
structuring elements depicted in Fig. 5, and H is a square
of side 3 pixels that is centered at the origin, then it suffices
to optimize over the two left-most structuring elements. By
duality, a similar reduction can be achieved under an intersec-
tion noise model if we assume that X< is H-open, i.c., that
X is H-closed.

D. Multiple Structuring Elements

In certain situations, particularly when the noise level is
high, a single erosion followed by a union, even if optimal,
may not suffice to properly reconstruct the signal. In this
case, it is beneficial to consider larger bases, i.e., filters with
multiple structuring elements. The structuring elements must
be jointly optimized to eliminate a wider class of error
patterns. Using exactly the same algebraic methods as in the
proof of proposition 4, and with some patience, we can obtain
similar optimality results for the case of multiple structuring
elements. For example, we state the following proposition (see
[28] for a proof).

Proposition 6: Under the assumption of mutual indepen-
dence of the signal and noise DRS’s X, N, the value of
the expected error E(e) = E[d(X, X)] incurred when X is
estimated by

X=[XnNeWHu[(XnN)e (W?)*]u(XnN)

is given by
Ele)= Y {Qx-({zH(1 - Qn({2}))
z€B\OB

+ Qx<(W)Qne(W]) + Qx- (W Q- (W2)
+Qx-({z} UW)Qn-({z} UW))
+ Qxe({z} UW?) x Qne ({2} UWE)
= 2Qx<({z} UW)Qn-(W))
—2Qx-({z} UW2)Qn- (W)
— Qx-(W UW2)Qn (W UW?2)
= Qx-({z} UW] UW2)Qn-({z} UW]} UW2)
+2Qx-({z} UW UW2)Qn-(WEUW2)}.
Again, by assuming that X, N are obtained by sampling
stationary random sets, we can obtain a characterization of the
optimal pair of structuring elements in terms of the probability
of pixel error. Under appropriate smoothness conditions, we

can reduce the complexity of the search for the optimal pair
in a manner similar to the one of the previous subsection.
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TABLE 1
ESTIMATED VALUES OF THE GENERATING FUNCTIONAL Qx<(-)
W={0} W=Ww, W=W, W=W; W=W,
Qx (W) 0494698 0438927  0.438970 0426667  0.383403
Qx-({0} UW) 0437678 0.437682  0.426082  0.383403
TABLE 11
ESTIMATED VALUES OF THE GENERATINGFUNCTIONAL (Jn<(-)
W={0} W=W, W=W, W=W, W=W,
Qe (W) 0900431 0810915 0810519 0657578 0432145
Qne({0} U W) 0730154 0729550 0.591795  0.389004
TABLE III
ESTIMATED VALUES OF THE PROBABILITY OF PIXEL ERROR
W={0} W=W W=W W=W; W=W,
Pivel crror(W) 00493 0.01491 0.01490 0.0217 0.0328

The details are straightforward but cumbersome. Obviously,
by duality, similar results can be obtained for the case of union
noise as well as for more than two structuring elements.

E. Experimental Results

In order to corroborate our theoretical results, we have
designed a series of simulation experiments. One such ex-
periment is described here in detail. The results of another
experiment involving a real-life image are also presented.
These experiments are solely intended to serve as “proof of
concept.” No claims are made regarding the relative merit of
our approach as measured against other approaches in the
literature. A thorough comparative study of different filter
structures is analytically difficult,'’ and it therefore requires
extensive simulation, which is beyond our present scope. Our
purpose here is to demonstrate that our theoretical results
actually make sense in practice.

Let us make the assumptions of Corollary 1. For the
purposes of simulation, we need models for the signal and
noise. We assume that the signal X is a DRBRS of constant
intensity and that the noise N is given by the set of points
of a Bernoulli random field of constant intensity p = 0.9.
These models are only used to generate realizations of the
signal, the noise, and the observation. The entire simulation
is data driven, and all relevant probabilities are estimated
using running averages. This approach is honest and close
to real-world problems.

Given the scope of these experiments, it seems appropriate,
for pedagogical purposes, to limit ourselves to relatively few
structuring elements in order to avoid unnecessary compli-
cation and help the reader gain intuition. It is much easier
to convince ourselves about the relative merits of different
structuring elements when we are working with just a hand-
full of them, rather than being faced with a long list of
candidate structuring elements. Let us therefore consider the
collection depicted in Fig. 5 and label the structuring elements
Wi,..., Wy from left to right.

13Cf. the section that immediately follows.

Fig. 7. Realization of the signal DRS X.

Fig. 7 depicts a realization of the signal DRS X, whereas
Fig. 8 depicts a realization of the noise DRS N. These are
solely used to estimate the relevant probabilities. The results
for the signal and the noise are tabulated in Tables I and II,
respectively. The results for the estimated probability of pixel
error are tabulated in Table III. These have been computed
using Tables I and II and the formula of corollary 1. In Table
III, the left-most entry is the estimated probability of pixel
error between the signal X and the observation X N N, i.e.,
when no filtering takes place (this corresponds to W = {0}).
It is given here for comparison purposes. Clearly, the optimal
structuring element is W3, with Wi running a close second
(this is justified by the symmetry in the data). The worst
structuring element is Wj.

Fig. 9 depicts another (independent) realization of X,
whereas Fig. 10 depicts a realization of the observation
Y = X N N obtained by intersecting the DRS realization of
Fig. 9 with an independent realization of N. Fig. 11 depicts the
restored image X = (Y & W3)UY, where Y is the DRS real-
ization of Fig. 10. This is the best possible restoration within
the given family of structuring elements. For comparison

purposes, Fig. 12 depicts the restored image, X = (YeW})uU
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Fig. 8. Realization of the noise DRS N,

/.

Fig. 9. Another (independent) realization of the signal DRS X",

Y, where Y is the DRS realization of Fig. 10. This is the worst
(nontrivial) restoration within the given family of structuring
elements. Close inspection of these figures reveals several
interesting phenomena. In particular, even though Wy does a
better job than W, in filling up gaps introduced by noise, it
also bridges together signal components which were originally
disconnected. This is evident in the upper right-hand part of the
figures. Nevertheless, this source of error is counterbalanced
by the relative effectiveness of W5 in terms of noise elimina-
tion. As a result, the overall quality of restoration achieved by
W, is still visibly better. However, under a low-noise scenario,
this situation can be reversed, i.e., retaining the connectivity
structure of the signal will become more important, and
eventually, it will supersede noise elimination as the dominant
factor. In this case, W, will provide superior performance.

These simulation results are encouraging; they clearly sup-
port the theory and satisfy our intuition. Furthermore, con-
sidering the fact that the optimal filter essentially consists of
two set translations and two set unions (two translations and
one union are needed to implement the erosion with W5), the
quality of restoration seems good. Even better results can be
achieved using multiple structuring elements.

Fig. 10. Result of intersecting the DRS realization of Fig. 9 with another
(independent) realization of the noise DRS N.

Fig. 11. Restored image obtained by filtering the DRS realization of Fig. 10
using structuring element 11 (the best one).

Fig. 12. Restored image obtained by fiitering the DRS realization of Fig. 10
using structuring element W (the worst one).

In real life, image statistics are often spatially varying. In
most cases, it is possible to model such images as piecewise
statistically invariant. This approach is taken quite often when
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Fig. 13. Binary Lena picture.

Markov random field (MRF) models are used. In this setting,
one can either segment the image in disjoint regions with
approximately invariant statistics prior to the filtering step or
rely on the filtering algorithm to perform simultaneous signal
estimation and segmentation. Either way, this is not a trivial
task, and these algorithms are generally not amenable to in-
depth statistical analysis. Therefore, it is of interest to test
our algorithms in images that violate our assumptions. For
this purpose, consider Fig. 13. It depicts a binary version of
the well-known “Lena” picture. This picture can be modeled
as piecewise statistically invariant. However, let us bypass
the segmentation step and blindly apply our algorithm. Fig.
14 depicts a version of Lena that has been degraded by
a combination of burst and memoryless transmission errors.
Specifically, we assume that the image is scanned row-wise,
and individual bits are transmitted over a channel that is
memoryless most of the time but occasionally switches to a
burst error channel. We assume that the noise only affects the
white part of the image, i.e., a union noise model. The signal
and noise statistics were estimated from the original picture
and an independent realization of the noise. Then, based on
the “dual” of proposition 6, as it applies to the case of sampling
stationary random sets, the optimal two-fold dilation filter was
sought within the class of filters with structuring elements
in the collection of Fig. 5. The optimal pair of structuring
elements was found to be (Ws. Wy). The restored image is
depicted in Fig. 15. Given that we have violated the stationarity
assumption, the overall result is surprisingly good.

CONCLUSION AND FURTHER RESEARCH

In this paper, we have described two optimal digital binary
image filtering strategies. Mask filtering is a natural approach
to the problem of digital binary image restoration under a
union/intersection degradation model. We have discussed both
optimal fixed mask filtering and optimal adaptive mask filter-
ing. Although adaptive mask filtering is superior, it essentially
requires knowledge of the capacity functionals of the signal
and noise. This is the case when both the signal X and the
noise IV can be modeled as DRBRS’s. On the other hand, fixed
mask filtering only requires knowledge of first-order statistics

Fig. 14. Lena picture, degraded by a combination of burst and memoryless
transmission errors.

Fig. 15. Restored Lena picture.

(pixel hitting probabilities), which can be easily and accurately
estimated from training data. Therefore, it provides a simple
and robust alternative when the signal and noise processes are
not known in detail.

In the second part of this work, we have demonstrated that
certain popular morphological filtering schemes are indeed
optimal under some fairly plausible assumptions. We have
also described a general optimal morphological binary image
filtering approach, which is more appropriate when the signal
and noise DRS’s exhibit a statistical behavior that is spatially
invariant. We have demonstrated that by choosing the right
expansion of the optimal filter, namely, as a union of erosions
(intersection of dilations), under an intersection (union) noise
model, we can obtain universal optimal filtering results, which
do not rely on strong assumptions concerning the nature of the
signal and noise, and the mode of their spatial interaction. In
particular, they are valid when the signal and noise patterns
are spatially overlapping. This situation contrasts with the
optimality results of Haralick er al.[15], which are based
on the assumption that the signal and noise patterns are
“noninterfering,” and the results of Schonfeld and Goutsias
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[25], which rely on strong separability of the noise patterns. In
contrast with the aforementioned model-based approaches, we
have chosen to avoid restricting the class of input signals under
consideration. Obviously, a model-based approach is superior
when the underlying assumptions are justified in practice.
However, if this is not the case, then our approach may prove
safer.

An important open research problem involves the following
question: How much better can we do using n + 1 structuring
elements as compared to using n structuring elements? In
other words, how fast does the minimum expected error
converge? This is directly related to the rate of convergence
of the basis expansion of increasing, shift-invariant filters
in terms of morphological erosions/dilations. As of now,
the answer to this question remains largely unknown due
to fundamental analytical difficulties. Certainly, with n +
1 structuring elements, we can do no worse than with n
structuring elements. It currently seems that the best way
to choose n is by trial and error. Note that computational
complexity considerations would normally dictate an upper
bound on n. Thus, the tradeoff is in terms of improvement
in expected error versus increase in (run-time and design)
computational complexity. In related experimental approaches
[19], this compromise leads to a relatively small number of
structuring elements.

It would also be interesting to do direct comparisons with
other filtering approaches. Theorems 6, 7 (Matheron, Maragos
et al., Dougherty et al.) provide the basis for such a compar-
ison. Theorem 7 states that every increasing, shift-invariant
filter can be expressed as a sup-sum of erosions over a suitable
basis set of structuring elements. Thus, this class contains
linear shift-invariant averagers, order statistics (e.g., median),
stack filters, etc. However, the length of the required expansion
for each such filter is unknown, and it can be infinite. The
effect of blocking the length of the basis is yet unknown.
The following question is central to this problem: How large
a class of increasing, shift-invariant filters can we span with
n structuring elements? Again, things reduce to questions of
rate of convergence. We intend to investigate these questions
in future work.

Finally, It is important to keep in mind that our results
can be extended to finite-gray-level digital images of compact
support and sup/inf noise via threshold decomposition of
functions and/or by treating functions as sets via their umbrae.
In this case, B C Z3. Although this extension does not
pose any additional theoretical problems, it warrants proper
attention to certain complexity issues involved. In particular,
the probability structure induced on the measurable space
(2(B),%(X(B))), B C Z3 by treating random finite-gray-
level digital images of compact support via their umbrae
is not arbitrary due to the constraints imposed by the fact
that function umbrae are not arbitrary subsets of B. These
constraints must be (implicitly or explicitly) incorporated
into the probability measures, and this complicates statistical
modeling. In addition, from the viewpoint of computational
complexity, it is important to understand under which condi-
tions function processing via threshold decomposition and/or
function umbrae computationally efficient are relative to stan-
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dard function processing techniques. These issues are currently
under investigation.

APPENDIX
COLLECTED PROOFS OF LEMMAS AND PROPOSITIONS

Proof of Lemma |— Uniqueness: Assume that the external
decomposition formula holds. Look at the right-hand side of
the inversion formula.

Yo (=DCluscucy =Y (-nl€l ST WD)

ccs cCs DCSNCe
_ Z(_l)lc\ Z D)= Z Z (-1)/lu(D)
ccs DCS\C CCS DCS\C
=% ¥ )
DCS CCS\D
=Y uD) 3 () =ws).
DCS CCS\D
Since
0, S#£0
> (D= {1, S=0

cCs

Existence: Assume that the inversion formula holds, and
look at the right-hand side of the external decomposition
formula.

1DCly(seuC)

=2 2

SCAc CCS

:ZZ("

SCA<CCS

=2 2

DCA<CCA\D

= 3w Y (D) =u((4%)7) = u(A)

DC A< CCA\D

D!“lo((5\C)°)

1)/€ly(De)

as for the uniqueness part. O
Proof of Proposition 1: Without loss of generality, we may
assume that W; C W since it makes no sense removing
points from the observation only to reinstate them at the next
filtering step. After some manipulation
E(e)=E[d(X, X)]= E|X 0 (N{UW;)N[(NsnW§)UWs]|
+ E|(X N N2 N W2) U (XN W)

A crucial observation here is that

E|X|=E) 1(ze X)= )Y Fl(z€ X)
z€B z€EB
=) Pr(ze X) = Pr(XN{z} #0)
z€EB 2€B
= ZTX({Z})-
z€EB
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Consider the first term of the expected error

E|X n(NfUWS)N[(Ns nWE)u Ws)|
=3 Pr(z € X N (NfUWS5)N[(Ns 0 W) UWS))
zEB
(by indep. of X, N1, Na)
= > Pr(z € X)Pr(z € Ny U W)
z€B
x Pr(z € (Ns N W7)U Wy)
= > Tx({z})
z€B
x [1(z € W3) + 1(z € W2)(1 — T, ({z}))]
x [1(ze W3)+1(z€ Wa)1(z€ W)(1 = Tn,({2}))]-

Next, consider the second term of the expected error

E[(X N NanWa)U (X N W)
= Z Pr(z € (X°N No NWa) U (XN W)
z€EB
=Y Pr(z € X°N[(NaNWy) UWi])
z€B
=) Pr(z € X,z € (N2 N W) UW)
z€B
(by independence of X, N3)
=Y Pr(z € X°)Pr(z € (N2 N Wa) U W)
z€B
=Y (1 -Tx({=})
zeB
x [1(z € Wy) + 1(z € WE)1(z € Wa)Tw, ({z})].

Therefore, the overall expression for the expected cost be-
comes

E(e)=E[d(X, X)]
=) ATx {21z € W5)+1(z € WaX1-Tw, ({2}))}
zEB
[L(zeWs)+1(ze W) 1(ze WEX1-Tn,({z}))]
HL-Tx({z))[1(z € W1)+1(z€ W) 1(2 € Wallw, ({z})]}-

Consider the term in curly braces. As we have mentioned
before, W; C W,. Therefore, for each z € B, we have the
following three choices:

DzeWl,2e Wi, orii)z e W{,z € Wy, or
l]l)Z S WI,Z € W2
In case i), the term in curly braces is equal to Tx({z}), in
case ii), it is equal to T1({z}), and in case iii), it is equal to

T>({z}). The result follows. O
Proof of Proposition 2: The total conditional cost is'*

EXNnW¢+EINNWNX°|

4Here, for brevity, we let E denote conditional expectation conditioned
onthe event YUN C K.

Now

EIXNW|=E> 1(z€ XNW)
zeB

=Y Flze XNW)
z€B

=) Pz XNW [ (XUN)NK =)
€D

=Y Pz XNW*[(XUN)NK® =0)
zeK

_ Z Prz e XNW° (X UN)NK" =)

- Pr(X UN)N K< =)

zeK

Observe that

P(XUNNK =0)=Pr(XNK =0, NNK =)
(by independence of X, N) = (1 — Tx(K)}(1 — Tn(K°))

and that

Prz e XNW (X UN)NK =0)
=Pr(XNnWn{z} #0,XNK =0, NNK*=0)
(by independence of X, N)
=P XN(WNn{z} ) #0,XNK =®)Pr(NNK*" =)
= (Tx(K“ U (W N {z})) - Tx (K))(1 — T (K°)).

Therefore, the first term of the expected cost becomes

§ TlKU (W0 ) ~ L (K

z€K 1- TX(KF)

For the second term of the expected cost

EINNWNX°|= ZEl(zENﬂWﬂXC)

z€EB
=Y Prze NOWnX° | (XUN)NK"=0)
zeB
=Y Prze NNWNX°[(XUN)NK® =)
zeK

_ Prze NnWnNXe,(XUN)NK* =)
- Z Pr((X UN)N K< = () '

zeK
We have seen that the denominator is equal to

(1-Tx(K))(1 - Tn(K"))
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whereas the nominator

Pr(ze NNWNX* (XUN)NK® =)
=Pr(({z} nW)NNNX £ B, (XUN)NK® =)
=Pr(({z}nW)e N,({z}nW)e X, XNK*®
=0, NNK°=10)
(by indep. of X, N)
=Pr(XNK=0 ({z}nW) e X°)
xPr(NNK°=0,{z}nW) e N)
=P XNK°=0,XNn{z}nW) =0)
XP(NNK =0, Nn({z}nW) #£0)
=Pr(XN(KU{z}nW))=0)
XPr(NNK =0,Nn{{z} nW) £0)
=[1-Tx(K°U({z}nW))]
[Tn(K° U ({2} W) = T (K°)).
Therefore, the second term of the expected cost becomes the
first equation at the bottom of the page, and the overall
expected cost becomes the second equation at the bottom of the
page, from which the claimed results follow by inspection. [J

Proof of Proposition 4: Observe that by distributivity of
erosion over intersection

(XNN)eW’=(XoW?*)Nn(NoW?).

This property is crucial for the proof. During the course of the
proof, we will need the following elementary result. Define
the functional

Cxn(Ko; K1, ..., Ky)

SEP(XNKy= 0, XNK #0,...,XNK, #0).

By definition, I'x o(K) = Qx(K). Using Bayes’ rule, one
can easily show that this functional satisfies the following
recursion, which is known as the inclusion-exclusion principle.

Pxn(Ko;Ki,..., Kp) =Txn-1(Ko; K1,...,Kn_1)

- FX,n—l(KO UKn;Kla' .- aKn—l)

We are now ready to proceed with the proof of the proposition.
The total expected error is

E(e) = E|X\X| + E|X\X]|.
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Let us first consider the second term.

E|X\X| = E|X n X¢|
=E|((XNN)eW*u(XnN))nX°|
=E[((XnN)eW|NnX)U(XNNNX°)
= E|[(XNnN)sW?|nX°|.

Now, since

(XNN)eW*=(XeW*)n(NeWw?)

the last expression is equal to

E|(XoW)n(NeW?)nX°|

=E Y l(zeXeW)n(NeW")nXxe)

2€B\&B

> Elze(XeW*)n(NeW)nXxe)
z€B\8B

> Prze (XoW*)N(NoW*)nXx°)
2€B\dB

Y. Prze(XoW)NX),ze NoW?)
2€B\8B
(by independence of X, N)

Y Prze (XoW)NX)Pr(z € N6 W*)

I

z€B\8B

= > Pr(W.C X,z€ X)Pr(W, CN)
26 B\8B

= Y P(X°NW.=0,XN{z} #0)
zEB\OB

Pr(N° N W, = 0).

> [L = Tx (KU ({z} nW)ITw (KU ({2} N W) — Tn(K)]

z€EK

(1= Tx(K)(1 = Tn(K7))

1
Bl = i @oya —w &)

D AL-Tx(EU({}nW)][Tw (K U({z}nW)) ~ T (K)] +[Tx (KU ({z} N W*)) — Tx (K°)][1 - Tne(K°)]}

zeK
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The first term of the total expected error

E|X\X| = E|X n(X)|
= EXNn([(XNN)eW u(XnN))
=EXNn[(XNnN)eW’°"n(XnNN)‘|
=E[Xn(XnN) In[(XNN)o W
=E|[XN(X°UN)N[(XNN)e W]
=E|[(XNnXYU(XNN)N[(XNN)o W
=EXNN°N[(XNN)oW?*||
=EIXNNN[(XeW*)n(Nae W)
= EXNNN[(X W) U(No W)
=E|(XNNN(XeWH)IU(XNNN(N e W)
=FEXNNN(XeW)+EXNNN(Ne W
~EIXNN°N(XeW)*n(No W)

Now
EI XNN°N(XeW?) | =E|(XN(XeW?))nN°|

= Y Pr(z€X,~(W.C X))Pr(z € N°)
2€B\8B

> Pr(Xen{z}=0,XNW. #0)
z€B\dB

Pr(N° N {z} # 0)

where — denotes logical negation. In addition

E|XNN°N(N e W)
= Y Pr(z € X)Pr(z € N°,~(W. C N))
2€B\dB
> Pr(Xen{z} = O)Pr(N° N {z} # O, N N W, # 0)

2€B\8B

401

and
EIXNNN(XeW)n(Ns W)
=E|(XN(XeW))Nn(N°N(N e W)
=" Pr(z € X,~(W. C X))Pr(z € N°,~(W. C N))
€B\3B

= Z Pr( X N{z} =0, X°NW, #0)
2€B\OB
x Pr(N°N {z} # B, N°NW, # ).

Therefore, putting everything together, we have the expres-
sion at the bottom of this page, from which, after some
manipulations, we obtain

E@) = ¥ {Qx-({zD(1 - Qn-({2}))

2€B\OB

+ QN‘(WZ)(QX‘ (Wz) - QX‘({Z} U Wz))
+ Qx-({z} UW.)(Qn- ({2} UW:) — Qn-(W2))}
and the result is established. O

Proof of Lemma 2: First, observe that for any DRS X and
VK € %(B)

QXEBH(K) = Px((X D H) NK = @)

=Px(XN(K®H®)=0)=Qx(K & H®).
Thus, assuming X is H open
Qxens (K ® H°) = Qxonsyou(K) = Qxon(K)
= Y Pxog(XoH=K')

KIgKC

Y Px(X=K')=Qx(K).
K'CKe«

Conversely, assume that Qx (K) = Qxegy-(K ¢ H®),VK €
E(B) Then, since Qers(KEB HS) = Q(X@H‘)@H(K) =

E(e) = E|X\X| + E|X\X]|

= > {P(X°n{z} =0, X NW. #BPr(N°N{z} #0)

z€B\8B

+Pr(X°N{z} =OPr(N°N{z} #O,N°NW, £ 0)
—Pr(X°Nn{z}=0.XNW, #0Pr(N N {z} ZO, N°NW, #0)
+Pr(XNW, =0,X°N{z} #0)Pr(N°NW, = 0)}

= > {Txea({zhW2)(1 - Que({2}))

2€B\8B

+ @x-({zHln<2(0; {z}, W)

= Txe ({21 W)l e 2(0; {2}, W2) + Txe 1 (W {2})Qn<(W2)}
= > {@x-({z}) - @x-({z} UW.))(1 — Qn-({2}))

2€B\8B

+ @x-({zH(1 - @n-({2}) -

Qne(W2) + Qne({z} UW2))

—(@x-({z}) = Qx-({z} UW))
X (1= Qne({z}) — @n-(W.) + Qn-({z} UW}))
+ (@x-(W.) — Q@x-({z} UW.))Qn- (W)}
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Qxon(K), it follows

that QA(K) = Q‘YOH(K),VK (S

Y(B). However,

Pxon(XoH = K) =

3 ()EIQxon (KUK
K'CK

> (-)IQy (K U K')
K'CK

= Py(X = K),VK € %(B)

Il

and the proof is complete. 0
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