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Abstract—Wireless multicasting is becoming increasingly im-
portant for efficient distribution of streaming media and loca-
tion-aware services to mobile and hand-held devices, network
management, and software updates over cellular (UMTS-LTE)
and indoor/outdoor wireless networks (e.g., 802.11/16). Multicast
beamforming was recently proposed as a means of exploiting
the broadcast nature of the wireless medium to boost spectral
efficiency and meet Quality of Service (QoS) requirements. In-
feasibility is a key issue in this context, due to power or mutual
interference limitations. We therefore consider the joint multicast
beamforming and admission control problem for one or more
co-channel multicast groups, with the objective of maximizing
the number of subscribers served and minimizing the power
required to serve them. The problem is NP-hard even for an
isolated multicast group and no admission control; but drawing
upon our earlier work for the multiuser SDMA downlink, we
develop an efficient approximation algorithm that yields good
solutions at affordable worst-case complexity. For the special
case of an isolated multicast, Lozano proposed a particularly
simple adaptive algorithm for implementation in UMTS-LTE.
We identify strengths and drawbacks of Lozano’s algorithm,
and propose two simple but worthwhile improvements. All algo-
rithms are carefully tested on publicly available indoor/outdoor
measured channel data.

Index Terms—Admission control, beamforming, convex approx-
imation, E-MBMS, multicasting, NP-hard, UMTS-LTE.
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I. INTRODUCTION

W IRELESS multicasting is gaining ground as an enabling
technology for mass content distribution (Internet TV,

streaming media, pay-per-view, network management, software
updates) over wireless networks. Multicasting lies in between
two widely used information dissemination modalities: broad-
casting, where common information is addressed to all nodes in
a network, and parallel (orthogonal or co-channel) unicast trans-
missions. The middle ground between the two is important for
existing and emerging applications.

Multicasting has been traditionally viewed as a network-layer
issue, addressed by multicast routing. This viewpoint is natural
for wired networks, but wireless is different due to the so-called
broadcast advantage (a node’s transmission may reach multiple
receivers) and its flip-side: co-channel interference.

Unlike traditional broadcast radio, wireless networks nowa-
days incorporate feedback mechanisms that provide varying
grades of channel state information at the transmitter (CSI-T).
The availability of CSI-T coupled with the proliferation of
antenna arrays open the door for multicast beamforming at the
transmitter. The idea is to shape the transmit beampattern in a
way that steers power in the directions of multicast subscribers
while minimizing leakage in other directions. It is also possible
to design multiple beampatterns to transmit simultaneously to
more than one multicast groups, provided that the different
groups are spatially well-separated. Multicast beamforming
under Quality of Service (QoS) constraints, measured via the
received signal-to-noise ratio (SNR), was treated in [17], where
it was shown that the problem is NP-hard, yet amenable to
convex approximation tools. The case of multiple co-channel
multicast groups was treated in [6]. A key problem that arises
in this context is potential infeasibility, due to power or inter-
group crosstalk limitations. If the QoS constraints are rigid,
one is led to consider the problem of joint transmit beam-
forming and admission control. This has been considered in
[13] for the multiuser space-division multiple access (SDMA)
downlink scenario, comprising interfering co-channel unicast
transmissions.

In this paper, we consider the joint co-channel multicast
beamforming and admission control problem from the view-
point of maximizing the number of subscribers served at
or above a prescribed signal-to-interference-plus-noise ratio
(SINR), under an overall power constraint. We pay special
attention to the case of a single multicast group, which is
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important in view of ongoing standardization activity [9],
[16]. The Evolved Multimedia Broadcast/Multicast Service
(E-MBMS) in the context of 3GPP1/UMTS-LTE2 specifi-
cally provisions point-to-multipoint physical layer multicas-
ting [16]. Motivated by [17], Lozano [9] proposed a partic-
ularly simple alternating gradient iteration for the case of a
single multicast group. This being an NP-hard problem, the
results reported in [9] are intriguing given the simplicity of
Lozano’s algorithm.

Our specific contributions in this paper can be summarized as
follows.

• We generalize the convex approximation framework
developed in [13] for the multiuser SDMA downlink
to the co-channel multicast context. This yields an effi-
cient approximation algorithm that is directly applicable
in a far broader range of problems: from single-group
multicast to the SDMA downlink and everything in
between.

• We take a closer look at Lozano’s alternating gradient iter-
ation, and identify strengths and weaknesses. We show, by
means of simple but instructive examples, that it is sensi-
tive with respect to initialization and can exhibit limit cycle
behavior.

• We propose two simple improvements of Lozano’s itera-
tion that mitigate these drawbacks and significantly boost
overall performance. The resulting algorithm is an ideal
candidate for practical implementation in next-generation
cellular systems.

• We present a comprehensive suite of carefully designed
numerical experiments using publicly available measured
channel data, for both indoor and outdoor scenarios.

II. PROBLEM FORMULATION

Consider a base station or access point equipped with
transmit antennas and a population of subscribers, each
with a single receive antenna. Let be the complex
channel vector from the transmit antenna array to receiver ,

. We begin by assuming instantaneous CSI-T,
but our formulation and algorithms can be readily adapted
to work with long-term CSI-T, as will be explained in the
sequel.

Consider multicast groups, ,
where contains the indexes of receivers that wish to sub-
scribe to multicast . Since the transmissions are co-channel,
we may assume without loss of generality that ,

, , and with ,
. Let be the weight vector applied to the transmit-

ting elements to beamform towards group , ,
where denotes Hermitian transpose. Streaming media ap-
plications demand a minimum instantaneous3 SINR. With this

1Third Generation Partnership Project.
2Universal Mobile Telecommunications System—Long Term Evolution.
3Lower-priority services such as software updates can operate under a long-

term average SINR constraint, which can be guaranteed given only long-term
CSI-T, as will be discussed in the sequel.

in mind, the multicast beamformer design problem can be cast
as follows:

(1)

(2)

(3)

where is the additive noise power at receiver and stands
for the associated minimum SINR requirement. The objective
function reflects the desire to pick the minimum power solution
when the problem is feasible, while the explicit sum power con-
straint accounts for regulatory and equipment limitations.4

The above problem is NP-hard, for it contains the case of a
single multicast group , which is already NP-hard as
shown in [17]. Still, it has been shown [6], [17] that it is pos-
sible to compute high-quality approximate solutions via convex
(semidefinite) approximation. The idea is to approximate the
non-convex and NP-hard problem using a suitable convex
problem, then use the solution of the convex problem to guide
the search for a good feasible solution of the original NP-hard
problem. The second step in [6] and [17] is based on Gaussian
randomization, which can provide provably good approximate
solutions in the sense that the distance to the optimum can be
analytically bounded [10]. The case of corresponds to
the multiuser space-division multiple-access (SDMA) down-
link [4] whose convexity was shown in [1].

(In)Feasibility is a key issue with the above formulation. In-
feasibility may arise for a number of reasons: due to proximity
of channel vectors of users interested in different multicast
streams, scattering of users belonging to a given multicast
group, degrees of freedom (few transmit antennas relative to
the number of multicast groups), spatial group interleaving,
and power limitations. The power constraint alone may limit
coverage even for a single multicast group. While in most cases
infeasibility can be detected using the tools developed in [6],
what one does next is far less obvious. If the SINR constraints
are infeasible, then some form of admission control is needed;
but this should ideally be considered together with the beam-
former design problem, for the two are obviously coupled.

Towards this end, it makes sense to consider maximizing the
number of subscribers that can be served at their desired SINR,
and then minimizing the power required to serve those selected
in the first step. This approach can be mathematically formu-
lated in two stages:

(4)

(5)

(6)

4Per-antenna power amplifier constraints can be easily incorporated in our
approach; we skip them for brevity.
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where denotes the cardinality of . Note that if ,
then no constraints are imposed for the given . Given , we
then wish to

(7)

(8)

The second optimization stage in (7)–(8) is feasible (provided
is a solution of (4)–(6)), but remains NP-hard, as per [6],

[17]. This is different from the multiuser SDMA downlink case,
considered in [13]. In addition, we have the following result.

Claim 1: The problem in (4)–(6) is NP-hard.
Proof: Consider the decidability version of problem

(4)–(6) for , (i.e., , the
maximal value), and , : does there exist a vector
such that

and for which

This problem is the decidability version of the following
problem:

which has been shown to be NP-hard in [17].
The two-stage formulation in (4)–(6) and (7)–(8) is not partic-

ularly convenient, for a number of reasons. Nested optimization
problems are awkward to work with; perhaps more importantly,
the nested formulation does not suggest a way to approach the
problem from a convex approximation perspective. Towards this
end, we will use a technique originally developed in [13] for
the multiuser SDMA downlink—which is a special case of our
present formulation for .

Introduce binary admission control (“slack”) variables , one
for each receiver . When re-
ceiver is scheduled (rejected, respectively). Consider the fol-
lowing optimization problem:

(9)

(10)

(11)

Claim 2: With

and , the problem in (9)–(11) is always
feasible, and solution of (9)–(11) is equivalent to first solving
(4)–(6) and then solving (7)–(8). If there are multiple solutions
of (4)–(6), i.e., if the maximal subset of users that can be served
is not unique, then (9)–(11) will automatically pick a maximal
subset requiring minimal total power.

Proof is deferred to the Appendix.
By virtue of Claim 2, solution of (9)–(11) could be used to

obtain a solution of (4)–(6), which is NP-hard per Claim 1. It
follows that:

Claim 3: The problem in (9)–(11) is NP-hard.
This means that if we insist on polynomial complexity in the

worst case, we have to give up optimality (unless ); that
is, we can only hope for an approximate solution, rather than an
optimal one. A key benefit of the single-stage formulation in
(9)–(11) is that it is naturally amenable to convex approxima-
tion, as explained next.

III. A SEMIDEFINITE RELAXATION APPROACH

Define , and introduce rank-one positive
semidefinite matrix variables , and ,
where . Then (e.g., cf. [11] and [13]) the op-
timization problem in (9)–(11) can be transformed to the
following equivalent form:

(12)

(13)

(14)

(15)

(16)

The above is a quadratically constrained quadratic program-
ming (QCQP) problem, in which only the rank-one constraints
are non-convex. Wolkowicz [19] has shown that simply drop-
ping the rank-one constraints in this case yields the Lagrange
bi-dual problem, which is the strongest convex relaxation of the
QCQP problem in the Lagrangian class. Dropping the rank-one
constraints yields a semidefinite programming (SDP) problem,
which can be efficiently solved using modern interior point
methods [2]:

(17)
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(18)

(19)

(20)

(21)

Remark 1: Being a relaxation of (12)–(16), the problem
in (17)–(21) is also feasible when and are chosen as per
Claim 2.

Solution of the relaxed problem in (17)–(21) in general only
provides a lower bound on the cost of an optimal solution to
the original problem in (12)–(16). If a particular solution of
(17)–(21) consists of rank-one , and rank-one , ,
then it is also a solution (12)–(16); although this situation does
happen in practice, it does not always happen. What is needed
is a way to “convert” an optimal solution of (17)–(21) into a
good feasible solution of (12)–(16). This step is presently an
art guided by partial results. A commonly used technique is
Gaussian randomization, which can generate provably good
approximate solutions in certain cases (e.g., see [10] which is
applicable in the special case of an isolated multicast scenario,
albeit not accounting for admission control). In other cases
reasonable heuristics are often used, and the overall solution
is benchmarked against the relaxation lower bound5 and/or
exhaustive search when applicable—in particular for small
problem instances.

In our present context, the following algorithm seems to work
best in practice, among numerous options we have tried:

Algorithm 1: Multicast Membership Deflation by
Relaxation (MDR)

1) .
2) .
3) Solve (41)–(45), and let denote the resulting transmit

covariance matrices.
4) For each such that , extract the principal

component of , and scale it to power ; i.e.,

set , where is the unit-norm

principal component of .
5) For all such that , and each , check

whether

holds. If this is true for all , and all such that
, stop (a feasible solution has been found); else

pick the user with largest gap to its target SINR (smallest
attained SINR if all the SINR targets are equal), remove
from and go to Step 2).

5We know that an optimal solution of the original NP-hard problem can never
have lower cost than that attained by the possibly higher-rank solution of the
corresponding rank relaxation.

A. Implementation Complexity

The worst-case complexity of MDR is ,
where is the required relative accuracy of the duality gap at
termination [13], [18].

Note that it is possible to further reformulate (17)–(21) to
reduce complexity by a factor of two, as shown in the Appendix.

IV. SPECIAL CASE: SINGLE MULTICAST

The special case of a single (isolated) multicast group
is of particular interest, due to on-going standardization ac-

tivity in the context of UMTS-LTE. This has been considered
in [17], but without regard to infeasibility/admission control
issues. In the case of a single multicast, assuming that

, , infeasibility arises only due to the transmit power con-
straint—there is no interference from other groups. An alterna-
tive scenario where the same problem arises is when the beam-
formers of the different groups are sequentially optimized, and
interference is clumped together with the additive noise terms.
Letting denote the set of potential subscribers, the two-stage
formulation in (4)–(8) reduces to the following problem:

(22)

(23)

(24)

and given

(25)

(26)

The single-stage reformulation in (9)–(11) reduces to

(27)

(28)

(29)

where , , as per Claim
2. The final optimization problem after “squaring” of variables
and rank relaxation is the following SDP:

(30)

(31)

(32)

(33)

(34)

The overall convex approximation approach for entails
a trimmed-down version of MDR, listed below for clarity.
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Algorithm 2: Single Group MDR

1) .
2) Solve the relaxed problem (30)–(34), and let denote

the resulting transmit covariance matrix.
3) principal component of , scaled to power .
4) For each , check whether . If true

, stop (feasible solution has been found); else
pick user with largest gap to its target SNR, remove from

and go to Step 2).

Extensive experiments with measured channels (cf. Section VII)
indicate thatMDRprovides verysatisfactoryperformance (about
one user less than optimum, on average, in our experiments) at a
moderate average and worst-case complexity that grow grace-
fully with the problem size. Still, MDR takes order of second to
execute on a typical PC, and, perhaps more important, it is a batch
algorithm that solves the problem from scratch every time. Even
though warm-start options can be readily envisioned and could
be used to track small variations inexpensively, a practitioner
would naturally prefer a solution that works well at very low
complexity—an adaptive filtering-type algorithm, preferably.

Is it possible to have good performance at really low com-
plexity for an NP-hard problem? This seems a priori highly
unlikely. Yet Lozano recently proposed an intriguing adaptive
filtering algorithm that apparently works well in limited but re-
alistic experiments in the context of UMTS-LTE [9]. In the fol-
lowing section, we take a closer look at Lozano’s algorithm.

V. LOZANO’S ALGORITHM

In the sequel, let denote either or its expectation, de-
pending on whether instantaneous CSI-T or long-term CSI-T is
assumed. When instantaneous CSI-T is available,
is the instantaneous SNR at receiver for weight vector ; with
long-term CSI-T, is the expected SNR at receiver

for weight vector . Lozano’s algorithm is a very simple al-
ternating gradient iteration: at each step it sorts users according
to presently attained SNRs, discards the users with the poorest
SNRs, and makes a gradient step in the direction of the weakest
retained user. The choice of users to drop is based on either a
fixed SNR threshold, or (better) a fixed number/percentage of
users to keep at each iteration. Dropped users participate as can-
didates in the next iteration. Lozano’s algorithm can be summa-
rized as follows.

Algorithm 3: Lozano’s Iteration for Single-Group
Multicast [9]

1) Initialize: .
2) Compute SNR .
3) Sort SNR .
4) Drop a fixed proportion of users with lowest attained

SNRs.
5) Find weakest link among remaining ones .
6) Take a step in its direction: ;

then .
7) Repeat until no significant change in minimum SNR.

Fig. 1. Illustration of the effect of � on Lozano’s algorithm for a contrived but
instructive two-user scenario.

The ingenuity of this algorithm lies precisely on giving up on
the weakest links—to focus on the remaining, more promising
ones. Performance is far worse when rejection is not employed.
The choice of number/percentage of users to keep at each it-
eration has a significant impact on performance. The choice of
step-size parameter is also important. Unfortunately, theoret-
ical analysis of Lozano’s algorithm appears difficult, precisely
due to the rejection step; but even empirical choice of parame-
ters is difficult, as illustrated next.

A. A Closer Look

Despite its conceptual simplicity, Lozano’s algorithm ex-
hibits intricate convergence behavior. Consider the following
contrived but instructive scenario: there are transmit
antennas and users, with channels and

(each user only listens to a single transmit an-
tenna). Let . If both users should be served,
the optimal solution is , attaining an SNR of

for each user. Lozano’s algorithm initialized with
(say, because it was previously serving only user 1, and now
user 2 comes into the system) has a fixed point at , which
is in the null space of —thus for all and
all , implying that user 2 is simply shut off from the system.
This shows that the algorithm can converge to a suboptimal and
unfair solution.

A small perturbation of either or takes the algorithm
away from this undesirable fixed point; for small enough , the
iterates typically approach the optimum solution, albeit slowly.
Beyond the usual speed—misadjustment trade-off, however, in
this simple scenario Lozano’s algorithm typically exhibits limit
cycle behavior when randomly initialized. Choosing a smaller

helps reduce the magnitude of the oscillation, but naturally
reduces the speed of adaptation, as illustrated in Fig. 1. Limit
cycles are particularly annoying because they make it hard to
select an appropriate tolerance threshold.

Evidently, Lozano’s algorithm may fail to converge, or con-
verge to a suboptimal or unfair solution, and is sensitive with
respect to initialization, problem instantiation, and the choice
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of parameters. These issues do arise in realistic scenarios, how-
ever the algorithm performs considerably better, on average,
than what the above example may suggest, and its simplicity is
certainly appealing. It therefore makes sense to consider mod-
ifying it to mitigate its two major shortcomings (sensitivity to
initialization, and the potential for limit cycle behavior) while
maintaining its simplicity.

VI. IMPROVING LOZANO’S ALGORITHM

We propose the following two simple but worthwhile im-
provements to Lozano’s algorithm.

• Lopez [8] considered multicast beamforming from the
viewpoint of maximizing average SNR. While minimum
SNR is what determines the common multicast rate
[17], the average SNR solution can serve as a reason-
able starting point for further improvement via adaptive
algorithms. Lopez has shown [8] that maximizing the
average SNR in a multicast context reduces to determining
the principal eigenvector of the (normalized) channel
correlation matrix. In the case of instantaneous CSI-T,
this is defined as , where

; whereas for long-term CSI-T
it is . Finding the principal eigen-
vector can be accomplished via adaptive algorithms (e.g.,
based on the power method), which can also be employed
in tracking mode. As a result, the overall solution remains
simple and adaptive in nature. We call this algorithm LLI,
for Lozano with Lopez Initialization. The only difference
between LLI and Lozano’s original algorithm is in the ini-
tialization—step 1), where the average SNR beamformer
of Lopez is used in LLI.

• A simple and effective way to suppress limit cycle behavior
is to damp according to a predefined back-off schedule.
This should be balanced against our primary objective,
which is to find a good solution. Aggressively damping
limits how much of the search space we can explore.
The weight update of Lozano’s algorithm can be in-
terpreted as taking a step in the direction of the local
subgradient of SNR , where the minimum
is taken over the currently active user set . There are
two difficulties here: this is not a subgradient in the usual
sense, because it is only a local, not a global under-es-
timator of SNR ; and can change as
iterations progress. These difficulties arise because we
are dealing with a non-convex and NP-hard problem. For
convex problems it is known that subgradient optimization
using a step-size sequence such that but

(e.g., , ) yields an algorithm
that converges to the optimum. In our context, the choice
of back-off schedule is not obvious. We have tried the
following options ( in all cases):
1) ;
2) (thus is reduced every 10 iter-

ations);
3) (exponential back-off);
4) if , else

(exponential back-off every 10 iterations);

5) (even more aggressive);
6) if , else

(same as the previous one but back-off every 10 itera-
tions).

We have tested these options (with Lopez initialization)
in extensive experiments with simulated and measured
channel data (cf. simulations section). Options 1, 2, and 6
performed equally well, whereas 3, 4, and 5 were worse.
Between 1, 2, and 6, option 6 was two orders of mag-
nitude faster than the other two. We therefore settled on
option 6, in which is aggressively damped every ten
iterations. This is of course ad-hoc, but so is the overall
algorithm—and it is hard to argue with something simple
that works very well in practice, as we will show in our
experiments. We call this variant dLLI (for damped LLI).
dLLI differs from Lozano’s original algorithm in that it
uses Lopez initialization in Step 1), and step-size back-off
option 6 for the weight update in Step 6).

Remark 2: Lozano’s algorithm and LLI use a fixed step-
size, thus having the potential to track changes in the opera-
tional environment—e.g., due to users coming in and out of
the system and/or user mobility. The use of a vanishing step-
size, on the other hand, implies that dLLI per se is not ca-
pable of tracking. In our particular context, however, channel
vector updates will generally be infrequent (relative to the down-
link signaling rate), and users will drop or attempt to join at an
even slower time scale. In between such updates, we have to
solve a static problem. Each static problem can be solved with
dLLI, using either the average SNR beamformer (Lopez) or the
beamvector computed for the previous “slot” (problem instance)
as initialization. Which initialization is best will depend on the
type of update (e.g., new user or updated channel vector for ex-
isting user, and user mobility). Since dLLI is a cheap algorithm,
the pragmatic approach would be to run two parallel iterations
with both initializations and choose the best in the end.

VII. EXPERIMENTS

The problems we are aiming to solve are important in
practice, albeit NP-hard. MDR is only a well-motivated ap-
proximation, and the adaptive algorithms (Lozano’s, LLI,
dLLI) are merely common-sense engineering. We have con-
ducted extensive and carefully designed experiments to assess
the performance of all algorithms using measured channel
data. We further tested all algorithms in simulations with i.i.d.
Rayleigh channels. We do not report the i.i.d. Rayleigh results
for brevity, but note that these were consistent with those
obtained using measured channels.

Approximate solutions should ideally be compared to exact
(optimal) ones to assess the quality of approximation. Unfor-
tunately, this is not possible in our context, because even the
single-group version of the problem without admission control
is NP-hard. Still, for fixed SINR targets, we can enumerate over
all possible subsets of users using the potentially higher-rank
SDP relaxation in [6] to test each subset. This will be referred
as ENUM in the sequel, and it yields an upper bound on the
number of users that can be served (and a lower bound on the
power required to serve them) under the given SINR and power
constraints. This bound is the tightest that can be obtained via
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Fig. 2. Quad: Outdoor measurement scenario from http://www.ece.ualberta.ca/
~mimo/.

Fig. 3. 2nd Floor of ECERF: Indoor office measurement scenario from http://
www.ece.ualberta.ca/~mimo/.

duality theory, but remains optimistic in general, because it al-
lows for higher-rank transmit covariances (beamforming corre-
sponds to rank-one transmit covariance).

If after testing all subsets ENUM returns a set of transmit co-
variances which are all rank-one, then this set is an exact (op-
timal) solution of the original NP-hard problem in (4)–(6), and
thus ENUM yields the ultimate benchmark. This is because it
is not possible to serve any more users in this case, even using
higher-rank transmit covariances—this possibility has already
been tested during ENUM. This is very important, because it
happens in the vast majority of cases considered in our experi-
ments. Only in rare cases does ENUM return higher-rank solu-
tions, as we will see in the sequel. The drawback of ENUM is
of course its exponential complexity in the number of users, ,
which makes it prohibitive for over 10–12 on a current PC.

Two different kinds of wireless scenarios are considered for
both single multicast and multiple multicast groups: measured
outdoor channel data, and measured indoor channel data. Mea-
sured channel data were downloaded from the iCORE HCDC
Laboratory, University of Alberta, at http://www.ece.ual-
berta.ca/~mimo/ (see also [5]). The outdoor scenario (“Quad”)
is illustrated in Fig. 2 and described in [12] and [13]. The
indoor scenario (“2nd Floor ECERF”) is illustrated in Fig. 3,
and is briefly described next. In both Figures, Tx denotes the
(four-element) transmit antenna array location, whereas the
numbers denote the positions of each user’s single receive
antenna. Data selection and preprocessing follows [12], [13].

“2nd Floor ECERF” is a typical office environment. The floor
includes many small offices, divided by thin wooden plates with
embedded windows. There are many small corridors as well.
The whole room is mainly used by staff and professors of the
University of Alberta. The transmitter is placed at the recep-
tion area, where many people walked into during measurements.
Both the transmitter and the receivers are fixed; positions where
measurements have been taken are marked in the floor plan. The
distance of the transmitter to a concrete wall, which is covered
by wooden plates, is less than 0.5 m. The main corridor, in which
locations 1, 2, and 6 are marked, has a width of 2.5 m and a
height of 4 m to a concrete ceiling. Locations 1 and 2 are about
18 and 34 m, respectively, from the transmitter. Location 6 is
halfway between the transmitter and location 2. Locations 3,
4, and 5 have a distance of 23, 19, and 10 m, respectively, to
the main corridor. No measurements are available for location
7. Both the transmitter and the receivers are equipped with an-
tenna arrays, each comprising four vertically polarized dipoles,
spaced 16 cm apart. As described in [13], at each Rx
Location, nine different measurements were taken by shifting
the Rx antenna array on a 3 3 square grid with spacing.
Each measurement contains about 100 4 4 channel snapshots,
recorded 3 per second. We used measurements corresponding to
the locations that are marked in Fig. 3.

We next present experiments for the case of multiple
co-channel multicast groups, in which the simpler adaptive
algorithms are not applicable; the case of an isolated multicast
follows.

A. Multiple Co-Channel Multicast Groups

In experiments 1 and 2, we consider the case of
co-channel multicast groups. The number of transmit antennas
is , while the number of single-antenna receivers is

, in all cases. We use instantaneous channel vectors
(rank-one channel covariance matrices). The reported results are
averages over 30 temporal channel snapshots, spanning 30 s.

Experiment 1 concerns the “Quad” measured outdoor
scenario. Users are split in the following three groups of
four users each: , ,

, see Fig. 2. The remaining parameters are as
follows: ; , , ; for MDR,

, and .
Performance of MDR is compared to that of ENUM. The de-
tailed results are reported in Table I. For ease of visualization,
Fig. 4 is a plot of the average number of users served, as a
function of target SINR in dB, for both ENUM and MDR. It
is important to note here that ENUM returned only rank-one
transmit covariance matrices in 95% of the cases considered.
Only in the rest 5% of the cases were higher-rank covariance
matrices returned by ENUM, and in all these cases it was pos-
sible to serve only one additional user using these higher-rank
covariances, and this required significant excess power. In this
experiment, MDR serves on average about half a user less than
ENUM when the target SINR is high, and about one and a half
user less when the target SINR is low.

Experiment 2 concerns the “2nd Floor ECERF” mea-
sured indoor scenario. Users are split in the three groups

Authorized licensed use limited to: University of Minnesota. Downloaded on February 1, 2010 at 06:13 from IEEE Xplore.  Restrictions apply. 



MATSKANI et al.: EFFICIENT BATCH AND ADAPTIVE APPROXIMATION ALGORITHMS 4889

TABLE I
EXPERIMENT 1: STATIONARY OUTDOOR, THREE MULTICAST GROUPS; MONTE-CARLO RESULTS (30 MEASURED CHANNEL SNAPSHOTS): � � � TX ANT.,

� � �� USERS (ALL DEPICTED IN FIG. 2), � � ����; � � � � �, � � �, � � �, ��; � � �� 	 �
��
�� ��, � � ��� �
�� 	
� �� � � � �.
ENTRIES FORMATTED AS � @
/30 MEAN THAT � USERS (OR GROUPS) ARE SERVED IN 
 OUT OF 30 CASES. ALL POWERS REPORTED IN LINEAR SCALE.

Fig. 4. Experiment 1 (Outdoor): Average number of users served versus target
SINR for 30 measured channel snapshots.

, , , see
Fig. 3. Detailed results are reported in Table II, and summary
plots in Fig. 5. The parameters are the same as in Experiment
1. In this indoor scenario, MDR serves on average about one
user less than ENUM, which returns higher-rank covariance
matrices in 9% of cases.

Summarizing the multigroup multicast experiments, MDR
appears to work well in the cases considered, albeit the gap to
ENUM is not as small as in the multiuser SDMA downlink
case considered in [13]. This is natural, because multicasting
is a much harder problem—even its plain-vanilla version is
NP-hard. The gap in MDR performance relative to ENUM
should be considered in light of the associated complexities:
MDR terminates in under 1 second in all cases considered,
whereas ENUM takes 5–50 minutes for , on a current

Fig. 5. Experiment 2 (Indoor): Average number of users served versus target
SINR for 30 measured channel snapshots.

PC (see Tables I and II, for more detailed execution time
results).

It is also worthwhile to note that ENUM indeed yields the
exact solution of the original NP-hard problem in the vast ma-
jority of cases considered—which was rather unexpected. It ap-
pears that subset selection diversity plays a role here: among
the many possibilities of choosing a subset of users of fixed
cardinality, there is typically one for which the optimal beam-
forming problem is “easy”—rank relaxation is not a relaxation
after all; see also [3], where again a suboptimal solution operates
close to the optimal one. In the few cases that ENUM returned
a higher-rank solution, this served exactly one additional user,
and required significant excess power to do so. The conclusion
is that ENUM indeed yields a tight upper bound on the achiev-
able performance.
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TABLE II
EXPERIMENT 2: STATIONARY INDOOR, THREE MULTICAST GROUPS; MONTE-CARLO RESULTS (30 MEASURED CHANNEL SNAPSHOTS): � � � TX ANT., � � ��
USERS (ALL DEPICTED IN FIG. 3), � � ����; � � � � �, � � �, � � �, ��; � � �� 	 �
��
�� ��, � � ��� �
�� 	
� �� � � � �. ENTRIES

FORMATTED AS � @
/30 MEAN THAT � USERS (OR GROUPS) ARE SERVED IN 
 OUT OF 30 CASES. ALL POWERS REPORTED IN LINEAR SCALE

B. Single Multicast

We now turn to single group multicasting , and com-
pare ENUM, MDR , Lozano’s algorithm, LLI , and dLLI.

The three adaptive algorithms (Lozano’s, LLI, dLLI) fix cov-
erage (number of users served) and attempt to maximize the
minimum SNR among those served under the transmit power
constraint. MDR, on the other hand, attempts to maximize cov-
erage subject to received SNR and transmit power constraints,
while ENUM yields a (usually tight) upper bound on the number
of users that can be served under the same constraints. A mean-
ingful way to compare all algorithms is via the respective min-
imum SNR—coverage curves, parameterized by transmit power

. This is analogous to the use of the Receiver Operating Char-
acteristic (ROC) to compare different detectors.

We again consider two different wireless scenarios: measured
outdoor, and measured indoor (i.i.d. Rayleigh simulations were
also conducted, yielding consistent results, but these are omitted
for brevity). In addition to instantaneous CSI-T, we also con-
sidered long-term CSI-T. For the latter, we estimated channel
correlation matrices by averaging over 30 temporal snapshots;
i.e., with denoting the channel from the transmit antenna
array to receiver at time , we used

in place of for all algorithms.
In all experiments with a single multicast group, ENUM

yielded the optimum rank-one solution of the original NP-hard
problem in all cases except for those that correspond to full
coverage (i.e., the received signal power requirements are low
enough to ensure that everyone can be served—there is no need
for admission control). This is interesting in itself, and it also
suggests that ENUM is a tight upper bound in all cases where
admission control is active.

The parameters used in the experiments were as follows:
; in experiments 3, 4, and for experiments

Fig. 6. Experiment 3 (Outdoor, single multicast, instantaneous CSI-T): Av-
erage minimum SINR versus average number of users served over 30 measured
channel snapshots.

5, 6; ; and , ; for MDR,
, . For Lozano’s and LLI algorithm,

. For dLLI, and back-off schedule number 6 is
used. For all three adaptive algorithms, convergence is declared
when the change in minimum SNR drops below . These
parameters were empirically tuned to optimize the performance
of each algorithm.

Experiments 3 and 4 concern the ’Quad’ measured outdoor
scenario. Measurements corresponding to positions 1, 3, 4, 6, 7,
9, 12, 13, 15, and 17 in Fig. 2 were selected for the respective
ten users. Results for instantaneous CSI-T (experiment 3) are
summarized in Fig. 6, while those for long-term CSI-T (exper-
iment 4) in Fig. 7.
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Fig. 7. Experiment 4 (Outdoor, single multicast, long-term CSI-T): Minimum
SINR versus number of users served.

In Fig. 6 (instantaneous CSI-T), MDR and dLLI perform very
close to the optimum, while Lozano’s algorithm is far behind.
Specifically, the average coverage gap of Lozano’s compared to
MDR and dLLI is up to five users (50%) for a given average
minimum SNR, while the average minimum SNR gap is up to
5 dB for a given average coverage. LLI’s curve falls between
Lozano’s and MDR; dLLI significantly improves the perfor-
mance of LLI. Unlike MDR and dLLI, the other two adaptive
algorithms (Lozano’s and LLI) do a poor job for full coverage.
MDR and dLLI are on par performance-wise (MDR is some-
what better at lower coverage, dLLI at higher coverage); but
dLLI is faster.

The situation is different for long-term CSI-T, as illustrated
in Fig. 7. Here dLLI is close to optimal throughout the coverage
range and clearly outperforms the rest, including MDR.

Indoor measurements (“2nd Floor ECERF”) were used for
the next two experiments. Measurements corresponding to po-
sitions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 in Fig. 3 were se-
lected for the respective 12 users. Instantaneous CSI-T is used
in experiment 5, whereas long-term CSI-T is used in experi-
ment 6. As can be seen in Fig. 8, MDR almost coincides perfor-
mance-wise with ENUM, dLLI performs very close to MDR,
while LLI keeps trailing both MDR and dLLI, by a significant
margin. This picture changes (again) when long-term CSI-T is
considered, in Fig. 9: dLLI clearly outperforms all other algo-
rithms, including MDR; but this time, dLLI is not as close to
optimal as in the outdoors case.

Summarizing the insights obtained from single-group ex-
periments, MDR and dLLI emerge as the clear winners (in
light of the fact that ENUM is prohibitively complex for re-
alistic values of ). Performance-wise, MDR is somewhat
better for instantaneous CSI-T (rank-one channel correlations),
especially in the higher SNR/lower coverage regime, whereas
dLLI is clearly preferable for long-term CSI-T (higher rank
channel correlations), and is generally close to MDR even for
instantaneous CSI-T. The proposed modifications of Lozano’s
algorithm (LLI, dLLI) are simple, yet significantly boost per-
formance. Complexity-wise, Lozano’s algorithm together with

Fig. 8. Experiment 5 (Indoor, single multicast, instantaneous CSI-T): Average
minimum SINR versus average number of users served over 30 measured
channel snapshots.

Fig. 9. Experiment 6 (Indoor, single multicast, long-term CSI-T): Minimum
SINR versus number of users served.

LLI are the fastest ones, requiring typically to sec-
onds to terminate, per problem instance. LLI is slightly faster
than Lozano due to its better initialization, but their run-times
remain in the same order of magnitude. dLLI is somewhat
slower, requiring on average seconds. MDR follows next,
requiring from up to 1.5 s to run. dLLI is more than an
order of magnitude faster than MDR in all cases considered.
ENUM takes from 2 to 7 min per problem instance.

VIII. CONCLUSION

We have considered the problem of joint multicast beam-
forming and admission control for cellular and indoor/outdoor
wireless networks. The objective is to serve as many potential
subscribers as possible at or above their prescribed SINR, and
minimize the power required to serve them. The problem is un-
fortunately NP-hard, but we have shown that it is possible to
design approximate solutions of acceptable complexity.

Two distinct approaches have been developed: one extending
our earlier work for the multiuser SDMA downlink; the other
building upon Lozano’s alternating gradient iteration. The
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former (MDR) is a batch algorithm based on convex approx-
imation, and handles multiple co-channel multicast groups.
The latter (dLLI) is an adaptive filtering-type algorithm that is
restricted to a single multicast group. These algorithms were
thoroughly tested in experiments using measured indoor and
outdoor wireless channel data. These experiments indicate that
MDR and dLLI are generally good and sometimes remarkably
good low-complexity approximations for the problem at hand.

For a single multicast group, dLLI has better or comparable
performance relative to MDR, in all cases considered. For long-
term CSI-T, dLLI is the clear winner. Long-term CSI-T is more
realistic in a cellular context, due to mobility and the desire to
limit signaling overhead. The simplicity of dLLI is also very ap-
pealing. Taken together, these factors swing the verdict in favor
of dLLI, at least for cellular applications and a single multi-
cast group (multiple multicasts can be served via frequency- or
time-division multiplexing, but this is generally not spectrally
efficient). When multiple co-channel multicasts are considered,
and/or in fixed wireless applications where instantaneous CSI-T
is available, MDR is the method of choice.

APPENDIX

Proof of Claim 2:
Feasibility: Using the Cauchy–Schwartz inequality, it is

easy to show that , , , is always feasible
for (9)–(11), provided

(35)

Optimality: We next show that under the additional condi-
tion

(36)

the single-stage reformulation in (9)–(11) is equivalent to the
two-stage problem in (4)–(8). The proof is by contradiction. Let

be a solution of (9)–(11),

and let denote a feasible al-
ternative [that satisfies (10)–(11)] for which

where stands for the indicator function. It follows that

so

Now, , therefore

which is a contradiction.
This shows that serving more than

users is impossible. It remains to show that users whose
are served by at minimum power.

For this, notice that joint optimality of
implies condi-

tional optimality of given —for otherwise we
would again have a contradiction. For given , and denoting

, note that .
This comes from the cost function and constraints in (9)–(11):
if the constraints for a certain subset of users are satisfied via
the slack variables, allocating power to these users is wasteful
(increases the cost function) and simply adds interference to
other users. It follows that, conditioned on , the
should minimize under

, and

(37)
Finally, note that if there are multiple solutions of (4)–(6),
i.e., if the maximal subset of users that can be served is not
unique, then (9)–(11) will automatically pick a maximal subset
requiring minimal total power—for otherwise a contradiction
would emerge: cf. (9), and note that the second term is only
a function of the number of users served. This completes the
proof.

Further Simplifications: The reformulated problem in
(9)–(11) can be further simplified as follows:

(38)

(39)

(40)

since for it holds that
. This way, the quadratic penalty term in the objective

and the constraints can be equivalently replaced by the linear
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term . In a similar vain, the semidefinite relaxation in
(17)–(21) can be equivalently rewritten as

(41)

(42)

(43)

(44)

(45)

which avoids the introduction of positive semidefinite ma-
trix variables , using instead scalar variables. This helps speed
up computations, by roughly a factor of two.
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