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Convex Approximation Techniques for
Joint Multiuser Downlink Beamforming and

Admission Control
Evaggelia Matskani, Nicholas D. Sidiropoulos, Zhi-Quan Luo, and Leandros Tassiulas

Abstract—Multiuser downlink beamforming under quality of
service (QoS) constraints has attracted considerable interest
in recent years, because it is particularly appealing from a
network operator’s perspective (e.g., UMTS, 802.16e). When
there are many co-channel users and/or the service constraints
are stringent, the problem becomes infeasible and some form
of admission control is necessary. We advocate a cross-layer
approach to joint multiuser transmit beamforming and admission
control, aiming to maximize the number of users that can be
served at their desired QoS. It is shown that the core problem
is NP-hard, yet amenable to convex approximation tools. Two
computationally efficient convex approximation algorithms are
proposed: one is based on semidefinite relaxation of an equivalent
problem reformulation; the other takes a penalized second-order
cone approach. Their performance is assessed in a range of
experiments, using both simulated and measured channel data.
In all experiments considered, the proposed algorithms work
remarkably well in terms of the attained performance-complexity
trade-off, consistently exhibiting close to optimal performance at
an affordable computational complexity.

Index Terms—Downlink beamforming, admission control,
scheduling, convex approximation, semidefinite relaxation.

I. INTRODUCTION

TRANSMIT antenna arrays are nowadays commonly em-
ployed or provisioned in cellular wireless networks (e.g.,

UMTS and the emerging UMTS-LTE [Long-Term Evolu-
tion]), wireless local area networks, and fixed wireless back-
haul solutions (e.g., 802.16e). In the context of the cellular
downlink (or point-to-multipoint distribution for fixed wire-
less), a transmit antenna array can be beneficial in a number
of ways, depending on the available grade of channel state
information at the transmitter (CSIT). When accurate CSIT
is available, it becomes possible to multiplex a number of

Manuscript received January 26, 2007; revised May 23, 2007 and July 21,
2007; accepted August 21, 2007. The associate editor coordinating the review
of this letter and approving it for publication was R. Fantacci. Conference
versions of parts of this work appear in Proc. IEEE ICASSP, Apr. 15-20,
2007, Honolulu, Hawaii, and Proc. IEEE SPAWC, June 17-20, 2007, Helsinki,
Finland.

E. Matskani and N. D. Sidiropoulos (corresponding author) are with the
Department of Electronic and Computer Engineering, Technical University
of Crete, 73100 Chania - Crete, Greece (e-mail: nikos@telecom.tuc.gr).
Supported in part by ARL/ERO contract N62558-06-0340.

Z.-Q. Luo is with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455, USA (e-mail:
luozq@umn.edu). Supported in part by U.S. NSF grants DMS-0312416 and
DMS-0610037.

L. Tassiulas is with the Department of Computer Engineering and Telecom-
munications, University of Thessaly, 38221 Volos, Greece (e-mail: lean-
dros@uth.gr). Supported in part by ARO under Grant W911NF-04-1-0306,
and the EC under projects Netrefound (IST-034413-2) and WIP.

Digital Object Identifier 10.1109/TWC.2008.070104.

user streams in space, by appropriately designing transmit
beamformers that steer energy in the directions of the intended
users [2]. Transmit beamforming is also beneficial when there
is only statistical CSIT, in the form of channel correlation
matrices; see [2] and Section IX where we revisit this issue.

Consider a single transmitter with N antenna elements and
K receivers, each with a single antenna. Let hk denote the
N × 1 complex vector that models the propagation loss and
phase shift of the frequency-flat quasi-static channel from
each transmit antenna to receiver k, and wH

k denote the
1 × N weight vector used to beamform towards receiver
(user) k, k ∈ {1, · · · , K}. Here and in the sequel, (·)T

denotes transpose, and (·)H denotes Hermitian (conjugate)
transpose. When N ≥ K , and assuming that the channel
matrix H := [h1, · · · ,hK ]T is full row-rank, it is possible
to right-invert it at the transmitter, thus creating K separate
streams. This is indicative of the spatial multiplexing potential,
but channel inversion has drawbacks. In practice K >> N
(e.g., N = 4, K = 40 are typical for the cellular downlink),
giving rise to a difficult user selection problem [5]. As we will
see, it is often possible to simultaneously serve K > N users,
but this cannot be accomplished using channel inversion.
Transmit power limitations are also an issue when channel
inversion is used.

A more flexible alternative to channel inversion is to ensure
a certain Signal to Interference plus Noise Ratio (SINR)
at each receiver. This is well-motivated for voice, stream-
ing media, and other interactive applications, and it is the
prevailing design approach in cellular wireless today. The
following joint multiuser transmit beamforming problem under
individual SINR constraints as Quality of Service (QoS) metric
has been considered in [7], and [2]:

min
{wk∈CN}K

k=1

K∑
k=1

‖wk‖2
2 (1)

subject to :
|wH

k hk|2∑
� �=k |wH

� hk|2 + σ2
k

≥ ck, ∀k ∈ {1, · · · , K} ,

(2)
where || · ||2 denotes the Euclidean norm, σ2

k is the additive

noise power at receiver k, and SINRk := |wH
k hk|2∑

� �=k |wH
� hk|2+σ2

k

is the SINR attained at receiver k, whose minimum SINR
requirement is ck. For a fixed modulation and coding scheme,
a target error rate requirement can be mapped to an appropriate
ck. Alternatively, log(1 + 1

ΓSINRk) is a measure of the
practically attainable link capacity, where the Γ reflects the
SINR loss due to modulation and coding.
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As shown in [2] (see also [7]), the problem in (1)-(2) is
convex (in fact, a second-order cone program - SOCP); it can
be efficiently solved using modern interior-point methods [13],
or specialized iterative algorithms [7]. The main difficulty
with the formulation in (1)-(2) is that the problem can easily
become infeasible, e.g., when the channel vectors of two
or more users are co-linear or highly correlated, and/or the
SINR targets are too high, or simply when the number of
users, K , is much larger than the number of antennas N -
which is the typical scenario in practice. In such a situation,
interior point solutions provide an infeasibility certificate,
whereas the custom-made algorithm in [7] diverges. Either
way, infeasibility implies that some user(s) should be dropped
(admission control) or rescheduled in orthogonal dimensions
(time, frequency, code slot); or the SINR targets should be
relaxed.

If users must be dropped / rescheduled, it makes sense to
maximize the number of users that can be served at their
desired QoS. A brute-force way of doing this is enumeration,
each time solving a SOCP problem for a subset of users. This
has prohibitive complexity for all practical purposes. In fact,
we will show that the problem is NP-hard, which motivates the
pursuit of approximate solutions of manageable complexity.

From a complexity point of view, it is appealing to consider
a greedy approach: given already admitted users, consider
adding one more user, until the problem becomes infeasible.
This is still complex, because testing each candidate requires
solving a separate SOCP problem from scratch. A low-
complexity algorithm for admitting a new user was recently
proposed in [4]. In order to keep complexity low, [4] advocates
fixing the beampatterns of previously admitted users, and
jointly optimizing the beampattern of the new user along
with power control. This reduces to a generalized eigenvalue
problem which can be efficiently solved. The algorithm in
[4] can be iterated to grow the pool of admitted users, until
the problem becomes infeasible. The overall algorithm is
appealing from a complexity point of view. Its performance
(in terms of the number of users served and the power required
to do so) will be assessed in section VIII.

Practical and regulatory considerations typically dictate a
non-trivial upper bound on transmission power, which is not
enforced in (1)-(2). An explicit sum power constraint can be
added to account for this, and the problem becomes

min
{wk∈CN}K

k=1

K∑
k=1

‖wk‖2
2 (3)

subject to :
K∑

k=1

‖wk‖2
2 ≤ P, (4)

|wH
k hk|2∑

� �=k |wH
� hk|2 + σ2

k

≥ ck, ∀k ∈ {1, · · · , K} . (5)

The problem of interest can now be concisely stated as
follows: find a largest subset of users and associated optimum
beamforming configuration for which (3)-(5) restricted to the
said subset of users admits a feasible solution. Mathematically,
the problem can be described in two stages. In the first stage,

So = argmaxS⊆{1,··· ,K},{wk∈CN}K
k=1

|S| (6)

subject to :
∑
k∈S

‖wk‖2
2 ≤ P, (7)

|wH
k hk|2∑

� �=k, �∈S |wH
� hk|2 + σ2

k

≥ ck, ∀k ∈ S, (8)

where |S| denotes the cardinality of S, while in the second
stage one solves

min
{wk∈CN}k∈So

∑
k∈So

‖wk‖2
2 (9)

subject to :
∑
k∈So

‖wk‖2
2 ≤ P, (10)

|wH
k hk|2∑

� �=k, �∈So
|wH

� hk|2 + σ2
k

≥ ck, ∀k ∈ So. (11)

In this work we propose to solve the problem of transmit
beamforming and admission control jointly by simultaneously
maximizing the total number of users that can be served in
the same slot at their desired QoS and minimizing the power
required to serve them. In particular, we aim to approximate
the original non-convex and NP-hard problem by means of
a convex problem whose solution can be used to generate a
feasible, close to optimal solution of the original problem.
Although this convex approximation approach can only gen-
erate suboptimal solutions due to NP-hardness of the original
problem, it is well motivated theoretically1 and in certain cases
can provide provably high quality approximate solutions [11].

In closing this section, we remark that there is considerable
literature on the closely related topic of joint power and
admission control when the coupling between communicating
pairs of nodes is fixed (e.g., see [1], [6] and references
therein). This is the case, for example, when code-division
multiple access (CDMA) is used, and the spreading codes
are fixed or long and pseudo-random. The same situation
arises in our context, when the beampatterns of all users are
fixed beforehand, and only power and admission control can
be optimized. By the same token, the algorithms developed
here can be used for joint design of spreading codes, power
allocation, and admission control in CDMA wireless networks.

II. SINGLE-STAGE REFORMULATION

In the following, we say that a user is served if the user
is scheduled and its QoS target is supported. Our objective
in this section is to come up with a convenient single-
stage reformulation (cf. Claim 1 below) of the two-stage
optimization problem in (6)–(11). Towards this end, introduce
auxiliary binary scheduling variables sk ∈ {−1, +1}, and
consider

min
{wk∈CN ,sk∈{−1,+1}}K

k=1

ε

K∑
k=1

‖wk‖2
2 +(1− ε)

K∑
k=1

λk(sk +1)2

(12)

subject to :
K∑

k=1

‖wk‖2
2 ≤ P, (13)

1For example, admits a Lagrange dual interpretation, as we will see in
section IV.
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|wH
k hk|2 + δ−1(sk + 1)2∑

� �=k |wH
� hk|2 + σ2

k

≥ ck, ∀k ∈ {1, · · · , K} (14)

Here, the λk > 0 denote normalized weights2, and ε, δ are
suitably small positive constants. In particular, we take

δ ≤ min
k

4c−1
k

P maxm ‖hm‖2
2 + σ2

k

,

which ensures (cf. the Cauchy-Schwartz inequality) that the
constraint in (14) is satisfied when sk = +1 even for
wk = 0N×1 and irrespective of the other w�, � �= k. Since

mink
4c−1

k

P maxm ‖hm‖2
2+σ2

k
≤ mink

4c−1
k

σ2
k

, this choice of δ also
implies that wk = 0N×1, sk = 1, ∀k, is always admissible,
i.e., the problem in (12)-(14) is always feasible. We also select
ε < mink λk

P/4+mink λk
- this ensures that a user is not dropped

unless it is necessary, cf. Claim 1. Note for intuition that when
sk = +1, ||wk||22 hardly affects the cost function; whereas
when sk = −1, ||wk||22 assumes a more important role.

The binary slack / scheduling variables sk play a key role:
with

{
w̌k ∈ CN , šk ∈ {−1, +1}}K

k=1
denoting a solution of

(12)-(14), it is easy to see that šk = −1 implies that user k is
served, whereas šk = +1 implies that user k is dropped: w̌k =
0N×1. This comes from the choice of δ and the cost function,
and it also means that there is no need to explicitly account
for dropped users in the denominator of (14). Formally:

Claim 1: With λk = 1, ∀k, δ ≤ mink
4c−1

k

P maxm ‖hm‖2
2+σ2

k
,

and ε < 1
P/4+1 , solution of (12)-(14) maximizes the number

of users served and simultaneously yields the associated
minimum sum-power beamforming vectors.

Proof of the above and all subsequent claims is deferred to
the Appendix. A ruler analogy is useful for intuition. We wish
to minimize two cost functions simultaneously. The important
observation is that one is discrete-valued and the other is
bounded. By proper weighting of the two, the weighted sum
takes values on a ruler whose decimal ticks correspond to the
discrete part, whereas the intervals in-between are (partially)
spanned by the continuous part. Proper choice of weight
ensures that these intervals do not overlap, i.e., there is an
unattainable guard band between any two successive decimal
ticks. In our context, this can be interpreted as follows:
dropping any user costs more than can possibly be saved in
terms of power by means of beamvector optimization for the
remaining users.

Claim 1 shows that (12)–(14) provides a single stage
optimization reformulation of the two-stage joint admission
control and optimum beamforming problem described in (6)–
(11). One advantage of this single stage reformulation is that
it allows a convenient convex relaxation which can generate
high quality approximate solutions efficiently (see Section IV).
Another is that it facilitates complexity analysis, as discussed
next.

III. COMPLEXITY ANALYSIS

Claim 2: With δ ≤ mink
4c−1

k

P maxm ‖hm‖2
2+σ2

k
and ε <

mink λk

P/4+mink λk
, the problem in (12)-(14) is NP-hard for N > 1.

For N = 1, the problem is polynomial time solvable.

2e.g., using λk proportional to the queue length of user k is throughput-
optimal [15].

To prove Claim 2, we will need a few definitions and an
intermediate claim, which is of interest in its own right.

Let G = (V, E) be an undirected graph, with |V | = K
vertices, one for each user, and edges ek,� ∈ E, where ek,�

denotes an edge between vertices k and �.
Definition 1: A subset of vertices S ⊆ V of G = (V, E) is

independent when no two vertices in S are connected by an
edge in E.

Finding a largest independent subset in a graph is the
maximum independent set problem, known to be NP-hard [8].

Definition 2: A subset of vertices S ⊆ V of G = (V, E)
forms independent two-hop neighborhoods when every pair of
vertices in S are separated by at least three hops (edges in E)
from each other, i.e., no two vertices in S have a common
one-hop neighbor.

Finding a largest subset of vertices that forms independent
two-hop neighborhoods will be called the maximum inde-
pendent two-hop neighborhoods problem (and the two hop
qualifier will be dropped henceforth for brevity).

Claim 3: The maximum independent neighborhoods prob-
lem is NP-hard.

The proof of Claim 2 shows that an arbitrary instance
of the maximum independent neighborhoods problem can
be transformed to an instance of problem (12)-(14) with

δ ≤ mink
4c−1

k

P maxm ‖hm‖2
2+σ2

k
and ε < mink λk

P/4+mink λk
.

It is interesting to contrast the polynomial time solvability
result for the N = 1 case with the NP-hardness of the joint
power and admission control problem for CDMA wireless
networks [6]. Although in both problems the coupling coeffi-
cients between communicating pairs of users are fixed, there
is a key difference between the two. In a wireless CDMA
network, the coupling constants between users are determined
by the correlation coefficients between the users’ spreading
codes and therefore can be arbitrary and unequal, while in
our context, the (normalized) coupling constants between all
users are equal to 1 (cf. (38)). Hence, allowing arbitrary and
unequal coupling constants can turn an otherwise polynomial
time solvable joint power and admission control problem into
a NP-hard problem which is computationally intractable.

IV. A SEMIDEFINITE RELAXATION APPROACH

The interest in the reformulation in (12)-(14) stems in part
from its suitability for the application of Lagrangian relaxation
tools. In particular, note that

(sk + 1)2 =
(

[sk 1]
[

1
1

])2

=

Tr
([

1 1
1 1

] [
sk

1

]
[sk 1]

)
= Tr (12×2Sk) ,

where Tr(·) denotes matrix trace, Sk := sksT
k , and sk :=

[sk 1]T . By construction, Sk is positive semidefinite (denoted
Sk ≥ 0), rank(Sk) = 1, and Sk(2, 2) = 1; if we further insist
that Sk(1, 1) = 1, then there are only two possibilities for Sk:

Sk =
[

1 1
1 1

]
→ Tr (12×2Sk) = 4; or

Sk =
[

1 −1
−1 1

]
→ Tr (12×2Sk) = 0.
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As a result, the scalar binary variables sk can be replaced by
the 2 × 2 real matrix variables Sk, and the ±1 constraints
can be replaced by positive semidefinite, rank-one, and linear
equality constraints (see also [12]). Of the latter, only the rank-
one constraint is non-convex, and thus difficult to handle.

In the same spirit, we may define rank-one positive semidef-
inite matrix variables Wk := wkwH

k , and Hk := hkhH
k , and

rewrite the optimization problem in (12)-(14) equivalently as

min
{Wk,Sk}K

k=1

ε

K∑
k=1

Tr(Wk) + (1 − ε)
K∑

k=1

λkTr(12×2Sk) (15)

subject to :
K∑

k=1

Tr(Wk) ≤ P, (16)

Tr(HkWk) + δ−1Tr(12×2Sk)∑
� �=k Tr(HkW�) + σ2

k

≥ ck, ∀k, (17)

Wk ≥ 0, rank(Wk) = 1, ∀k, (18)

Sk ≥ 0, rank(Sk) = 1,Sk(1, 1) = Sk(2, 2) = 1, ∀k, (19)

where
{
Wk ∈ CN×N ,Sk ∈ R2×2

}K

k=1
. Dropping the rank-

one constraints, we obtain the following convex semidefinite
relaxation (SDR) of (15)-(19):

min
{Wk,Sk}K

k=1

ε

K∑
k=1

Tr(Wk) + (1 − ε)
K∑

k=1

λkTr(12×2Sk) (20)

subject to :
K∑

k=1

Tr(Wk) ≤ P, (21)

Tr(HkWk)+δ−1Tr(12×2Sk) ≥ ck

∑
� �=k

Tr(HkW�)+σ2
k, ∀k,

(22)
Wk ≥ 0, ∀k, (23)

Sk ≥ 0,Sk(1, 1) = Sk(2, 2) = 1, ∀k, (24)

where the Sk’s are constrained to be real, and we have also
used the fact that the denominator in (17) is positive.

We note that problem (15)-(19) is a quadratically con-
strained quadratic program, and rank relaxation can be in-
terpreted as its bi-dual problem [17], which further motivates
rank relaxation from a Lagrangian perspective.

The problem in (20)-(24) is a semidefinite program, which
can be efficiently solved using modern interior point solvers
such as SeDuMi [3], [13]. Being a relaxation of (12)-(14),
the problem in (20)-(24) is always feasible, provided that the
constants ε, δ are chosen as in Claim 1.

It is interesting to recall that rank relaxation of the matrices
Wk for the original problem (without user selection) is not
a relaxation after all, as shown in [2]. It is also interesting
to note that the matrices Sk are of rank at most two, hence
the associated rank relaxation step is far milder than usual. In
particular, the following can be shown by direct examination
of eigenvalues:

Property 1: Consider a real symmetric positive semidefinite
matrix with diagonal elements equal to one, i.e.,

S =
[

1 x
x 1

]
≥ 0.

Then rank(S) = 1 ⇐⇒ x ∈ {−1, +1}, whereas rank(S) ∈
{1, 2} ⇐⇒ x ∈ [−1, +1].
Thus rank relaxation of Sk amounts to relaxing the {−1, +1}
constraint on its off-diagonal element to a [−1, +1] interval
constraint. The associated penalty (sum of elements) is always
non-negative, in [0, 4]. These observations suggest that (20)-
(24) is a relatively tight relaxation of (15)-(19).

Gaussian randomization coupled with multiuser power con-
trol (MPC) can be used to convert the optimal solution of (20)-
(24) into an approximate solution of (15)-(19); e.g., see related
approaches in [14], [10]. As an alternative to randomization
/ MPC, we may proceed as follows. The difficult part of the
problem is the determination of which users to drop. Once
this part is solved, the rest is SOCP. One idea is to try to
determine this from the solution of the relaxed problem, by
examining the 2× 2 matrix variables Sk, and/or the optimum
of the cost function itself. For example, the optimum value can
yield an upper bound on the maximum number of admissible
users. From the various approaches that we tried, the following
appears to work best in practice:

Algorithm 1: Deflation based on SDR (D-SDR):

1) Set U := {1, ..., K};
2) Solve problem (20)-(24) for the users in U . Let{

W̌k

}
k∈U denote the resulting optimal transmit covari-

ance matrices;
3) For each k ∈ U , extract the principal component of

W̌k, and scale it to power Tr(W̌k); i.e., set w̌k :=√
Tr(W̌k)ǔk, where ǔk is the unit-norm principal

component of W̌k.
4) For each k ∈ U , check whether |w̌H

k hk|2∑
� �=k |w̌H

� hk|2+σ2
k

≥ ck

holds; if so, stop (a feasible solution has been found);
else pick the user with largest gap to its target SINR
(smallest attained SINR if all the SINR targets are
equal), remove from U , and go to step 2.

D-SDR returns a feasible solution for the subset of selected
users, which however need not be optimal in terms of sum
power. Interestingly, our experiments indicate that further
beamvector optimization by means of SOCP for the selected
users does not improve the result of D-SDR.

V. A PENALIZED SECOND-ORDER CONE PROGRAMMING

APPROACH

Exploiting the freedom to choose the phase of each
beamvector, the problem in (3)-(5) can be equivalently for-
mulated as an equivalent Second Order Cone Programming
(SOCP) problem, as shown in [2]

min{wk∈CN}K
k=1

K∑
k=1

‖wk‖2 (25)

subject to: wH
k hk ≥

√
ck

∑
� �=k

|wH
� hk|2 + ckσ2

k, ∀k, (26)
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K∑
k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀k, (27)

where Im(·) extracts the imaginary part of its argument.
The above problem is convex and can be solved efficiently
via interior point methods. Another way towards accounting
for infeasibility / admission control issues is to consider the
following relaxed problem:

min
{wk,∈CN ,sk∈R}K

k=1

K∑
k=1

‖wk‖2 + M
K∑

k=1

s2
k (28)

subject to: wH
k hk + sk ≥

√
ck

∑
� �=k

|wH
� hk|2 + ckσ2

k, ∀k,

(29)
K∑

k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀k, (30)

where M is a large positive constant. Notice that the sk’s
here are different from those in (12)-(14): the former are
unconstrained real variables, whereas the latter are binary
before relaxation, and in the interval [−1, 1] after relaxation.
Problem (28)-(30) is a SOCP, and it is always feasible due
to the presence of the auxiliary variables {sk}K

k=1. To see the
latter, we only need to choose large enough sk’s to satisfy all
the constraints, regardless of whether (25)-(27) is feasible or
not. In fact, since the wk’s are bounded, it follows that the
set of achievable SINRs is also bounded:

|wH
k hk|2∑

� �=k |wH
� hk|2 + σ2

k

≤ γ, ∀ k,wk with
K∑

k=1

‖wk‖2 ≤ P

for some γ > 0. Thus, even if the problem in (25)-(27) is
infeasible, we can always choose finite sk (say, sk =

√
ck/γ)

to satisfy all the constraints in (28)-(30). Also notice that, if
(25)-(27) is feasible, then sk = 0, ∀k is feasible in (28)-(30).

For any M > 0, let {wk(M) ∈ C
N , sk(M) ∈ R}K

k=1

denote the global optimal solution of (28)-(30). Clearly,
{wk(M) ∈ CN , sk(M) ∈ R}K

k=1 can be found efficiently
using interior point methods.

Claim 4: Let

K =
{

k | lim
M→∞

sk(M) > 0
}

.

Then, the formulation in (25)-(27) is feasible if and only if
|K| = 0. Moreover, if |K| �= 0, then dropping the constraints
in K will lead to a feasible beamforming problem; that is, the
reduced problem

min
{wk,∈CN}K

k=1

K∑
k=1

‖wk‖2 (31)

subject to: wH
k hk ≥

√
ck

∑
� �=k

|wH
� hk|2 + ckσ2

k, ∀ k �∈ K

(32)
K∑

k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀ k �∈ K (33)

is always feasible.

The above claim suggests that we may want to solve the
relaxed problem (28)-(30) for some sufficiently large M , and
admit only those users for which sk(M) is small. Using a
threshold is one possibility, but choosing the right threshold
is not straightforward. A reasonable alternative is to sort
{sk(M)} and prune one user at a time, until the problem
becomes feasible. When a user is dropped, however, the
remaining beamvectors are no longer optimal. This suggests
the following deflation algorithm:

Algorithm 2: Deflation based on SOC programming (D-
SOC):

1) Set U := {1, ..., K};
2) Solve problem (28)-(30) for the users in U . Let

{w̌k}k∈U denote the resulting beamforming vectors,
which are optimal for problem (28)-(30).

3) For each k ∈ U , check whether |w̌H
k hk|2∑

� �=k |w̌H
�

hk|2+σ2
k

≥ ck

holds; if so, stop (a feasible solution has been found);
else pick the user with largest gap to its target SINR
(smallest attained SINR if all the SINR targets are
equal)3, remove from U , and go to step 2.

VI. IMPLEMENTATION COMPLEXITY

Due to the Cartesian product structure of the 2 × 2 SDP
cones, the worst case complexity of solving the SDP in (20)-
(24) is O(K3.5 log(1/ε)), where ε is the required relative
accuracy of the duality gap at termination [16]. Similarly, the
SOCP problem in (28)-(30) also has Cartesian structure, so its
worst case complexity is of order O(K3.5 log(1/ε)) as well.
The worst-case complexity of D-SDR and D-SOC is scaled
up by a factor of K (total number of users), since we’re using
deflation. The final worst-case count for both algorithms is
therefore O(K4.5 log(1/ε)).

VII. A SIMPLER ALTERNATIVE

It is possible to conceive of simpler suboptimal solutions.
From a complexity point of view, it is appealing to consider a
greedy inflation (as opposed to deflation) approach: given al-
ready admitted users, consider adding one more user, until the
problem becomes infeasible. Optimal new user admission en-
tails solving the beamforming problem in (3)-(5) from scratch
for each candidate new user, thereby leading to unacceptable
complexity. For this reason, [4] suggests a simpler approach,
namely, fixing the beampatterns (normalized beamvectors) of
already admitted users and jointly optimizing the beampattern
of the candidate user along with the powers of all (admitted
and candidate) users. In on-line mode, this also has the benefit
of minimizing service disruption for already admitted users.

When there is more than one option regarding which new
user to admit, it makes sense to add the user that minimizes the
overall power (albeit this strategy is not necessarily optimal
in terms of the total number of users admitted at the end of

3In our experiments, we have observed that dropping the user with the
largest sk(M) yields identical (in most cases) or slightly worse results
compared to using the SINR gap.
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the process). Putting everything together yields the following
algorithm.

Algorithm 3: Inflation based on the Butussi - Bengtsson
approach (I-BB):

1) Set U := {1, ..., K} and A := ∅ (empty set);

2) Find ko ∈ U whose QoS constraint
|wH

ko
hko |2

σ2
ko

≥ cko

(in the absence of interference from other users) can
be satisfied at minimum power. This is the user with
the largest channel norm, and the associated optimum
beamvector is a scaled spatially matched filter. If the
required power is less than P , set A = A⋃ {ko},
U = U − {ko} (i.e., admit the said user), and store its
beampattern (normalized beamvector) and power; else
exit (the problem is infeasible).

3) If U = ∅ exit; else, for each candidate user in U , fix the
beampatterns of already admitted users in A and jointly
optimize the beampattern of the candidate user along
with the powers of all (admitted and candidate) users.
This can be accomplished by solving a generalized
eigenvalue problem, as shown in [4]. If no feasible
solution can be found for the latter problem for any
of the candidate users in U , exit (no more users can be
added); else pick the candidate, say k∗, which results in
the smallest total transmit power. If this power is less
than P , set A = A⋃ {k∗}, U = U − {k∗}, store the
new user beampattern and all powers, and return to step
3; else exit.

The admission control strategies in UMTS essentially admit
a new user when the additional interference caused to existing
users does not reduce their SINRs below a certain threshold.
The Butussi - Bengtsson approach is close but better than what
is used in existing standards, because it designs the candidate
user’s beampattern jointly with power control for the new
and the old users. I-BB has the lowest complexity among all
algorithms considered here. It is therefore included as another
baseline in the comparisons.

VIII. EXPERIMENTS

Setup: We conducted experiments using both simulated and
measured channel data. In both cases, we used SOCP enumer-
ation (i.e., solving the problem in (3)-(5) using SeDuMi [13]
for all possible user combinations) as a benchmark. SOCP
enumeration provides the optimum solution(s), but its com-
plexity grows exponentially in K . The maximum problem size
that we could solve this way was K = 18 users, requiring over
7 hours of computation. We compared SOCP enumeration, the
two proposed convex approximation algorithms (D-SDR, D-
SOC), and I-BB. In all experiments reported, the number of
transmit antennas is set to N = 4. Monte-Carlo results for a
pool of K = 14 users and 30 channel matrices are presented
in Tables I, II. The parameters of the various algorithms and
the problem setup are listed in the table captions, for ease of
reference.
Choice of parameters: For D-SDR, the choice of parameters
ε, δ is governed by the respective upper bounds in Claim
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Fig. 1. Average number of users served versus target SINR: i.i.d. Rayleigh
channels, 30 Monte-Carlo runs.

1. The parameter ε can be taken to be smaller than the
upper bound in Claim 1; the choice does not seem to be
critical, so long as ε is not too small. For D-SOC, Claim 4
does not directly provide guidance on the choice of M . In
practice, M should be large but not too large, because in the
latter case the problem becomes badly conditioned and this
slows the Newton iteration (increases the number of Newton
steps) in the interior point algorithm [13]. We have observed
that a factor of 10 change in M does not have significant
performance/complexity effects.
Rayleigh channels: For Table I, the channel gains were i.i.d.
complex normal with zero-mean and unit-variance (CN (0, 1)),
and independent from realization to realization. For ease of
visualization of the results in Table I, Figure 1 is a plot
of the average number of users served by each algorithm
versus target SINR, and Figure 2 is a plot of the average
power per user served by each algorithm versus target SINR.
Note that power does not scale linearly with the number
of users served, due to interference; I-BB uses less power
per user when serving a smaller number of users than the
other algorithms. Also note that Table I contains additional
information that cannot be easily conveyed in graphical form
(average execution times, percentages in the number of users
served).
Measured channels: Measured channel data (downloaded
from the iCORE HCDC Lab web site, University of Alberta in
Edmonton [9], http://www.ece.ualberta.ca/∼mimo/) were used
for Table II. The site contains detailed descriptions of numer-
ous measurement campaigns in the 902–928 MHz (ISM) band.
The most pertinent scenario for our purposes is the stationary
outdoor one, called Quad and illustrated in Figure 3. Quad is
a 150 by 60 meters lawn surrounded by buildings with heights
ranging from 15 to 30 meters. The transmitter (Tx) location
was fixed while the receiver (Rx) was placed in 6 different
locations (no measurements are actually provided for location
4). Both Tx and Rx were equipped with antenna arrays,
each comprising four vertically polarized dipoles spaced λ/2
(≈ 16 cm) apart. The channels are frequency-flat, slowly time-
selective fading, due to pedestrian movement and other factors
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TABLE I
MONTE-CARLO RESULTS (30 i.i.d. Rayleigh channel snapshots): N = 4 TX ANT., K = 14 USERS, P = 100; σ2

k = σ2 = 1, ck = c, λk = 1, ∀k;

e = 0.0001 < 1
P/4+1

, δ = 4c−1

P maxm ‖hm‖2
2+σ2 ; FOR D-SOC, M = 1010 FOR QOS TARGET ∈ {3, 5, 10} dB; M = 1011 FOR QOS TARGET 15 dB.

QoS target Alg � users served Avg Min Tx Power Max Min Tx.Power Avg Time

3 SOCP enum 5 6.2043 9.5117 0.728 h
3 D-SDR 5 6.6267 11.094 0.89 s
3 D-SOC 5 6.6871 11.202 3.233 s
3 I-BB 5@ 93.33% 23.2382 73.3527 0.0534 s

4 @ 6.66%

5 SOCP enum 5 26.7524 41.8895 0.612 h
5 D-SDR 5@96.66% 33.9469 78.7254 0.822 s

4@ 3.33%
5 D-SOC 5 35.7631 80.3822 3.189 s
5 I-BB 4 5.9747 15.4648 0.0405 s

10 SOCP enum 4 12.812 18.8976 0.505 h
10 D-SDR 4 13.311 19.2041 0.8572 s
10 D-SOC 4 13.5383 19.2041 3.0324 s
10 I-BB 4 @ 96.66% 42.4219 85.039 0.0397 s

3 @ 3.33%

15 SOCP enum 4 41.5433 62.712 0.434 h
15 D-SDR 4 44.5851 67.2114 0.8372 s
15 D-SOC 4 44.5535 62.712 2.556 s
15 I-BB 4 @ 3.33% 54.7591 99.1921 0.0202 s

2 @ 83.33%
1 @ 13.33%
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Fig. 2. Average power per user served versus target SINR: i.i.d. Rayleigh
channels, 30 Monte-Carlo runs.

(the chip rate used for sounding was low enough to safely
assume that the channels are not frequency selective). For
every Rx location, 9 different measurements were taken by
shifting the Rx antenna array on a 3× 3 square grid with λ/4
spacing. Each measurement contains about 100 4× 4 channel
snapshots, recorded 3 per second. We took K = 14 users (all
depicted in Fig. 3 except 7, 10, 12, and 17), and took every
third temporal channel snapshot, starting from the first one.
For ease of comparison with the simulated Rayleigh case, all
channel gains were normalized by the same constant (average
amplitude over all channels and all snapshots). Note that this
normalization maintains differences in path loss. Figure 4
(Figure 5) plots the average number of users served (average
power per user served) by each algorithm versus target SINR,
for the data in Table II.

Fig. 3. Channel measurement scenario - http://www.ece.ualberta.ca/∼mimo/.

A. Discussion of experimental results

In the vast majority of cases considered (99% for i.i.d.
Rayleigh, 95% for measured channel data) D-SDR and D-SOC
serve the maximum possible number of users at a small power
penalty relative to the optimal solution provided by SOCP
enumeration. In the remaining cases, both D-SDR and D-SOC
serve one user less than the maximum. This is remarkable,
given the associated reduction in execution time relative to
SOCP enumeration, which is roughly by a factor of 103 for
K = 14. There is no clear winner in terms of performance
between D-SDR and D-SOC, albeit D-SOC does appear to
be somewhat more effective in terms of the number of users
served, especially at high target QoS. On the other hand, the
run-time of D-SOC is triple that of D-SDR. This may seem
curious at first sight, because solving a second-order cone pro-
gram is generally simpler than solving a semidefinite program,
and D-SDR actually entails more optimization variables than
D-SOC. However, the constants hidden in complexity analysis
depend on problem conditioning, which also affects average
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TABLE II
MONTE-CARLO RESULTS (30 measured channel snapshots): N = 4 TX ANT., K = 14 USERS (ALL DEPICTED IN FIG. 3 EXCEPT 7, 10, 12, AND 17),

P = 100; σ2
k = σ2 = 1, ck = c, λk = 1, ∀k; e = 0.0001 < 1

P/4+1
, δ = 4c−1

P maxm ‖hm‖2
2+σ2 ; FOR D-SOC, M = 1010 FOR QOS TARGET 5 dB AND 10

dB; M = 1011 FOR QOS TARGET 3 dB AND 15 dB.

QoS target Alg � users served Avg Min Tx Power Max Min Tx.Power Avg Time

3 SOCP enum 5 9.5342 13.1834 0.697 h
3 D-SDR 5 11.0522 15.7259 0.9978 s
3 D-SOC 5 11.5324 15.4238 3.24 s
3 I-BB 5@ 70% 42.1933 96.5993 0.0515 s

4 @ 30%

5 SOCP enum 5 40.5392 60.4637 0.554 h
5 D-SDR 5@93.33% 44.2296 81.935 0.93 s

4@ 6.66%
5 D-SOC 5@86.66% 57.248 88.882 3.277 s

4@13.33%
5 I-BB 4 10.2613 14.9659 0.0407 s

10 SOCP enum 4 22.8658 29.5651 0.488 h
10 D-SDR 4 26.5837 33.7893 0.8706 s
10 D-SOC 4 25.2875 44.7832 3.132 s
10 I-BB 4 @ 70% 57.8008 90.9868 0.0339 s

3 @ 30%

15 SOCP enum 4 74.4436 95.5118 0.429 h
15 D-SDR 4@86.66% 74.2668 98.7509 0.8466 s

3@13.33%
15 D-SOC 4@93.33% 76.0445 99.089 2.577 s

3@6.66%
15 I-BB 2 18.8126 31.1947 0.0137 s
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Fig. 4. Average number of users served versus target SINR: 30 measured
channel snapshots.

complexity. We stress that the M parameter for D-SOC has
been manually tuned for best performance in our experiments.

I-BB further reduces the run-time by a factor of 10 − 102

relative to D-SDR and D-SOC, but its performance is consid-
erably worse, especially at high target QoS where it typically
serves two users versus four served by D-SDR and D-SOC.
Even at low target QoS (e.g., 3 dB), I-BB incurs ∼ 6 dB
power penalty relative to D-SDR, D-SOC, and the optimum
solution.

It is worth noting that the performance (number of users
served, required power) of all algorithms - including opti-
mum SOCP enumeration - is somewhat worse in the case
of measured channels compared to the case of simulated
i.i.d. Rayleigh channels. There are reasons for this. Despite
the presence of multipath, the measured channels exhibit
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Fig. 5. Average power per user served versus target SINR: 30 measured
channel snapshots.

directional selectivity and temporal correlation (slow fading);
certain nodes are (approximately) behind others in the line of
sight to the transmit antenna array. In this sense, the measured
channels represent a more difficult scenario, and it is natural to
expect that the number of users served will be smaller and the
required power higher relative to the isotropic i.i.d. Rayleigh
scenario.

IX. CONCLUDING REMARKS

We have proposed two computationally efficient joint mul-
tiuser transmit beamforming and admission control algorithms.
The objective is to maximize the number of users that can
be supported at their desired SINR (and then minimize the
total transmitted power) which is appealing from a network
operator’s perspective. The core problem is NP-hard, yet we
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have shown that it is well-suited to convex approximation
tools. For a moderate user population, our experiments with
simulated and measured channel data indicate that the pro-
posed algorithms yield high-quality feasible solutions at a low
computational cost.

There are some related problem formulations that can be
easily dealt with using the tools that we developed. For
example, we may adopt a min-max power criterion in place of
the min-sum in (1). In this case, we can minimize an auxiliary
optimization variable, t, subject to ||wk||22 ≤ t, ∀k, in addition
to sum-power and individual SINR constraints. The resulting
problem can again be reformulated as SOCP. The single-stage
reformulation of the joint beamforming and admission control
problem can be worked out in a similar fashion, and the NP-
hardness proof can be modified to accommodate the min-max
formulation, provided that we keep the sum-power constraint.
After semidefinite relaxation, which is again the Lagrange bi-
dual problem, the newly added quadratic constraints become
linear inequality constraints, so the resulting problem can
again be solved via SDP.

Another variation emerges when the actual channel vectors
hk are not accurately known at the transmitter, e.g., due
to mobility or delayed / low-rate feedback. In such cases,
the channel correlation matrices Rk := E[hkhH

k ] may be
available, in which case it is possible to guarantee average
SINRs. D-SDR works verbatim in this case, simply replacing
Hk (previously defined as hkhH

k ) by Rk.

X. APPENDIX

Proof of Claim 1: Let
{
w̌k ∈ CN , šk ∈ {−1, +1}}K

k=1
be a solution of (12)-(14), and let

{
w̃k ∈ CN ,

s̃k ∈ {−1, +1}}K
k=1 denote a feasible4 alternative

with
∑K

k=1 1(s̃k = −1) >
∑K

k=1 1(šk = −1),
where 1(·) stands for the indicator function. Then{
w̃k ∈ CN , s̃k ∈ {−1, +1}}K

k=1
serves at least one

more user than
{
w̌k ∈ CN , šk ∈ {−1, +1}}K

k=1, and
so

∑K
k=1(s̃k + 1)2 ≤ ∑K

k=1(šk + 1)2 − 4. From the total
power constraint in (13) it follows that

∑K
k=1 ‖w̃k‖2

2 ≤ P ,
and so ε

∑K
k=1 ‖w̃k‖2

2 + (1 − ε)
∑K

k=1(s̃k + 1)2 ≤
εP + (1 − ε)

∑K
k=1(šk + 1)2 − (1 − ε)4. Now, ε < 1

P/4+1

⇔ εP − (1 − ε)4 < 0, therefore ε
∑K

k=1 ‖w̃k‖2
2 +

(1 − ε)
∑K

k=1(s̃k + 1)2 < (1 − ε)
∑K

k=1(šk + 1)2 ≤
ε
∑K

k=1 ‖w̌k‖2
2 + (1 − ε)

∑K
k=1(šk + 1)2, which contradicts

optimality of
{
w̌k ∈ CN , šk ∈ {−1, +1}}K

k=1
for the

problem in (12)-(14). Therefore no other solution exists that
serves a higher number of users under (13)-(14).

Given {šk ∈ {−1, +1}}K
k=1, it follows from the choice of

δ and the cost function in (12) that šk = +1 ⇒ w̌k =
0N×1, thus the cost function becomes ε

∑
k | šk=−1 ‖wk‖2

2 +
constant, the constraint in (13) becomes

∑
k | šk=−1 ‖wk‖2

2 ≤
P , the constraints in (14) corresponding to {k | šk = +1} are

automatically satisfied (recall δ ≤ mink
4c−1

k

P maxm ‖hm‖2
2+σ2

k
),

and those corresponding to {k | šk = −1} become

|wH
k hk|2∑

� �=k | š�=−1 |wH
� hk|2 + σ2

k

≥ ck, ∀ {k | šk = −1} . (34)

4i.e., satisfying (13)-(14).

      G� G'�

Fig. 6. Illustration of the construction of G
′

from G in the proof of Claim
3. Original nodes are in black, whereas newly introduced nodes are shown in
white. The top two nodes form an independent set in G, and an independent
two-hop neighborhoods set in G

′
.

It follows that solution of (12)-(14) also yields optimal beam-
forming vectors for the admitted users.

Proof (of Claim 3): Given a connected graph G = (V, E),
construct a graph G

′
= (V

′
, E

′
) as follows:

• Begin with V
′
= V , E

′
= ∅.

• Replace each edge ek,� ∈ E by a a new vertex (node)
sk,� that is added in V

′
and two new edges that are added

in E
′
: (k, sk,�) and (sk,�, �).

• Add edges in E
′

between all newly created nodes sk,�,
for ek,� ∈ E .

It is simple to verify the following observations (see Fig. 6
for an illustration):

• All old nodes (in V ⊂ V
′
) are either two or three hops

away from each other in G
′

(paths via newly created
nodes).

• Two old nodes are two hops away in G
′

if and only if
they are adjacent (one hop away) in G.

• Any newly created node is at most two hops away from
any old node in G

′
(again, due to paths via new nodes).

We will show the following: Any independent set of size
|S| > 1 in G corresponds to an independent neighborhoods
set of the same size in G

′
, and vice-versa.

The forward direction is easy, since, by construction of G
′
,

every two disjoint nodes (separated by more than one hop)
in G will be exactly three hops away in G

′
, so S is also an

independent neighborhoods set in G
′
.

The converse can be seen as follows. Given an independent
neighborhoods set S in G

′
with |S| > 1, write S = S1 ∪ S2,

where S1 ⊆ V contains only old nodes and S2 ⊆ V
′ − V

contains only new nodes. We will show that S2 is empty. Since
the newly added nodes are all connected, S2 can contain at
most one node. This also implies that |S1| ≥ |S| − 1 ≥ 1, so
S1 is non-empty. Moreover, if S2 contains exactly one node,
then any node in S1 will be at most two hops away in G

′

from the node in S2, contradicting the assumption that S is
an independent neighborhoods set in G

′
. So S2 must be empty,

i.e., S consists solely of old nodes which are three hops away
in G

′
. It follows that S is an independent set in G, and the

proof is complete.

Proof (of Claim 2): Consider the following simplified version
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of problem (12)-(14), with λk = σ2
k = ck = 1, ∀k, and P ≥ 1

A : min
{wk,sk∈{−1,+1}}K

k=1

ε

K∑
k=1

‖wk‖2
2 + (1 − ε)

K∑
k=1

(sk + 1)2

subject to :
K∑

k=1

‖wk‖2
2 ≤ P,

|wH
k hk|2 + δ−1(sk + 1)2∑

� �=k |wH
� hk|2 + 1

≥ 1, ∀k ∈ {1, · · · , K}

with εP < (1− ε)4 ⇔ ε < 1
P/4+1 , and δ ≤ 4

P maxm ‖hm‖2
2+1

.
From P ≥ 1 it follows that ε < 4/5.

We will show that an arbitrary instance of the maximum
independent neighborhoods problem can be transformed to an
instance of problem A.

Given a graph G = (V, E) with |V | = K vertices, construct
an instance of problem A, denoted A(G), by setting

hk(�) =

{
1√
d(k)

, ek,� ∈ E

0, otherwise
k, � = 1, 2, ..., K,

(35)
where d(k) is the degree of node k ∈ V (i.e., the number of
edges adjacent to node k). It can be seen that ‖hk‖2 = 1 for
all k ∈ V and hH

k h� = 0 if and only if nodes k and � do not
have a common one-hop neighbor, i.e., they are separated by
at least three hops.

Remark 1: Note the relationship between G and A(G):
vertices correspond to users and edges correspond to user
interaction/interference. Also note that for ‖hk‖2 = 1, ∀k,
as above, P ≥ 1 is needed to ensure that A(G) is not trivial
(in the sense that sk = 1, wk = 0, ∀k is the only feasible
solution). On the technical side, P ≥ 1 ensures that ε < 4/5
which we need to invoke later in the proof.

We will prove the following: G contains an independent
neighborhoods set S ⊆ V of size |S| if and only if A(G)
with P = |S| admits a solution of cost less than or equal to
ε|S| + (1 − ε)4(K − |S|) = (K − |S|)(4 − 5ε) + εK (note
that ε < 4/5 has been assumed, so the leading term is non-
negative).

Suppose G contains an independent neighborhoods set S.
Consider A(G) with P = |S| and set

sk =
{ −1, k ∈ S

+1, otherwise,
and wk =

{
hk, k ∈ S
0, otherwise,

(36)
We first verify that the assignment in (36) is feasible for A(G).
For the nodes in V − S, we have wk = 0 and sk = 1, which
together with the choice of δ implies that the QoS constraint

|wH
k hk|2 + δ−1(sk + 1)2∑

� �=k |wH
� hk|2 + 1

≥ 1 (37)

is satisfied. Moreover, for nodes in S, we have wk = hk

and sk = −1 so that ‖wH
k hk‖2

2 = ‖wk‖2
2 = 1. By

definition of independent neighborhoods set, there is no intra-
group interference among the nodes in S, and the nodes
in V − S have been shut off; thus the interference power∑

� �=k |wH
� hk|2 for nodes k ∈ S is zero, again implying that

the QoS constraint (37) is satisfied. Finally, since ‖wk‖2 = 1

for k ∈ S and wk = 0 for k �∈ S, it follows that

K∑
k=1

‖wk‖2 = |S| = P.

We have thus established the feasibility of (36). It can be
further verified that the feasible solution (36) yields an ob-
jective value of ε|S| + (1 − ε)4(K − |S|). Thus A(G) with
P = |S| admits a solution of cost less than or equal to
ε|S| + (1 − ε)4(K − |S|) in this case.

For the converse, suppose that A(G) with P =
|S| (for some positive integer |S|) admits a solution
{w̌k, šk ∈ {−1, +1}}K

k=1 of cost less than or equal to ε|S|+
(1 − ε)4(K − |S|). We show below that graph G must have
an independent neighborhoods set of cardinality at least |S|
in this case. Let Š := {k | šk = −1} denote the set of served
users. Then, for each k ∈ Š we have

‖w̌k‖2 ≥ |w̌H
k hk|2 ≥

∑
� �=k

|w̌H
� hk|2 + 1 ≥ 1,

where the first step follows from Cauchy-Schwartz inequality
and the second step is due to the QoS constraint for node
k. This shows that the objective value corresponding to the
solution {w̌k, šk ∈ {−1, +1}}K

k=1 must be at least

ε

K∑
k=1

‖w̌k‖2
2 + (1 − ε)

K∑
k=1

(šk + 1)2 ≥

ε
∑
k∈Š

‖w̌k‖2
2 + (1 − ε)

∑
k �∈Š

(šk + 1)2 ≥

ε|Š| + 4(1 − ε)(K − |Š|).
Combining this with our assumption, we obtain

ε|S| + (1 − ε)4(K − |S|) ≥ ε|Š| + 4(1 − ε)(K − |Š|),
yielding |Š| ≥ |S| (since ε < 4/5). In other words, at least |S|
users must be served, for otherwise the objective value would
be higher than the postulated upper bound. On the other hand,
the total transmit power constraint implies that

|S| = P ≥
K∑

k=1

‖w̌k‖2 ≥
∑
s∈Š

‖w̌k‖2 ≥ |Š|.

Therefore, we must have |S| = |Š|, ‖w̌k‖2 = 1 for all k ∈ Š
and w̌k = 0 for all k �∈ Š. It follows that the corresponding
objective value must be exactly equal to ε|S|+ (1− ε)4(K −
|S|). Since ‖w̌k‖2 = ‖hk‖2 = 1 for k ∈ Š, it follows that
|w̌H

k hk|2 ≤ 1 (Cauchy-Schwartz inequality). For w̌k to be
sufficient for satisfying the QoS constraint of user k ∈ Š, i.e.,

1∑
� �=k |w̌H

� hk|2 + 1
≥ |w̌H

k hk|2∑
� �=k |w̌H

� hk|2 + 1
≥ 1

the interference term
∑

� �=k |w̌H
� hk|2 must be zero and

|w̌H
k hk| = 1. Since the latter condition implies that the

Cauchy-Schwartz inequality holds with equality, we must have
wk = ±hk for all k ∈ Š. This further shows that

hH
� hk = ±w̌H

� hk = 0, for all k �= � and k, � ∈ Š.

By the definition of hk in (35), we can conclude that the set
of served users Š forms an independent neighborhoods set of
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size |Š| = |S|. This completes the proof of converse. Thus,
problem (12)-(14) is NP-hard for N > 1.

It remains to show that for the case of N = 1 (one transmit
antenna), the corresponding single stage problem (12)-(14) can
be solved in polynomial time. Indeed, in this case, the problem
reduces to

min
{pk≥0,sk∈{−1,+1}}K

k=1

ε
K∑

k=1

pk + (1 − ε)
K∑

k=1

λk(sk + 1)2

subject to :
K∑

k=1

pk ≤ P,

pk|hk|2 + δ−1(sk + 1)2

|hk|2(
∑

� �=k p�) + σ2
k

≥ ck, ∀k ∈ {1, · · · , K}
(38)

Let {pk ≥ 0, sk ∈ {−1, +1}}K
k=1 denote an optimal solution

and S = {k | sk = −1} denote the set of served users. Notice
that a user k ∈ S is served means exactly

pk|hk|2
|hk|2(

∑
� �=k p�) + σ2

k

≥ ck, or equivalently,

pk ≥ ck

ck + 1

K∑
�=1

p� +
ckσ2

k

(ck + 1)|hk|2 .

Thus, by a simple monotonicity argument, there holds

ck

ck + 1
u +

ckσ2
k

(ck + 1)|hk|2 ≤

c�

c� + 1
u +

c�σ
2
�

(c� + 1)|h�|2 , ∀ k ∈ S, � �∈ S,

where u :=
∑K

�=1 p� denotes the total transmit power. This is
true because otherwise user � could be (and should be) served
instead of user k with less total transmit power, contradicting
the optimality of S. For any u ∈ [0, P ], let us define

pk(u) =
ck

ck + 1
u +

ckσ2
k

(ck + 1)|hk|2 .

Then, S must be of the form {k | pk(u) ≤ τ} for some
τ > 0. For any fixed u ∈ [0, P ] there are only K such type
of subsets of S, and they can be easily determined by sorting
pk(u) in increasing order. We can then search over these K
subsets to determine which gives the smallest objective value.
When u increases monotonically from 0 to P , the ordering
of {pk(u)} may vary. But the ordering changes only when
pk(u) = p�(u) for some pair of � and k. As a result, there
can be at most K(K − 1)/2 different orderings of pk(u) for
u ∈ [0, P ]. This implies that there are at most K2(K − 1)/2
different subsets of S that need to be searched over, as u varies
over [0, P ]. These subsets are all computable in polynomial
time (involving simple sorting operations and thresholding).
Picking the smallest overall objective value from these subsets
solves the original problem.

Proof of Claim 4: First, notice that sk(M) ≥ 0 for all k and
M . This is due to the fact that if sk(M) < 0, then setting this

variable to zero would yield a better solution for the relaxed
problem (28)-(30). Consequently, we have

lim
M→∞

sk(M) ≥ 0, ∀ k.

Let R(M) denote the optimal value of (28)-(30). If (25)-(27)
is feasible, then {sk = 0}K

k=1 together with some {w̄k ∈
CN}K

k=1 will satisfy all the constraints of (28)-(30) for all M .
This shows

R(M) ≤
K∑

k=1

‖w̄k‖2, ∀ M,

implying that limM→∞ R(M) < ∞. This further shows that
|K| = 0, for otherwise we would have limM→∞ R(M) ≥
limM→∞ M

∑K
k=1 s2

k(M) ≥ limM→∞ M
∑

k∈K s2
k(M) =

∞.
Conversely, if |K| = 0, then limk→∞ sk(M) = 0 for all

k = 1, 2, ..., K . In this case, we claim that any limit point
of {wk(M) ∈ C

N}K
k=1 (whose existence follows from the

bounded transmission power constraint
∑K

k=1 ‖wk‖2 ≤ P )
will be a feasible solution of (25)-(27). This can be seen by
taking limit with M → ∞ in the following conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wH
k (M)hk + sk(M) ≥

√
ck

∑
� �=k

|wH
� (M)hk|2 + ckσ2

k, ∀ k

K∑
k=1

‖wk(M)‖2 ≤ P, Im(wH
k (M)hk) = 0, ∀k.

To prove the second part of the claim, notice that
limk→∞ sk(M) = 0 for all k �∈ K. The above limiting
argument readily shows that the constraints⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
wH

k hk ≥
√

ck

∑
� �=k

|wH
� hk|2 + ckσ2

k, ∀ k �∈ K

K∑
k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀ k �∈ K

are satisfied by any limit point of the sequence {wk(M) ∈
CN}K

k=1 when M → ∞. This implies that the reduced
problem (31)-(33) is always feasible, as claimed.
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