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In this paper a general algorithm is provided for maximum likelihood fitting of deterministic models
subject to Gaussian-distributed residual variation (including any type of non-singular covariance).
By deterministic models is meant models in which no distributional assumptions are valid (or
applied) on the parameters. The algorithm may also more generally be used for weighted least
squares (WLS) fitting in situations where either distributional assumptions are not available or other
than statistical assumptions guide the choice of loss function. The algorithm to solve the associated
problem is called MILES (Maximum likelihood via Iterative Least squares EStimation). It is shown
that the sought parameters can be estimated using simple least squares (LS) algorithms in an iterative
fashion. The algorithm is based on iterative majorization and extends earlier work for WLS fitting of
models with heteroscedastic uncorrelated residual variation. The algorithm is shown to include
several current algorithms as special cases. For example, maximum likelihood principal component
analysis models with and without offsets can be easily fitted with MILES. The MILES algorithm is
simple and can be implemented as an outer loop in any least squares algorithm, e.g. for analysis of
variance, regression, response surface modeling, etc. Several examples are provided on the use of
MILES. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION variance of that particular residual. However, in some
situations the errors are not independent, and simple

In order to set the stage for the maximum likelihood method ) . .
weighted least squares is no longer optimal. In order to

developed here, it is necessary to first discuss the least
squares and weighted least squares approaches for model-
ing. Often, least squares fitting is used for estimating
parameters. Least squares fitting is especially useful for
fitting parameters when the residual variation is homo-
scedastic, independent and Gaussian. In this case, least

handle correlated errors, more complicated fitting proce-
dures are generally required, and often the algorithms for
such fitting procedures are either complicated to implement
or cumbersome to use. In this paper a general fitting
procedure will be devised that can handle all the above
situations for fitting any model for which a least squares
fitting procedure exists.

A short generic description of the algorithm is given at this
stage to help understand the subsequent derivations. A table
of uncertainty information W is available which defines
weights for each individual element of the input data X. This

squares fitting will yield maximum likelihood estimates.
When the residual variation is no longer homoscedastic, the
different magnitudes of different errors can be handled by
using weighted least squares fitting rather than least squares
fitting. The weight attached to a certain residual reflects the
inverse of the known, expected or estimated uncertainty of

. . . . weight matrix can hold information about the covariance of
the corresponding data element, i.e. the inverse uncertainty

the uncertainty between different elements. The purpose of
MILES is to allow for this information to be used in the
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modeling of the data. The data can have any suitable
structure, e.g. two-way (as in X) or a vector (as in x), a three-
way array (as in X) or any other structure. MILES is an
iterative procedure which alternates between a modification
of the original input data X by so-called majorization and a
conventional least squares modeling of the modified data. The
latter takes place in conventional space, while the former
takes place in a one-way representation of the data. This one-
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way representation is obtained by stringing out the data, e.g.
X, into a long column vector x which simply holds all the
columns in X. Thus there is a one-to-one mapping between X
and x by a simple rearrangement. In each step of MILES the
data are first modified using the current interim model,
called M or m depending on whether the representation is in
conventional or vectorized space. The modified data called q
are rearranged to the original format Q, and in the second
step the model is simply updated by performing an ordinary
least squares fitting of the model to Q (instead of X). Upon
convergence a model is obtained which takes the weights
into account.

The general models dealt with in this paper are described
along with the optimization problem to be solved. Let x be an
I x 1 vector holding a data set for which a model is sought.
Having x organized in a vector is not a restriction of the type
of data that can be modeled. This vector may represent a
matrix, a three-way array, a multi-way array or any other
structure of data elements rearranged appropriately into a
vector. For a P x ] matrix Z this rearrangement can be
achieved by vectorizing the matrix such that
x =vecZ = [z] z] ... z]]', where z; is a P-vector holding
the jth column of Z. For a three-way P x | x K array Z,
vectorization can be done by setting
x = vecZ = [vecZ] vecZ] ... vecZ}]", where Z; is a P x ]
matrix with typical elements z,3, p=1, ..., P,j=1, ..., ]

A model m (I x 1) with a certain structure and certain
constraints is sought for the data. Hence

x=m+e (1)

where e (I x 1) holds the residual variation not explained by
the model. The model m is defined as belonging to a certain
set, i.e. m € Y, where the set Y defines the structure and
constraints (e.g. PCA). In fitting the model in a least squares
sense, m is found as the argument minimizing

oLs(mfx) = x —m]® (2)

over m € Y, where ||g|* denotes the squared Euclidean/
Frobenius norm of g, i.e. the sum of the squared elements of
g. The expression o1 (m || x) indicates that the loss function
o1s is a function of both m and x and that x is considered
fixed; hence only the model m is optimized. This follows the
notation used by Kiers in a related paper [1]. For the model
m, any structure and/or constraints can apply.

For example, in principal component analysis,
m = vecM = vec(AB"), with both A and B having orthogonal
columns. Centering can also be easily included. Fitting e.g. a
PCA model to centered data is a two-step procedure, where
offsets are first removed (centering operation) and the PCA
model is subsequently fitted to the centered data. However,
several authors have proven that this two-step procedure is
equivalent to fitting a certain well-defined model to the raw
data in a least squares sense [2-4]. This model can be written
M = ABT + 1n", where n is a J-vector holding the offsets (the
average of the jth column in the case where these are
estimated by centering). Thus, instead of first centering and
subsequently fitting a model, it is equally valid to specify the
whole model as one overall least squares problem. Hence
least squares models involving centering are immediately
covered by the methodology developed in this paper.

Copyright © 2002 John Wiley & Sons, Ltd.

Yet another model could be a three-way PARAFAC model
[5], in which case M =[AD,B" AD,B" ... ADB"], with Dy
(k=1,...,K) being diagonal. As yet another alternative, the
model could be a multivariate linear regression model,
which can be formulated as M= QB, where Q is a given
fixed I x P matrix holding the independent variables, M
(I x R) holds the model of the R dependent variables and B
(P xR) holds the regression coefficients. In short, any
problem which has a least squares formulation can be
expressed according to Equation (2). For many special types
of models there are well-established algorithms for fitting
the above least squares model. This paper deals with
incorporating knowledge of the error covariance structure
or a priori problem-specific information in finding the
solution to Equation (1), taking advantage of the availability
of an algorithm for fitting the least squares model.

A way to pose the problem considered is the following.
The problem is to be able to fit deterministic models (i.e.
where parameters have no distributional assumptions
attached) but subject to any type of non-singular covariance
of the residual Gaussian noise. A different problem that
leads to the same loss function and hence solution is the
problem of fitting a model in a weighted least squares (WLS)
sense, i.e. to minimize the loss e'W'We, where e is the
residual vector and W is a non-singular weight matrix. In the
following the derivation of the algorithm will be presented
as the problem of maximum likelihood fitting, but, as stated,
weighted least squares fitting can also be sensible on the
basis of non-distributional a priori information, even if it does
not admit a maximum likelihood interpretation.

After deriving the MILES algorithm, several applications
are discussed. The applications will focus on well-known
chemometric models such as principal component analysis
and PARAFAC.

2. THEORY

2.1. Problem formulation

It is assumed that the residual vector e (I x 1) in the model
x=m + e is zero-mean Gaussian, with known covariance
matrix

cov(e) = A = E(ee”) (3)

where A is a matrix of size I x I assumed to be of full rank
and e' is the transpose of e. If e does not have zero mean, but
the mean is known or can be estimated, this mean can simply
be subtracted from the observations. The vector m is a
deterministic unknown subject to structural constraints.
Specifically, the only thing known about m is that it belongs
to the set ¥, but no distribution of the outcomes of m over Y is
known or can be assumed. We will develop a deterministic
likelihood algorithm for fitting this model.

Estimating parameters in a model using least squares
algorithms is appropriate for situations in which the errors e
in Equation (1) are i.i.d. Gaussian. By appropriate is meant
that the maximum likelihood solution is found under the
given premises. However, for other types of distribution this
is not the case. If the residuals are independently Gaussian
distributed but with different variances, the maximum
likelihood principle leads to fitting the model in a weighted
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least squares sense according to the criterion
2
owrs(mfx, W) = [[W(x — m)]| 4)

where W is an I x I diagonal matrix holding the weights and
|G||? is the squared Frobenius norm of G. The ith diagonal
element signifies the uncertainty of the ith element of x and is
equal to the inverse of the standard deviation of the
corresponding residual element. In e.g. bilinear decomposi-
tion such as principal component analysis (PCA) it is
common to fit models using this criterion in the special
situation where the elements in W corresponding to one
specific column of the data matrix have the same value. The
parameters of the model can then be found by fitting an
ordinary least squares model to the data appropriately
preprocessed by scaling each column [2,6]. For fitting PCA
models in the case of general but diagonal W, more
advanced algorithms have to be used [7,8]. An algorithm
for fitting any structural model according to this criterion has
been devised by Kiers [1] and, in fact, the work presented
here can be seen as a natural extension of his work. A
different algorithm has been proposed specifically for PCA
by Wentzell et al. [9], who also extended their model to the
more complicated problem of having correlated errors in
PCA.

If there is covariance between the different elements of e,
the assumption of independence of the distributions of
individual residuals is not valid. Then the loss function in
Equation (4) with only diagonal W no longer yields the
maximum likelihood solution. When e is zero-mean multi-
variate Gaussian, the covariance of its distribution is

cov(e) = A (5)

which has non-zero off-diagonal elements in general and is
assumed to be known. This covariance structure incorpo-
rates the assumed error distribution for both o1 g and oy g as
extreme cases.

The relevant part of the log-likelihood function of
estimating the model parameters m is (Reference [10], p. 181)

(x —m)'A™! (x —m) (6)
and by taking W = A=/, Equation (6) can be rewritten as
(x —m)'W'W(x—m) or [W(x-m)]'W(kx-m) (7)

Maximizing the likelihood requires minimizing Equation (7).
Hence the model can be found by minimizing the loss
function (see e.g. Reference [11])

on(m]x, W) = [W(x — m)|® (®)

The matrix W is of size I x I and holds the weights. In the
case of the error distribution of Equation (5) it holds that
W=AY2 assuming full rank of A, i.e. W is the symmetric
square root of the inverse of A. Thus, if the eigendecomposi-
tion of A™! is A"'=UDU!, with D diagonal and U
an orthogonal matrix holding the eigenvectors, then
W =UD"?U".

As stated in Section 1, the algorithm developed here can
also be applied for weighted least squares fitting in
situations where the weights do not arise (solely) from
statistical considerations. The basis for this broader view-
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point is the loss function in Equation (8). Rather than
deriving the weights in W from statistical considerations, it is
possible to introduce any other suitable set of weights based
e.g. on a priori problem-specific information. Minimizing the
loss function in this case will lead to weighted least squares
estimates that do not necessarily have any maximum
likelihood properties. An example of this is provided in
Section 3.
The loss function can be rewritten as

on(m | x, W) = [W(x - m)|
= (x —m)"WI'W(x — m) 9)

It is the objective in this paper to derive an algorithm for
finding m with its associated structure and constraints that
will minimize gy.. This is pursued in the next subsection.
For some models it is very simple to devise a maximum
likelihood algorithm from a least squares algorithm. For
example, consider the multiple linear regression problem

GML(b | X,Z,W) = HW(X - Zb)”Z
= (x—Zb)"W'W(x — Zb)  (10)

It is easy to see that the solution can be found as the solution
to the ordinary least squares problem

o (b | x,.Z,W) = ||W(x - Zb)|*
= (Wx — WZb) (Wx — WZb) (11)

by regressing Wx onto WZ. This is called generalized least
squares and is standard in regression theory (Reference [12],
p- 266). 1t is also called whitening in filtering theory [13].
Also, consider a bilinear PCA model of an I x | matrix X. If
the errors are independent across rows and identically
distributed within each row, the weight matrix W is a
block-diagonal matrix with blocks of | x | matrices V that are
all identical. It can be shown [6] that in such a case the
problem is equivalent to minimizing the loss function

ow(T,P | X, V) = [|(X - TPT)V|?
= vec[(X — TP")V]"vec[X - TPT)V]  (12)

The solution can be obtained by fitting a PCA model to the
transformed data according to

omL(T,P | X, V) = vec(XV — TP'V) vec(XV — TP'V) (13)

The parameters are thus obtained as T and P'V when fitted
to XV, and P can be found as (PTVV ™). Because (PTVV™)?
is generally not orthogonal, the parameters have to be
appropriately orthogonalized in order to get the standard
PCA solution. This can most easily be obtained from a
singular value decomposition of TP'VV . Such preproces-
sing can only be used when the errors are independent
across all but one mode. For general W of size I x I, even
PCA models cannot be fitted using least squares algorithms
on preprocessed data. For e.g. multi-way models such as
PARAFAC [5] and Tucker3 [14] the problems become even
more pronounced.
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2.2. Deriving an algorithm

An algorithm for minimizing oy (m | x,W) can be
developed using iterative majorization. The theory of
majorization has been described in the literature [15-18],
but the principle as it pertains to minimizing a loss function
is briefly reviewed next.

The loss function can be minimized by iteratively
improving any current estimate of the model. Let such a
current estimate be m,, where c is the iteration number. An
update is sought such that opg, (M1 | X, W) < oy (mg | x,W).
Improving the estimate continuously will lead to conver-
gence, because the loss is bounded below by zero. For a
complicated problem, however, improving the estimate can
be difficult. If no closed-form solution exists, gradient-based
methods may be used. Majorization, though, provides
another alternative route for improving a current estimate.
Instead of optimizing the loss function directly, a new loss
function is derived which is called the majorizing function.
This is a function of x, W and the current estimate m.. The
majorizing function is denoted by oma (m | xWm,),
indicating that the aim is to find an estimate m but now
also as a function of the current estimate m.. The majorizing
function is constructed in such a way that (i) it is easy (or
easier) to minimize and (ii) an improvement of o, (m |
x,W,m,) will also lead to an improvement of oy (m | x,W).
How this is achieved is described below and a pictorial
description of majorization can also be seen in Figure 1.

The majorization function should satisfy certain properties
to lend itself to iterative minimization of the original loss
function. It must hold that the value of the majorizing
function is never smaller than that of the ML loss function to
ensure monotonic convergence; that is, Omaj (M | x, Wm,, )
>opmL (m | x,W), Vm € Y. This requirement is the reason for
the name majorizing function. In order to obtain a reasonable
convergence rate, it is often appropriate, though, that g5 (m
| xWm,., ) is close to oy (m | x,W) at least in the

1} S g IXW,m,)

Loss function value

061 O pg(mxW)

(V] 5 10 15 20 25 30
Parameter values Mg M

Figure 1. The principle behind majorization illustrated with a one-
parameter model. The loss function oy,_is to be minimized as a
function of m. The current estimate of m is m, (abscissa) with a
corresponding loss (ordinate). This loss is improved by
minimizing a majorizing function oy,g;.
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neighborhood of m,. Further, it must hold that the two loss
functions are identical at the supporting point, which is the
current estimate m,, hence that op,,j (m, | x,W,m,) = o (m,. |
x,W). Note that this supporting point will not be the point
corresponding to the minimum of either ¢ (m | x,W,m 1)
or gy (m | x,W) unless at convergence.

A majorizing function for oy (m | x,W) will now be
developed fulfilling the above criteria. This majorizing
function is closely related to the one provided by Kiers [1]
and uses the function suggested by Heiser [19] in another
context. The derivation here follows closely that of these two
papers.

As shown in Equation (9), the loss function gy, (m | x,W)
can be written as

owL(m | x,W) = [W(x — m)|>
= (x—m) W'W(x — m) (14)

The sought model m can be written as m=m,+ (m — m,),
where m, is the current estimate of m. Thus Equation (14) can
be formulated as

om(m | x,W,m,) = [(x — m)
— (m - m)'W'W[(x - m,) — (m — m,)]
= (x—m,)"W'W(x —m,)
+ (m — m.)'W'W(m — m,)
—2(m — m,)'W'W(x —m,) (15)

Note that the first term o= (x —m)" W'W (x —m,) is a
constant because x and m, are known and fixed, i.e.

ovL(m | x, W,m,.) = o+ (m — m;)' W'W(m — m,)
—2(m — m.)"W'W(x — m,) (16)

The third term is linear in m, while the second term is the
difficult part because it is quadratic in m and because of the
presence of the matrix W'W. As shown by Heiser [19],
modifying this second term can provide a majorizing
function well suited for the purpose here. Let § be the
largest eigenvalue of W'W. It then holds that

sTWTWs> (17)

= ma (5
for vectors s of appropriate size. Thus for any s it holds that
ps’s = sTWTWs (18)

Therefore it holds that
p(m-m) (m-m)>(m-m)WWm-m) (19

and from this relation a majorizing function can be defined
from Equation (16) as

Omaj(m | x, Wom,) = o+ f (m — m,)" (m — m,)
—2 (m-m)"WW(kx-m,) (20)

It follows that opmsj (m | x, Wm,) >y (m | x,W) for all m.
Setting m=m, leads to Oma (M. | xW,m.) =0y (m. |
x,W) = o. Thus the requirements of a majorizing function are
satisfied. In order to improve the current estimate of m with
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respect to the loss function in Equation (16), it suffices to
improve m with respect to Equation (20). This provides a
tremendous simplification, because, as will be shown,
finding the minimum of Equation (20) corresponds to
solving a certain ordinary least squares problem.

Defining the constant vector q = m, + (1/ ) W'W(x — m,),
the majorizing function can be written as

Omaj(m | X, W,m,) =6+ fm'm—2fm'q (21)

The proof of this is provided in the Appendix. In finding the
minimum of this loss function, we can ignore the constant ¢
and f, and the argument m that minimizes this function is
thus also the solution to

min [(m —q)'(m - q)] = min (jm—q|f")  (22)

It therefore holds that, in order to improve an estimated
model m, with respect to oy (m, | x,W), it suffices to find the
updated model m_; that minimizes o1 g(m | q) = [|m — q||?
for m € Yand with q = m, + (1/ ) W'W(x — m,). Thus a least
squares model fitted to the transformed data q will provide
the necessary update. The monotonic convergence for an
algorithm based on iterative majorization, such as the one
derived here, follows, as shown by Kiers [1], from the fact
that

GML(mC+1 ‘ X,W) < Umaj(mc+1 ‘ x, W, mc)
< O'maj(mc | X,W, mc) = UML(mE | X, W)

A convergent algorithm for finding the deterministic maxi-
mum likelihood model follows immediately.

Algorithm MILES

1. Set counter c := 0; initialize model m,, e.g. using the least
squares model.

2. q=m,+ (1/f) W'W(x — m,), where f = max[eigenva-
lue(WW)].

3. meyq = arger?in (lm — qHz)

4.c:=c+1; go to step 2 until |jm, — m._4|]*/||m._4|]* <¢,
where ¢ is a pre-specified small number (e.g. 10~°).

In the case of iterative least squares algorithms such as
PARAFAC based on alternating least squares, step 3 can
often be improved. Instead of finding the least squares
update, it is sufficient to find an update that improves the fit.
For a slowly converging least squares algorithm it may for
example suffice to do 10 iterations or perhaps only one
iteration and then subsequently update q. In order to ensure
reasonable convergence, it is useful to add a simple line
search (on q), and for minimizing the risk of encountering
local minima, it is useful to redo the analysis a few times
from different starting points. In step 4 the convergence is
determined in terms of the relative change in the vectorized
model. The algorithm is guaranteed to converge in (WLS/
ML) fit, but convergence in fit does not in general imply
convergence of model parameters or the vectorized model
per se. In practical applications of MILES, convergence will
likely be determined via relative change tests on the
vectorized model, for the sake of computational simplicity.
It is for this reason that this choice of convergence criterion is
incorporated in MILES.

Copyright © 2002 John Wiley & Sons, Ltd.
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Computational complexity is an important aspect of any
algorithm. MILES is closely related to the principle of
alternating least squares (ALS) and, as for ALS, MILES can
at most achieve linear convergence. The complexity of
MILES will equal the complexity of the least squares
algorithm times the number of MILES “correction’” iterations.
The number of MILES iterations will of course vary
depending on the problem, but is typically fairly high
(>100). The key benefit that MILES brings to the table is ease
of implementing maximum likelihood fitting of models for
which least squares fitting is already available, and where
developing a dedicated maximum likelihood fitting routine
would be cumbersome and time-consuming. Hence it is not
expected that MILES will be faster than dedicated maximum
likelihood fitting routines, when these become available,
although MILES often matches the speed of existing maxi-
mum likelihood fitting routines for some well-known
models. To reiterate, MILES offers programming conveni-
ence and the ability to test the potential benefits of maximum
likelihood fitting before actually developing a dedicated
algorithm, which might be faster than MILES but at a
significant development cost.

If MILES converges to the global optimum (i.e. it is a
maximum likelihood solution), then the good properties of
maximum likelihood carry over to the solution obtained
through MILES. That is, for large total sample sizes (PJK in
PARAFAC with a P x ] x K array) relative to F (rank in
PARAFAC), maximum likelihood is asymptotically statisti-
cally efficient, i.e. it comes close to achieving the Cramer-Rao
lower bound on the variance of all unbiased estimators of the
model parameters. This is also true for high signal-to-noise
ratios [20].

3. APPLICATION OF MILES

In the following, two brief examples and a more detailed
example will be provided showing the usefulness of MILES
and comparing MILES with other similar algorithms. The
first example is devoted to comparing MILES with maxi-
mum likelihood PCA on a published data set. Few practical
details will be added to the application to these data, because
the data set and associated results have already been
excellently described in the original papers. The example
mainly serves to verify on known data that MILES provides
the same results as those obtained with the already existing
algorithm ML-PCA, as well as to illustrate that incorporation
of centering is simple in the MILES approach. The second
example shows the usefulness of MILES in maximum
likelihood PARAFAC modeling in signal processing with
correlated errors, while the final more detailed example
shows that MILES can also be used as a more general
weighted least squares approach for handling measurement
artifacts in a situation where maximum likelihood fitting
does not apply.

3.1. Spectroscopy —PCA

The first data set was generated and treated by Wentzell and
Lohnes [21] and arose from a designed experiment with
three-component mixtures of nitrates of Co(Il), Cr(Ill) and
Ni(II). A three-level, three-factor calibration design was used

J. Chemometrics 2002; 16: 387-400



392 R. Bro, N. D. Sidiropoulos and A. K. Smilde
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Figure 2. The loss function in least squares fitting and weighted
least squares fitting. The residuals are given in the vector e,
which is equal to vec(X-M), where M is the PCA model (including
possible offsets). Thus, in weighted least squares fitting, one
specific weight is attached to each residual and hence to each
element in X. ML-PCA and MILES-PCA as given below also
handle non-diagonal W, but this is not introduced in the current
application.

in which 1, 3 or 5 ml aliquots of stock solutions of the three
nitrates were combined and diluted to 25 ml with 4% nitric
acid. For technical reasons, one sample was not measured, so
the data set consists of 26 rather than 27 samples. In the
original publication, two samples were left out of the data set
because their standard deviations were judged to be
extreme. It was noted that inclusion did not change the
results significantly and the samples are not excluded in the
present analysis. The decision of whether to exclude these or
not is beyond the scope of this first example, as numerical
aspects are of primary concern. The concentration ranges
were 6.88-34.40 mM for Co, 3.06-15.29 mM for Cr and 15.70-
78.8 mM for Ni. The samples were measured in a range of
300-650 nm in 2 nm intervals on an HP 8452 DAD (Hewlett-
Packard, Palo Alto, CA, USA) using a 1 cm quartz cuvette.
For each sample, five replicate measurements were made by
repeated randomized measurements of the samples. From
these replicates the uncertainty of each measurement is
calculated and used in a maximum likelihood PCA model
assuming independent but different errors for each element.
The loss function is illustrated graphically in Figure 2.

A PCA model is sought in which the scores are
subsequently used for building a least squares regression
model (hence a principal component regression (PCR)
model). Several alternatives are tested here, mainly to
illustrate the appropriateness of the algorithm by comparing
to the earlier suggested ML-PCA algorithm given by
Wentzell and co-workers [9,21], but also to show how simple
it is to include centering in the maximum likelihood
estimation with MILES, which is not the case for ML-PCA
[9].

For illustration, the MILES algorithm for PCA with

Copyright © 2002 John Wiley & Sons, Ltd.

centering is given below. Note that this algorithm handles
correlated errors, but as W is diagonal in this application, the
weighted least algorithm of Kiers [1] could also be used.

Algorithm MILES-PCA

1. Initialize model m,, using centered LS-PCA model of
the data, and set c:= 0.

2. q=m,+ (1/f) W'W(x — m,).

3. T and P are found as the PCA parameters when fitted to
centered Q, i.e. to Q —In", where n (J x 1) holds the
averages of the ] columns of Q and where Q is the vector
q arranged to the same size as the original data matrix.

4. m = VeC(TPT + lnT).

5. c:= ¢+ 1; go to step 2 until [|m, — m, 4|*/|m,_|* <e.

In order to evaluate different PCR models, a leave-one-out
cross-validation scheme was used where each sample was
left out in turn. A PCA model was fitted and the scores were
used in an ordinary multiple linear regression model for
predicting Co(Il), Cr(Ill) and Ni(Il). Afterwards, the refer-
ence value of the left-out sample was predicted.

The following different PCA models were investigated, all
with three principal components.

e A maximum likelihood PCA model was used where scores
and centering parameters were estimated with MILES.
Centering was included in the maximum likelihood fitting.

e A corresponding least squares PCA model was also used
with ordinary centering.

e Finally, a maximum likelihood PCA model was estimated
but with the data centered in an ordinary least squares
sense. This model was fitted using both the MILES
algorithm suggested here and the ML-PCA algorithm of
Wentzell et al. [9].

The corresponding prediction results for the three
components are shown in Table I as the root mean square
error in cross-validation (RMSECV), which is defined as

RMSECV =

where ¢;_ is the residual of the predicted valued of sample i
predicted from a regression model built with the ith sample
excluded. All models provide excellent results (correlations
higher than 0.99), but the maximum likelihood results are
never worse than the least squares results, suggesting that
the use of maximum likelihood is feasible here. The results
also show that MILES and the earlier algorithm suggested
specifically for PCA give identical predictions as they
should. The identical predictions do not prove that MILES
provides the same PCA parameter estimates as ML-PCA. In
order to verify that, a three-component PCA model was
fitted 10 times to different random subsets of the 26 samples
(15 samples in each subset). The parameters were estimated
with both MILES and ML-PCA. The difference in fit was
identical to minimally the sixth digit, also indicating that
there are no significant problems with local minima solu-
tions. The loadings obtained from MILES never differed
more than maximally 0.0001% (100|PM™MES — pML=PCA) /
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Table I. RMSECYV values (M) for PCR model using three
components. The first column shows the result for a maximum
likelihood model including maximum likelihood centering. The
second column is an ordinary least squares PCR. The third and
fourth columns show the results using maximum likelihood
estimation but ordinary least squares centering with the Wentzell
and the MILES algorithm respectively. As expected, these two

are identical
MILES LS  Wentzell (no ML offset) MILES (no ML offset)
Cr 0.0897 0.0904 0.0894 0.0894
Ni 0304 0.3464 0.3031 0.3031
Co 0.2931 0.3045 0.2934 0.2934

[PMETPCA) from the loadings obtained from ML-PCA when
correcting for possible rotational differences. Finally, it is
noted that the inclusion of the centering within the maxi-
mum likelihood estimation is straightforward, although the
significance of this with respect to predictions is limited here.

3.2. Signal processing—PARAFAC

An example is provided here on the usefulness of MILES in a
different field, namely signal processing. The problem
pertains to so-called ‘blind” beamforming using receive
antenna arrays [22]. The objective of blind beamforming is to
reconstruct the emitted signal(s) and propagation par-
ameters of radio waves propagating along multiple paths,
each with its own attenuation and delay, without explicit
knowledge of the propagation environment. In such pro-
blems the data arise out of band-limited radio signals, and
the first step on the receiver side is to down-convert and
lowpeass filter the received data. This is done to filter off out-
of-band interference. At the same time the filtered baseband
signals are oversampled beyond the (minimum possible)
Nyquist sampling rate in order to help resolve path delays
and ensure that a PARAFAC model [5, 12, 22, 23] is
appropriate. This oversampling of the filtered signal creates
correlation of the noise samples along the oversampling
mode, because the spectrum of the noise has been shaped by
the frequency response of the lowpass filter.

The data are a 2 x4 x20 array with additive white
Gaussian noise. A two-component (two-ray) PARAFAC
model is suitable for the data, which are generated according
to

2
Xk = ) aigbyrciy + ei
=
i=12 j=1,....4, k=1,...,40 (24)

The first mode corresponds to receive antenna elements
(two antennas are used), with the parameter a; holding the
gain for the ith antenna with respect to the fth signal. The
second mode corresponds to symbol snapshots collected
(four), given by the parameters bj;, and the third mode to the
number of samples taken per symbol interval, given by ¢
The noise is held in e (Figure 3). The parameters are
randomly drawn from a Gaussian (0,1) distribution and the
residuals from a Gaussian (0,0.1) distribution. These noisy

Copyright © 2002 John Wiley & Sons, Ltd.
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Figure 3. The loss function for the signal-processing data. The
residual variation is independent from antenna to antenna and
from symbol to symbol but is correlated within the third sample
mode. Thus for each combination of receive antenna (first mode)
and symbol snapshot (second mode) a characteristic error
covariance matrix is obtained.

data are filtered by a five-sample moving average filter along
the long oversampling mode to simulate the effect of the
receive lowpass filter. This filtering step colors the noise
spectrum according to a sin(x)/x pulse in the frequency
domain, inducing noise correlation along the long mode.

For maximum likelihood estimation the error covariance
matrix is estimated from 30 realizations of the noise. In
Figure 4 the results from 100 runs are shown in terms of the
signal-to-noise ratio (SNR) of the estimated symbols (sorted
in size of maximum likelihood results). SNR is the common
fidelity measure used for assessing the quality of the model
in these applications and is defined by the true matrix B as
well as the estimated B as

B

It is hence a measure of how well the loading matrix is
recovered.

As can be seen, the maximum likelihood estimates are
significantly better except for a few distinct cases. The
generally higher SNR of the maximum likelihood estimates
translates directly into better source/path localization and
also reduced error rates in source signal recovery in the case
of digital communication signals.

3.3. Fluorescence spectroscopy —handling
scatter
3.3.1. Description of the problem
In fluorescence spectroscopy, scattering phenomena such as
Rayleigh and Raman scatter are typically considered as
noise, and often the areas where the scatter occurs are simply
removed from the data beforehand or equivalently treated as
missing data [23]. However, the interesting chemical
information is sometimes situated in the areas where the
scatter occurs and it is then not possible to treat these areas as
missing data. It then becomes crucial to be able to handle and
possibly separate the physical noise arising from scatter from
the chemical information.

Baunsgaard [24] analyzed aqueous mixtures of four
different fluorophores, namely L-phenylalanine, L-3,4-dihy-
droxyphenylalanine (DOPA), 1,4-dihydroxybenzene (hy-
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Figure 4. Signal-to-noise ratios (SNR) for 100 simulated models. The data are fitted by maximum likelihood
PARAFAC (solid line) and ordinary least squares PARAFAC (broken line). The ML results in the figure are
sorted in order of increasing SNR to allow easier visual comparison to the LS solution. As can be seen, the use

of MILES provides better results in general.

droquinone) and L-tryptophan. Samples were prepared from
stock solutions according to the design in Table IL
Fluorescence excitation-emission landscapes of the 22
samples were obtained with a Perkin-Elmer LS50 B
fluorescence spectrometer using excitation wavelengths
between 200 and 350 nm and emission wavelengths between
200 and 750 nm. Excitation and emission monochromator slit
widths were set to 5nm and the scan speed was 1500 nm
min . In order to keep the data manageable and exclude
irrelevant areas, subsets of the emission and excitation
wavelengths were chosen. Thus the actual data used in the
models contained excitations from 245 to 305nm in 5nm
intervals and emissions from 246 to 436 nm in 5 nm intervals.
A typical sample is shown in Figure 5 (left).

3.3.2. A model of fluorescence data

For dilute samples, fluorescence excitation-emission
measurements ideally follow a trilinear PARAFAC model
[25-28]. However, two types of problematic area exist in
such data [25, 26, 29]. First of all, emission below excitation
does not exhibit any fluorescence, and the intensity is simply
zero. This part of the data does not necessarily follow the
PARAFAC model, and therefore emission data below the
excitation wavelength have to be set to missing or down-
weighted such that the model does not incorrectly try to fit
these zero values. One situation in which the trilinear
PARAFAC model is not valid for emission below the
excitation wavelength is when the excitation spectrum has
non-zero values above the wavelength where the emission
spectrum has non-zero values. In such a situation the outer
product of the vectors holding the emission and excitation
spectrum will be non-zero in areas of emission below
excitation wavelengths. This contradicts the fact that
physical measurements will be zero and thus illustrates that
the PARAFAC model is not generally valid in this area. If not
removed, this part of the data will therefore bias the

Copyright © 2002 John Wiley & Sons, Ltd.

estimated parameters towards zero. In Figure 5 a typical
landscape is shown before and after removal of emission
below excitation. The other problematic type of variation in
such data is the so-called scatter ridges. Most significant in
Figure 5 is the first-order Rayleigh scatter ridge that is seen in
the rightmost part of the landscape [30]. It occurs approxi-
mately on the diagonal where the excitation equals the
emission wavelength. This part of the data is problematic
because it does not provide any chemical information, but
only physical information that is not interesting with respect
to the PARAFAC modeling. Further, such a ridge lying on a

Table Il. Concentrations of four fluorophores in 22 samples

(107%Mm)

Sample  Hydroquinone  Tryptophan  Phenylalanine = DOPA
1 17.00 2.00 4700 28.00
2 20.00 1.00 3200 8.00
3 10.00 4.00 3200 16.00
4 6.00 2.00 2800 28.00
5 0.00 0.00 5600 0.00
6 0.00 8.00 0 0.00
7 56.00 0.00 0 0.00
8 28.00 0.00 0 0.00
9 0.00 0.00 0 5.00

10 0.00 0.00 700 0.00
11 0.00 16.00 0 0.00
12 3.50 1.00 350 20.00
13 3.50 0.50 175 20.00
14 3.50 0.25 700 10.00
15 1.75 4.00 1400 5.00
16 0.88 2.00 700 2.50
17 28.00 8.00 700 40.00
18 28.00 8.00 350 20.00
19 14.00 8.00 175 20.00
20 0.88 8.00 1400 2.50
21 1.75 8.00 700 5.00
22 3.50 2.00 700 80.00
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Figure 5. Left: a typical excitation—emission landscape. Note the diagonal Rayleigh scatter peak to the right. In
the right plot, emission below excitation has been removed. Some scatter signal remains, but the bulk part of
the data that does not follow the PARAFAC model has been removed.

diagonal is not possible to model efficiently e.g. by using an
added PARAFAC component. The presence of scatter is
cumbersome, especially when the chemical information
appears close to the ridge. If this is not the case, it is
sometimes possible to eliminate the scatter by setting the
areas where the scatter occurs to missing or downweighting
the elements [23, 31-34]. In addition to first-order Rayleigh
scatter, other sources of scatter also occur. For these data a
minor banded ridge of Raman scatter is observed for some of
the samples. This type of scattering is less problematic in the
sense that it usually is of a minor magnitude and because it
can often be almost completely removed by subtracting
measurements of the solvent without sample.

Two alternative PARAFAC models are tested for fitting
these data. Both models are fitted with four components, one
for each chemical analyte, with the aim of resolving the
information for each analyte in each component. The
alternative PARAFAC models are:

o least squares fitting to the raw data but eliminating
emission below excitation;

e weighted least squares fitting using MILES, where emis-
sion below excitation is downweighted and weights are
used to minimize the influence of scatter.

In order to define the weights in the MILES model, a
simplified model of the scatter is used. This model is shown
in Figure 6 (left). It consists of Gaussian curves generated as
the sum of

(14— 1) /T Raytcigh] /2

Rayleigh Rayleighg—
e = e (26)
! O—Rayleigh 2n
and
T . )
pRaman _ J Raman © {1~ (1140.1j/])] /O Raman }* /2 )

! ORamanV 21

The parameters of these distributions are p; (emission
wavelength) and s (excitation wavelength) and g®®Y'eigh,
gRaman  pRayleigh o, 4 pRaman cohich are set to 8, 2, 25 and 0.5
respectively. These values were chosen rather arbitrarily to
provide a reasonable visual resemblance to the observed

Copyright © 2002 John Wiley & Sons, Ltd.

sizes of the scatter peaks. In actual practice the width and
height will change somewhat across the ridges, and the
ridges will not be perfectly Gaussian shaped. However, it is
anticipated that the approximation of the scatter is suffi-
ciently good for the purpose of minimizing the negative
effects of scatter.

The combined effect of scatter, measurement noise and
downweighting of emission below excitation is shown in
Figure 6 (right). This matrix is the sum of an i.i.d. term of
magnitude standard deviation one, a missing data part of
magnitude 1000 and the scatter model of Figure 6 (left). The
absolute sizes of these three contributions are immaterial,
whereas the relative sizes define the influence of the
different residuals on the loss function. The weights used
in MILES fitting are simply taken to be the inverse of the
values in Figure 6 (right). Some comments on this fairly
crude approach to defining the weights are appropriate.

e The same weights are applied to each sample. Although
some differences in actual uncertainty may appear
between samples, these are ignored here.

e The model fitted with the above-defined weights is not a

maximum likelihood estimate. First of all, the scatter has a

bias part which must be eliminated in order to be able to fit

the model in a maximum likelihood sense, and secondly,
the error estimates are not based on actual estimates of
uncertainty.

Eliminating bias by centering, though, is not feasible in this

case. In practice the bias can be removed by centering the

data across samples [2], but this will lead to overfitting,
because a huge number of averages need to be calculated

which are not strictly necessary.

Improving the error estimates based e.g. on actual replicate
measurements is avoided here in favor of simpler
estimates. Estimating actual error variances and covar-
iances from empirical data can lead to quite noisy

estimates, which will possibly even have less resemblance
to the true error covariances than simply using the implicit
ii.d. assumptions of a least squares approach.

e No use is made of off-diagonals in the weighting matrix (W
is diagonal as in the weighted least squares loss function in

J. Chemometrics 2002; 16: 387-400
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Figure 6. Left: an idealized representation of first-order Rayleigh and Raman scatter. The large Rayleigh trace appears around the
diagonal where the excitation wavelength equals the emission wavelength, while the Raman scatter has a lower intensity and moves
along a different diagonal. To the right, the total error ‘standard deviation’ for one sample is given. It is the sum of the scatter error from the
left plot, the i.i.d. error (standard deviation one for every element) and a very high value (1000) for the non-chemical part of the data.

Figure 2). This is justified by the adequacy of the results
obtained without off-diagonals and the computational
simplicity of the associated matrix inversions when off-

diagonals are left out.

3.3.3.  Qualitative results
In Figure 7 the resulting estimated loading parameters are
shown for two competing four-component PARAFAC

models. It is evident that there is a discrepancy in one of
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the estimated emission spectra and also in one of the
excitation spectra.

The shape of the 260 nm artifact peak for the least squares
emission component 3 (solid line) is naturally related to the
Rayleigh scatter, but, equally importantly, the relatively high
magnitude of the peak occurs because of the pattern of
missing data. Looking at the model approximation from only
component 3, ie. the outer product of the emission and
excitation loading, it is seen that although the 260 nm peak
appears large in the emission loading, its contribution to the
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Figure 7. Four components estimated with least squares (top) and weighted least
squares (bottom) approaches. Component 3 (solid line) has a peculiar peak in the
low-emission part in the least squares approach. Component 2 (dotted line) has an
incorrect excitation maximum above the corresponding emission maximum in the

least squares model.

Copyright © 2002 John Wiley & Sons, Ltd.

J. Chemometrics 2002; 16: 387-400



Model of component 3

[=]

e
280 0

o 20 »

E5 /i itat
Emigsionnm Excitationfnm

Figure 8. The landscape of component 3 (outer product of
emission and excitation loading) for the least squares fitted
model. The emission wavelengths below excitation have been
set to missing and it is seen that the apparent high scatter peak in
the emission loading is almost absent from this landscape
because of the missing data.

model is quite moderate (Figure 8) when the area without
fluorescence information is taken into account. Thus the
apparent large size, and hence importance, of the scatter
peak is an artifact of the special data structure. In actual
practice the magnitude of the 260 nm peak can be changed
with little associated change in fit. Such artifacts are often
observed when modeling fluorescence data, even if emission
slightly above the excitation wavelength has also been
removed to minimize the effect of scatter [29].

The high value of the least squares excitation component 2
(dotted line) is also related to the Rayleigh scatter. Owing to
the low signal from this component and a relatively high
amount of Rayleigh scatter, the component is primarily
reflecting the Rayleigh trace rather than the chemical
variation. When fitting the model with the MILES procedure,
the artifact is not seen and the overall estimated spectra seem
more reasonable. Hence the use of the WLS fitting seems
warranted in this case.

As an aside, fitting a least squares model to data where
non-fluorescent zeros from emission below excitation and
scatter are retained (i.e. not treated as missing), the results
are sometimes similar to the ones obtained here with MILES
fitting. This indicates that the two approaches are equally
good. However, the reason why the MILES approach works
is because it handles the special characteristics and devia-
tions from the ideal ‘i.i.d. least squares’ conditions in a direct
and reasonable way. On the other hand, when fitting the
data with a large number of “incorrect’ zeros, these zeros act
in the model in a similar way to ridge parameters in a
regression model. Because the model is forced to describe the
zeros, the parameters are forced towards zero. Further,
because the scatter peaks in the estimated spectra only
describe minor variation in the data, the gain in fit by
describing the incorrect zeros supersedes the loss in fit by not
describing the scatter peak. This is an ad hoc approach and
can be expected to bias the solution in many cases. Indeed,

Copyright © 2002 John Wiley & Sons, Ltd.
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for these data, this approach is not feasible. This is further
corroborated by means of the quantitative results that
follow.

3.3.4. Quantitative results
In order to substantiate the adequacy of the MILES
approach, the following resampling approach was adopted.

1. Ten of the 22 samples are randomly chosen.

2. A four-component PARAFAC model is fitted to these 10
samples.

3. The 10 concentrations of the four analytes are predicted
by the PARAFAC scores using multiple linear regres-
sion (no offset).

4. For each analyte, R?is computed as

1

2y — 7:)?

R2_—1_=2_
I
2

where y; is the concentration in the ith sample and ; is
the corresponding prediction.

5. This procedure is repeated 100 times, yielding 400 R*
values.

The R? statistic provides a measure of the fraction of variance
explained [35] and is expressed as a percentage in the results
that follow. The closer this percentage is to 100%, the better
the model fits the data. Note that the predictions of y are
based on a no-intercept model.

The following alternative loss functions and models were
evaluated.

A. Least squares fit to raw data (no missing data, hence
emission below excitation and scatter are retained (see
Figure 5 left)).

B. Least squares fit to data (setting emission below
excitation to missing (see Figure 5 right)).

C. Weighted least squares fitting (as specified above).

Least squares fitting without handling the area where
fluorescence does not occur is performed in A in order to
test if this is a feasible approach as discussed above. In B,
ordinary least squares fitting is used, but setting emission
below excitation to missing. The missing data are handled by
expectation maximization [25]. This idea of eliminating or
downweighting the problematic areas is the approach most
often used for multi-way modeling of fluorescence data. In
this case it would likely be possible to push the limit for
setting elements to missing a bit. Setting emission slightly
above the excitation wavelength to missing can help remove
even more of the problematic scatter. However, as this will
also eliminate chemical information, which is potentially
important for example for low-wavelength-emitting ana-
lytes, this is not pursued here.

In Figure 9 the results obtained from 100 runs for each of
the three alternative models are shown. Handling the
missing data (B) is slightly better than disregarding the
non-fluorescent parts (A), and using the MILES approach
provides the best results by far (C). This result, of course, is
simply a manifestation of the results outlined in the
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Figure 9. Histograms of 400 values of R? x 100 obtained from the three different models.

discussion of the qualitative results. The results can be
further understood e.g. by looking at the actual emission
loadings estimated by the three models in all 100 cases. From
Figure 10 it is easily seen that only the MILES models (C) are
able to accurately determine the spectra in all cases. For the
two alternative models the correct estimates are only
obtained occasionally, whereas in many cases incorrect
models are obtained, reflecting the scattering phenomena.
The model of the scatter phenomena used for defining the
weights has been chosen in an ad hoc fashion based on visual
assessment of the model. In order to verify that the results
obtained with MILES are robust towards slightly different
weights, two alternative models were investigated, one
where the scatter ridges are incorrectly moved as much as
10nm away in the emission direction from the correct
diagonal where emission equals excitation, and one where
the Rayleigh trace is only half the width of the former. As can
be seen in Figure 11, the resulting PARAFAC loadings are
almost identical. Although minor deviations appear in the
estimated spectra, these are insignificant compared to the

differences observed in the least squares model (Figure 7).
The results do indicate that some optimization of the scatter
model may be achieved, but, more importantly, it is verified
that the model is robust against minor changes in the error
model. Hence any reasonable model of the scatter will help
in correcting the problems encountered in the least squares
approach.

4. CONCLUSION

A new and general algorithm has been developed for
maximum likelihood or weighted least squares estimation.
It is applicable to any situation where a least squares
algorithm exists, and can be implemented as a simple
iterative procedure. This algorithm makes it simple e.g. to
make maximum likelihood fitting algorithms in situations
where it would otherwise be difficult to come up with a
suitable algorithm. One such example is to fit a bilinear PCA
model including centering. The centering part is not easily
handled with other maximum likelihood PCA algorithms,

0.8 ! '

0.4
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Figure 10. Emission loadings obtained from a least squares model of raw data (top), a least
squares model handling missing data (middle) and a weighted least squares model
(bottom). For each type of model the results from the 100 refitted models are superimposed.
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Figure 11. Results from PARAFAC using three alternative scatter models. Leftmost, the model used so far; then a model where the
scatter ridges are (incorrectly) moved 10 nm away from the correct diagonal in the emission direction; and finally a model where the
Rayleigh trace is half the width. The resulting emission and excitation loadings are shown.

but for MILES the structure of the model is immaterial as
long as a least squares algorithm exists. The algorithm has
been applied to different data sets to show its applicability.
These examples include PCA and PARAFAC. It has been
shown that very accurate knowledge of the error covariance
structure is not mandatory for the beneficial use of the
weighted least squares principle. Sometimes, though, maxi-
mum likelihood estimation is disregarded in favor of, for
example, least squares approaches. Indeed, if the residuals
have quite similar variances and are imprecisely determined
from few replicates, it is conceivable that the use of such
uncertain variances can lead to poor results. The difference
between maximum likelihood and least squares fitting,
though, becomes less pronounced if the errors are small
compared to the signal (which is often the case in e.g. near-
infrared spectroscopy).

The main results of the presented work are thus as follows.

e MILES is a general algorithm that can be used to replace a
number of specialized algorithms such as the algorithms
developed by Wentzell, Kiers, etc.

o The spectroscopic example basically shows that the MILES
algorithm provides the same results as current ML-PCA
algorithms and that offsets are easily included in the
maximum likelihood fitting,.

o The signal-processing example shows that MILES handles
residual covariance e.g. for fitting PARAFAC models. No
other PARAFAC algorithm currently does this.

e The fluorescence example provides an example of how the
weighted least squares approach of MILES can be used for
solving a well-known problem in modeling fluorescence
data.
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APPENDIX
For the second term in Equation (20) it holds that
B (m—-m) (m-m)=pm"m+p m'm, — 2 m"'m,
(28)

Tm, is a constant. The third term in Equation (20)

can be rearranged as

where m

2 (m—m)" WW(kx-m) =2 (mWWx - m"WWm,
— mW'Wx + m/W'Wm,)
(29)

Therefore Equation (20) can be written as

Omaj(m[x,W,m,) = o+ f m"'m+ f m'm, — 2 m"m,
-2 (m"WTWx — m™WTWm,

~ m!W'Wx + m!W'Wm,) (30)

Defining the constant term 6 = « + f m ' m, + 2m W Wx —
2m/ W Wm, leads to

Omaj(m|x, W,m,) =0 + f8 m'm -2 m"m, — 2 m"WTwx
+2 m™W'Wm,
=6+ fm'm—2m"(f m + W'Wx
—WIWm,)
=5+ pfm'm—2mT[f m, + WIW(x—m,)
=0+ pfm'm—-28mlq (31)
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