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Almost-Sure Identifiability of Multidimensional
Harmonic Retrieval

Tao Jiang, Student Member, IEEE, Nicholas D. Sidiropoulos, Senior Member, IEEE, and Jos M. F. ten Berge

Abstract—Two-dimensional (2-D) and, more generally, multi-
dimensional harmonic retrieval is of interest in a variety of ap-
plications, including transmitter localization and joint time and
frequency offset estimation in wireless communications. The asso-
ciated identifiability problem is key in understanding the funda-
mental limitations of parametric methods in terms of the number
of harmonics that can be resolved for a given sample size. Con-
sider a mixture of 2-D exponentials, each parameterized by am-
plitude, phase, and decay rate plus frequency in each dimension.
Suppose that equispaced samples are taken along one dimension
and, likewise, along the other dimension. We prove that if the
number of exponentials is less than or equal to roughly

�
, then,

assuming sampling at the Nyquist rate or above, the parameteri-
zation is almost surely identifiable. This is significant because the
best previously known achievable bound was roughly � � � � .
For example, consider � ����� ; our result yields 256 versus
32 identifiable exponentials. We also generalize the result to di-
mensions, proving that the number of exponentials that can be re-
solved is proportional to total sample size.

Index Terms—Array signal processing, frequency estimation,
harmonic analysis, multidimensional signal processing, spectral
analysis.

I. INTRODUCTION

THE PROBLEM of harmonic retrieval is commonly en-
countered under different disguises in diverse applications

in the sciences and engineering [24]. Although one-dimensional
(1-D) harmonic retrieval is most common, many applications of
multidimensional harmonic retrieval can be found in radar (e.g.,
[10], [13], and references therein), passive range-angle local-
ization [23], joint 2-D angle and carrier frequency estimation
[28], [29], and wireless channel sounding [6]–[9]. In wireless
channel sounding, for example, one is interested in jointly esti-
mating several multipath signal parameters like azimuth, eleva-
tion, delay, and Doppler, all of which can often be viewed as or
transformed into frequency parameters.

A plethora of 1-D as well as multidimensional harmonic re-
trieval techniques have been developed, ranging from nonpara-
metric Fourier-based methods to modern parametric methods

Manuscript received November 14, 2000; revised May 7, 2001. This work
was supported by NSF/CAREER 0096165 and NSF/Wireless 0096164. A par-
tial summary of results appears in Proc. ICASSP, May 7–11, 2000, Salt Lake
City, UT. The associate editor coordinating the review of this paper and ap-
proving it for publication was Dr. Kristine L. Bell.

T. Jiang and N. D. Sidiropoulos are with the Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
(e-mail: nikos@ece.umn.edu; jiang@ece.umn.edu).

J. M. F. ten Berge is with the Heijmans Instituut, Rijksuniversiteit Groningen,
Groningen, The Netherlands (e-mail: J.M.F.ten.BERGE@ppsw.rug.nl).

Publisher Item Identifier S 1053-587X(01)07059-3.

that are not bound by the Fourier resolution limit. In the high
signal-to-noise ratio (SNR) regime, parametric methods work
well with only a limited number of samples.

One important issue with parametric methods is to determine
the maximum number of harmonics that can be resolved for a
given total sample size; another is to determine the sample size
needed to meet performance specifications.

Identifiability-imposed bounds on sample size are often not
the issue in time series analysis because samples are collected
along the temporal dimension (hence “inexpensive”), and per-
formance considerations dictate many more samples than what
is needed for identifiability. The maximum number of resolvable
harmonics comes back into play in situations where data sam-
ples along the harmonic mode come at a premium, e.g., in spa-
tial sampling for direction-of-arrival estimation using a uniform
linear array (ULA), in which case, one can meet performance
requirements with few spatial samples but many temporal sam-
ples [25].

Determining the maximum number of resolvable harmonics
is a parameter identifiability problem, whose solution for the
case of 1-D harmonics goes back to Carathéodory [2]; see also
[15] and [26]. In two or higher dimensions, the identifiability
problem is considerably harder but also more interesting. The
reason is that in many applications of higher dimensional har-
monic retrieval, one is constrained in the number of samples that
can be taken along certain dimensions, which is usually due to
hardware and/or cost limitations. Examples include ultrasound
imaging [4] and direction-of-arrival (spatial frequency) estima-
tion. The question that arises is whether the number of samples
taken along any particular dimension bounds the overall number
of resolvable harmonics or not.

Essentially, all of the work to date on identifiability of mul-
tidimensional harmonic retrieval deals with the 2-D case (e.g.,
[11], [13]) and provides sufficient identifiability conditions that
are constrained by , where denotes the number of
samples taken along one dimension, and denotes the number
of samples taken along the other dimension. To the best of our
knowledge, the most relaxed condition to date has been derived
in [17], which shows that identifiability is determined by the
sum . The result of [17] is deterministic in the sense that
no statistical assumptions are needed, aside from the require-
ment that the frequencies along each dimension are distinct.
Furthermore, it generalizes naturally to dimensions for arbi-
trary and shows that identifiability improves with increasing

, which is intuitively pleasing. However, the sufficient con-
dition in [17] improves with the sum of , whereas
total sample size grows with the product of . This
indicates that significantly stronger results are possible.

1053–587X/01$10.00 © 2001 IEEE
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The contribution of this paper is the derivation of stochastic
identifiability results for multidimensional harmonic retrieval
that fulfill this potential. Our tools allow us to treat the gen-
eral case of multidimensional complex exponentials that incor-
porate real exponential components (e.g., decay rates). We thus
make no distinction between the terms harmonic and exponen-
tial. We show that if the number of 2-D harmonics is less than or
equal to roughly , then, assuming sampling at the Nyquist
rate or above, the parameterization (including the pairing of pa-
rameters) is almost-surely identifiable, where is the
number of harmonics, and is the distribution used to
draw the complex decay/frequency parameters, that is as-
sumed continuous with respect to the Lebesgue measure in .
In plain words, this means that if is under roughly ,
then the model parameters (amplitudes, phases, decay rates, and
frequencies, including pairing thereof) that give rise to the ob-
served noiseless data are unique for almost every selection of
complex decay/frequency parameters, or, if one draws the com-
plex decay/frequency parameters from a continuous distribution
over , then the probability that one encounters a nonidenti-
fiable model is zero. This result is subsequently generalized to

dimensions for arbitrary .

A. Organization

The rest of this paper is structured as follows. We begin with
a discussion of notation and preliminaries. Section II summa-
rizes earlier deterministic identifiability results, whereas Sec-
tion III illuminates the rank properties of the Khatri–Rao matrix
product. Both are needed to prove the stochastic identifiability
results presented herein. In particular, Section III proves that the
Khatri–Rao product is full rank almost surely.1 Our main con-
tributions are presented in Sections IV and V. Section IV con-
tains the 2-D result, whereas Section V contains its generaliza-
tion to arbitrary number of dimensions. The proof of the latter
is highly technical and is therefore deferred to the Appendix,
along with other proofs of auxiliary results. Some comments
and extensions of the main results are collected in Section VI.
Conclusions are drawn in Section VII.

B. Notation and Some Preliminaries

denotes the complex numbers, and
denotes the unit circle

and

Matrices (vectors) are denoted by boldface capital (lowercase)
letters. stands for transpose. denotes the number of dimen-
sions, whereas denotes the number of (equispaced) samples
along the th dimension. An -dimensional (also known as

-way) array is a dataset that is indexed by indices ,
where , and . We do not follow
the usual convention of using or to denote ; instead, we

1This statement has to be interpreted properly; see Section III.

explicitly write when needed and use ( ) as row (respec-
tively, column) index, in accordance with common practice in
matrix algebra. We also make extensive use of superscripts to
denote variables stemming from a given variable.

The of a matrix (two-way array) is the smallest
number of rank-one matrices needed to decompose into
a sum of rank-one factors. Each rank-one factor is the outer
product of two vectors. Matrix rank can be equivalently defined
as the maximum number of linearly independent columns (or
rows) that can be drawn from . We will use to denote
the rank of . The rank of an -way array is defined as
the smallest number of rank-one -way factors needed to
decompose it [12]. Each rank-one -way factor is the “outer
product” of vectors, meaning that its th element
is given by , where is a factor index. Thus,
an -way array of rank can be written as

The - or - [12] of a matrix (which is
denoted by ) is if every columns of are linearly inde-
pendent and either has columns or contains a set of
linearly dependent columns. The -rank of is therefore the
maximum number of linearly independent columns that can be
drawn from in an arbitrary fashion. Note that -rank is gener-
ically asymmetric. The -rank of a matrix need not be equal to
the -rank of its transpose. -rank is always less than or equal
to rank.

A constant-envelope 1-D discrete-time exponential is written
as , , where accounts for
both amplitude and phase. A nonconstant-envelope 1-D expo-
nential is written as , , where ac-
counts for both decay (or growth) rate and frequency. A 2-D ex-
ponential is simply the product of two 1-D exponentials indexed
by different independent variables, i.e., ,

, , and likewise for higher dimen-
sions.

An Vandermonde matrix with generators
is given by

...
...

...
...

If the generators are distinct, then is full rank [24] as well as
full -rank [22]: .

Let

be two matrices with common number of columns ( ). The
Khatri–Rao (column-wise Kronecker) matrix product of and

is defined as
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where denotes the Kronecker product of and .

II. DETERMINISTIC IDENTIFIABILITY RESULTS

We will make use of the following results.
Theorem 1: (Identifiability of Low-Rank Decomposition

of -Way Arrays [18], [19]): Consider the -component
-linear model

for , , with ,
. Let denote the matrix with

element . If

then given the -way array , ,
, its rank-one -way factors

are unique.
Kruskal was the one who developed the backbone result

for and array elements drawn from [12]. See also
[20]–[22] for other related results.

Theorem 2: (Deterministic Identifiability of -Dimensional
Harmonic Retrieval [17]): Given a sum of exponentials in

-dimensions

for , , with , and
such that , and all , if

then there exist unique ; ,
that give rise to . If an additional nonexponential

dimensions are available

(1)

for , , with
, by convention, then uniqueness (including the as-

sociated component vectors along nonexponential dimensions)
holds, provided that

where denotes the matrix with element
.

III. ON RANK AND -RANK OF THE KHATRI–RAO PRODUCT

Consider two Vandermonde matrices

...
...

...
...

...
...

...
...

(2)

where and are complex gen-
erators. The Khatri–Rao product of and is

...
...

...
...

...
...

...
...

...
...

...
...

One can show that full rank (even full -rank) of both and
does not necessarily guarantee that the Khatri–Rao product

is full rank (let alone full -rank). For example, let .
The generators can be chosen as follows:

With this choice of generators, and are full -rank. When
and , the Khatri–Rao product is full

rank, hence, full -rank: . Now, set
and ; the Khatri–Rao product is still , but2 its rank
is 5.

Irrespective of Vandermonde structure, it is simple to show
that

e.g., by noting that the Khatri–Rao product of and is a
selection of columns drawn from the Kronecker product of
and . The rank of the Kronecker product is the product of ranks
of the constituent matrices [1].

2It will be shown that with proper random sampling, this phenomenon is a
measure-zero event; see Theorem 3 and Corollary 1.
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The following result provides a deterministic lower bound on
the -rank of the Khatri–Rao product, irrespective of Vander-
monde structure. Note that since rank -rank, it also provides
a lower bound on rank.

Lemma 1 [22]: Given two matrices and
, if and , then it holds that

(3)

Other researchers have noted that the Khatri–Rao product ap-
pears to exhibit full rank in essentially all cases of practical in-
terest [27], but no rigorous argument has been given to justify
this observation to date. The following two results settle this
issue.3

Theorem 3: For a pair of Vandermonde matrices
and

-a.s. (4)

where is the distribution used to draw the complex
generators for and , assumed continuous with respect to the
Lebesgue measure in .

As an almost direct byproduct, we obtain the following corol-
lary.

Corollary 1: For a pair of matrices and

-a.s. (5)

where is the distribution used to draw the
complex elements of and , which is assumed contin-

uous with respect to the Lebesgue measure in .
Equipped with these results, we proceed to address the main

problem of interest herein.

IV. ALMOST-SURE IDENTIFIABILITY OF 2-D HARMONIC

RETRIEVAL

Proposition 14 : Given a sum of 2-D exponentials

(6)

for , and , the parameter
triples , are almost-sure
unique,5 where is the distribution used to draw the

complex exponential parameters , ,
which is assumed continuous with respect to the Lebesgue
measure in , provided that there exist four integers

such that

(7)

3Proofs can be found in the Appendix.
4The result holds true if we switch � and � .
5We assume throughout that sampling is at the Nyquist rate or higher to avoid

spectral folding. This allows us to restrict attention to discrete-time frequencies
in �������	��
 .

subject to

(8)

Proof: We first define a five-way array with typical ele-
ment

(9)

where , and , for
, . Since has been assumed

in the statement of the proposition, such extension to five ways
is always feasible. Define matrices

(10)

The next step is to nest the five-way array into a three-way
array by collapsing two pairs of dimensions as follows:

(11)

for , , with and given
by

(12)

Define matrices

(13)

and are nothing but

(14)
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Since is Vandermonde, Theorem 2 can be invoked to claim
uniqueness, provided

(15)

Note that for any particular , , and , the product
is equal to with the following

choice of and :

As , , and span their range, the corresponding and
span their respective range. It follows that uniqueness of the
rank-one 3-D factors is equivalent to unique-
ness of the rank-one 2-D factors , .
Therefore, the rank-one factors and, hence, the
triples , are unique, provided that
(15) holds true. Invoking Theorem 3, almost-sure uniqueness
holds, provided there exist integers such
that

(16)

subject to6

(17)

Setting , we obtain

subject to

and the proof is complete.
Theorem 47 : Given a sum of 2-D exponentials

(18)

for , and , the parameter
triples , are almost-sure
unique, where is the distribution used to draw the

complex exponential parameters , ,
which is assumed continuous with respect to the Lebesgue mea-
sure in , provided that

(19)

6The first two conditions assure that we do not index beyond the available
data sample.

7The Theorem holds true if � and � are switched.

Proof: If both and are even numbers , pick
, , and [thereby satisfying (8)],

and (7) becomes

(20)

which is satisfied for any . If is even and is odd,
pick , and [thereby
satisfying (8)], and (7) becomes

(21)

which is satisfied for any . If both and are
odd, pick , ,
[satisfying (8)], and (7) becomes

(22)

satisfied for any . Finally, if is odd and
is even, pick , , , and

[satisfying (8)], and (7) becomes

(23)
satisfied for any . Invoking Proposition 1 com-
pletes the proof.

Remark 1: Some reflection reveals that the argument
behind the proof of Theorem 4 (and its -D generalization:
Theorem 5) is in fact constructive, leading to an eigenvalue
solution that recovers everything exactly under only the model
identifiability condition in the Theorem, in the noiseless case.
Matlab code can be found at http://www.ece.umn.edu/users/
nikos/public_html/3SPICE/code.html.

Remark 2: It is interesting to note that equations-versus-un-
knowns considerations indicate a bound of , without
taking the pairing issue into consideration. To see this, note that
each of the 2-D exponential components is parameterized
by three complex parameters, and a total of complex data
points are given. If the equations-versus-unknowns bound is
violated, then, under certain conditions, the implicit function
theorem indicates that infinitely many ambiguous solutions
exist in the neighborhood of the true solution.

V. -DIMENSIONAL CASE

The result can be generalized to the -dimensional case. Al-
though the spirit of the associated proof is clear, the mathemat-
ical argument is highly technical. This is so primarily because
one is forced to use a recursive dimensionality-embedding ar-
gument to preserve generality. We therefore state the result and
defer the proof to the end of the Appendix, noting that Figs. 1
and 2 help convey the essence of the proof to the interested
reader.
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Fig. 1. First step in the proof of the � -dimensional case.

Theorem 58 : Given a sum of -D exponentials

(24)

for , , the parameter
-tuples , are

almost-sure unique, where is the distri-
bution used to draw the complex exponential parameters

, for , which is assumed con-
tinuous with respect to Lebesgue measure in , provided
that

(25)

VI. COMMENTS AND EXTENSIONS

The restriction of at least four samples per dimension is an ar-
tifact of the proof. In fact, we can also treat cases with less than
four samples in any dimension(s). However, in the 2-D case with
less than four samples per dimension, our approach does not
yield anything significant. In the -D case, having less than four
samples along certain dimensions breaks the symmetry of the
problem, forcing us to separately consider cases, depending on
the number and sample size distribution of dimensions having
less than four samples. This prohibits a concise unifying treat-
ment. Nevertheless, individual cases can be easily dealt with,
given the tools developed herein.

A. Constant-Envelope Exponentials

So far, we have considered multidimensional complex expo-
nentials that incorporate real exponential components. In many
applications, one deals with constant-envelope complex expo-
nentials. The proof of Theorem 4 carries through verbatim in
this case, except that one needs to ensure that Theorem 3 holds

8The Theorem holds true for any permutation of ��� � .

Fig. 2. Second step in the proof of the � -dimensional case.

for generators drawn from the unit circle . This is easy, be-
cause the generic example that shows that the determinant is
nontrivial in the proof of Theorem 3 was actually constructed
using generators drawn from the unit circle. We therefore have
the following Corollary.

Corollary 2: Given a sum of 2-D constant-envelope com-
plex exponentials

for , and , the parameter
triples , are al-
most-surely unique, provided that

The same argument holds for Proposition 4 and Theorem 5 in
the case of constant-envelope complex exponentials; we skip the
corresponding statements for brevity.

B. Common Frequency Mode

In most applications, having two or more identical frequen-
cies along a certain dimension is a measure zero event. Having
two frequencies close to each other is very common, but this
affects performance, rather than identifiability. In certain ap-
plications, identical frequencies along one or two dimensions
are, in fact, a modeling assumption, motivated by proximity of
actual frequencies and compactness of model parameterization
[13]. For this reason, it is of interest to investigate identifiability
subject to common frequency constraints. This can be handled
using the tools developed herein, but one needs to check on a
case-by-case basis, depending on the “common mode configu-
ration.”

• How many distinct frequencies (“batches”) per dimen-
sion?

• How many components per batch?
• What is the pairing across dimensions?
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In general, the problem is combinatorial, and a unified treat-
ment does not seem to be possible. The reason is that one needs
to construct a “generic” example (cf. the proof of Theorem 3) to
demonstrate that the determinant of the associated Khatri–Rao
product is nontrivial for each common mode configuration. We
illustrate how this situation can be handled in the 2-D case with
a pair of 2-D exponentials having one frequency in common. In-
terestingly, we obtain exactly the same identifiability condition
as before. The proof of the following result can be found in the
Appendix.

Proposition 2: Given a sum of 2-D exponentials

for , and , with , the
parameter triples , are
almost-surely unique, where is the distribution
used to draw the complex exponential parameters

, which is assumed contin-
uous with respect to the Lebesgue measure in , provided
that

C. Nonexponential Dimension(s)

In certain situations, the signals along one dimension are
not exponentials, e.g., in uniform rectangular sensor array
processing with two exponential (spatial) dimensions and
a nonexponential temporal dimension. Our results can be
extended to handle this case as well. As an example, we have
the following result.9

Proposition 3: Consider

for , and , where is
a temporal index, and assume that the temporal signal matrix

is full column rank . If
and

then the parameterization in terms of ,
is almost-surely unique, where

is the distribution used to draw the complex
exponential parameters , , which is
assumed continuous with respect to the Lebesgue measure in

.

9Note that, assuming sufficiently many temporal samples and persistence of
excitation, and taking � ��� ������� in of [6, Eq. (22)], yields ���	�
 ��
���
���� ����� ��
���� ������� ����� 	"!�#$
%� � � � ; this is worse but close to our
result in Proposition 3, albeit [6] contains no proof.

VII. CONCLUSIONS

We have derived stochastic identifiability results for multi-
dimensional harmonic retrieval. The sufficient conditions pro-
vided are the most relaxed to date. The sufficient condition for
the 2-D case is not far from equations-versus-unknowns consid-
erations—hence additional improvements, if any, will be mar-
ginal. In the -D case, the resolvability bound is proportional to
total sample size, but the proportionality factor is dependent on

. Although this is not a serious limitation, it does indicate that
one moves further from the equations-versus-unknowns bound
in higher dimensions. It remains to be seen whether a signifi-
cantly tighter bound can be found in higher dimensions.

APPENDIX

We will need to invoke the following Lemma.
Lemma 2: Consider an analytic function of several

complex variables . If is nontrivial
in the sense that there exists such that ,
then the zero set of

is of measure (Lebesgue measure in ) zero.
This Lemma is known (e.g., [26]), but we have not been able

to find a satisfactory proof in the literature. We therefore include
a simple proof for completeness.

Proof of Lemma 2: If , it is well known that is
countable (e.g., see [3, Th. 3.7]10 ). For , define
if , and otherwise. The measure of is the
integral of over . Fix , and consider the
single-variable function . This is analytic in

; hence, its zero set is of measure zero. This means that for
any fixed

Hence

Note that the argument works, irrespective of order of integra-
tion—hence, the multidimensional integral is indeed zero by Fu-
bini’s theorem. This completes the proof.

Proof of Theorem 3: We will show that

a.s.

The general case can be reduced to the case. If ,
it suffices to prove that the result holds for an arbitrary selection
of columns; if , then it suffices to prove that the result
holds for any row-reduced square submatrix.

10Any uncountable set in the complex plane must have at least one limit point
because any complex Cauchy sequence must have one and only one complex
limit.
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When , full rank and full -rank can be established
by showing that the determinant of is nonzero. Define

is a polynomial in several variables and hence is analytic.
In order to establish the desired result, it suffices to show
that is nontrivial. This requires a “generic” example that
works for any . This can be constructed as follows.
For any given with and ,

, define the generators
and for . It can be
verified that with this choice of generators for and ,

is itself a Vandermonde matrix with generators
and, therefore, full

rank. This shows that is a
nontrivial polynomial in . Invoking the analytic function
Lemma 2, is nonzero almost
everywhere, except for a measure zero subset of .

Remark 3: An alternative proof of Theorem 3 can be con-
structed by using the theory of Lagrange interpolation in several
variables [5], [14], [16]. The advantage of such an approach is
that it affords geometric insight that facilitates the construction
of full-rank examples and counter-examples. The disadvantage
is that the proof requires a long and delicate argument.

Proof of Corollary 1: It is again sufficient to consider the
case . The generic example provided for a pair of Van-
dermonde matrices can also be used here to show that the de-
terminant of the square Khatri–Rao product of two matrices of
appropriate dimensions (but otherwise arbitrary) is a nontrivial
polynomial in complex variables; therefore, the ana-
lytic function Lemma 2 applies.

We will need the following preparatory results to prove The-
orem 5.

Proposition 4: Given Vandermonde matrices
for

-a.s. (26)

where is the distribution used to draw the com-
plex generators for , , which is assumed con-
tinuous with respect to the Lebesgue measure in .

Proof: The general case can be reduced to the
case. When , the full rank and full -rank of

is equivalent to its determinant being nonzero.
Define

where is the th generator of , , and
. is a polynomial in variables and, hence,

is analytic in . It therefore suffices to show that is non-
trivial. The following generic example works for any and

, , showing that is nontrivial

for , . It can be verified that
with this choice of generators for , ,

is a Vandermonde matrix with generators
and is, therefore,

full rank.
Proposition 511 : Given a sum of -D exponentials

(27)

for , , the parameter
-tuples , are

almost-surely unique, where is the distri-
bution used to draw the complex exponential parameters

for , which is assumed contin-
uous with respect to the Lebesgue measure in , provided
that there exist integers for ,
such that

(28)

subject to

(29)

Proof: We first extend the given -way array to a
-way array with typical element

(30)

where

11The Proposition holds true for any permutation of ��� � .
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Such extension is always possible under our working assump-
tion that , . We also need the following constraints to
avoid indexing beyond the available data sample:

(31)

Define matrices

(32)

for , . Next, we compress the
-way array into a three-way array . We do this in two steps

for clarity. The first step is to nest into a -way array
. This process is illustrated in Fig. 1.

(33)

for , , with
and given by

(34)

Define matrices

(35)

and note that

(36)

The next step is to show that starting from , we can
recursively nest the -way array into a

-way array , .
This step is illustrated in Fig. 2.

(37)

for

with and given by

(38)
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Define matrices

(39)

and can be written as

(40)

The recursion finally terminates at , which we are
going to denote by

(41)

for ,
. We have

(42)

Since is Vandermonde, Theorem 2 can be invoked to claim
uniqueness, provided that

(43)

Similar to the 2-D case, each product form

can be put in one-to-one correspondence with ,
. Therefore, uniqueness of the rank-one 3-D

factors is equivalent to unique-

ness of the rank-one -D factors . It follows

that the rank-one factors and, hence, the param-
eter -tuples , , are
unique, provided that (43) holds true. Invoking Proposition 4,
almost-sure uniqueness holds, provided there exist in-
tegers and for and
such that

(44)

subject to

or, equivalently

subject to

and the proof is complete.
Proof of Theorem 5: If is even, pick
; otherwise, pick and

[thereby satisfying (29)].
If is even, pick , ; other-

wise, let [hence satisfying (29)] for
all .

Once we pick all integers following the above rules, (25)
assures that inequality (28) holds. Invoking Proposition 5 com-
pletes the proof.

Proof of Proposition 2: It suffices to show that when

is a nontrivial analytic function in , where both and
are Vandermonde matrices defined by (2). For any given
with , , and , define the gener-
ators , for
and for . It can
be verified that with this choice of generators for and

...
...

...
...

...

...
...

...
...

...

which is full rank; hence, is nontrivial in .
Proof of Proposition 3: Assume , without loss of

generality. Spawn two dimensions out of : .
Collapse and . We are now in 3-D space,
with the dimension corresponding to being full -rank
almost surely. Theorem 2 then yields

. Since has been assumed, the desired
result follows.
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