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Parts of the talk

e Partl:
— QoS + max-min fair multicast beamforming

e Partll:
— Joint QoS multicast beamforming and admission control
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Motivation

« Multicasting increasingly important (network TV, streaming
media, software updates, network management)

 Increasingly over wireless for last hop

o PHY-layer multicasting — exploits wireless “broadcast
advantage” + CSI-T [SidDavLu0:04-06]

o Complements packet-level multicasting = higher efficiency

Slional Processing Soclely \— Y/
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Motivation: E-MBMS / UMTS-LTE

« Evolved Multimedia Broadcast/Multicast Service (E-MBMS) in the
context of 3GPP / UMTS-LTE

« Motorola Inc., “Long Term Evolution (LTE): A Technical Overview,’

Technical White Paper:

http://business.motorola.com/experiencelte/pdf/LTE%20Technical%200verview.pdf

2. Hulti:a:t Traffic
Channel (MTCH)

(DL posni-to-multipaint
channel for transmission
of MBMS data)

Slonal Processing Sociely \— /e

EVOLVED MULTICAST BEROADCAST MULTIME-
DIA SERVICES (E-MBMS)

There will be support for MBMS right from the first
version of LTE specifications. However, specifica-
tions for EEMBMS are in early stages. Two impor-
tant scenarios have been identified for E-MBMS:
One is single-cell broadcast, and the second Is
MBMS Single Frequency Network (MBSFEN).
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Broadcast




Multicast beamforming
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s(t) —

_WN

N |

Beamforming
! n
Y r(t)=s(t)->> w;-h, + noise
Y Single User
hy Useful signal power
P=|w'h|?
Transmission power

P=1lwl]|?
12741 8
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Part I: Transmit Beamforming for Multicasting

« Joint work w/ Tim Davidson, Tom Luo, Lefteris Karipidis
 Problem statement:

— Transmit beamforming for multicasting to multiple co-channel
groups

e QoS formulation

* NP-hardness

e Multicast power control
e Max-min-fair version

« The Vandermonde case

 Robust formulations

Slonal Processing Sociely \— ar
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e Downlink Transmission: BS has N antenna elements

e M single-antenna intended mobile receivers

e 1< G < M co-channel multicast groups G, k € {1,...,G},
Qkﬁgg=®,.€#k,uk9’k={l,...,M} '(}7
e si(t): modulated signal,

sent to group Gy,

G Go

Y sp(t)wil: Tx signal
Joatt
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QoS formulation

e Optimal joint design of transmit beamformers (full CSI at Tx)

e QoS formulation: Minimize total Tx power, subject to meeting prescribed
lower bounds on the received SINRs

J P
il Z A
{wieCh }A 1 k=1
e gl > v, Vi € Gy, Vk € {1 G'}
ele Zf?-gkhvjrrh!‘lz—{_ﬂ? — ’}’?.-, 2 . . g

e Special cases:
— multiuser downlink (G = M) is SOCP (Bengtsson & Ottersten);
— broadcasting (G = 1) (Sidiropoulos, Davidson, Luo)

— middle ground

[EEE // 222 =
/
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Single multicast group (G=1)

. =
min |(|w
min w3
Hy, 12
st |“"Jht' > ;. Vi
1

e Seems benign ...
e ... but non-convex, and in fact NP-hard!

« Contains partition (Sidiropoulos, Davidson, Luo “06)
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Hence ...

I8
min Z [wll3
{wreCV }.i. 1 k=1
_ lwiTh;|? ;
Sf - Zf?‘:h|w fhtlz-i-{,r_.z :_} '-]-'5“ Vﬁ E gk'; Vk E {1.J S

- NP-hard in general ®

73 // sttt
./ 7
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Recasting to isolate non-convexity

e Equivalent reformulation for Q; := hihf and W, .= W;gwf
oe

(
min ) trace(Wy)
{WieCNNYL | {sieRYL, k=1

st.: trace(Q;Wy) —v; Y trace(Q;W)) — s; = 07,
Ik

$;>0,Vie{1,..., M},
W, =0, Vk e {1,... ,G}
rank(W) =1, Vk € {1,... ,G}

e Ris SDP: lin. cost func. & M lin. eq., M nonneg., G psd constraints

» Lagrange bi-dual interpretation

Slional Processing Soclely \— /A
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Algorithm [KarSidLuo: TSP08]

* Relaxation: Solve the SDP Problem R, denote solution {W.}$_;

e Randomization / Scaling Loop: For each k, generate a vector in

the span of VWi, using the Gaussian randomization technique, and
solve multicast power control problem (LP) for given configuration;

If feasible, then feasible solution for original problem

* Repeat, select best configuration (minimum TXx power)

e Ifrank(W,) =1, Vk, = Problem R equivio Z

: -
uality of approximate solution: ™NQ k=1 Bipr)
X % & ¢, trace(X)

Slonal Processing Sociely \— ar
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Multi-group Multicast Power Control

* If Problem 7 feasible = Problem R feasible (converse, not true in general)

« Solution blocks of relaxed problem, not rank-one in general
e Randomization: generate candidate beamforming vectors

* Ensure constraints of Problem Z = solve MGPC

e LP®
ak; = |[wih;|?
Br = |wl|3

Pk power boost factor
for multicast group k

Slional Processing Soclely \— /A

MGPC .
(=
min_ ) Bipk
) PLOE ;
A > e
Dz Piaito; —

Vi€ G, Vk € {1,...,G},
Prralgvine e st}
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Experimental results

J—J j:('ﬂl'ldmg \J _\J/B—m‘]udlﬁﬂ L\Buﬂdmg
ﬁ.

Or optimality; 300 MC runs, 4 Tx antennas

= = 2

,M”J\

Building
—
~J

~ ]

Central Academic

percentage

Building Building
£ [ - —e— M=6, G=3
4 —&— M=8, G=2
http://www.ece.ualberta.ca/~mimo/ N M=12, G=2
Often optimal, despite relaxation; 40, 5 10 12 Py 16 18 20
s ) SINR [dB]
Not far from optimal (3-4dB) in
Fig. 4. Q. optimality: 300 MC runs, 4 TX antennas.

most cases

HEE // 7 o
./ 7
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Analytical Approximation Performance Guarantees

Result (LuoSidTseZha SIOPT): Let v, denote the opti-
mum value of the single-group multicast beamforming
problem (which is NP-hard), and v, denote the opti-
mum value of the associated SDR. Then, in the com-
plex case,

Ur i: Vo i 81"'/:{'“-;*

(M is the total number of subscribing receivers) and
Gaussian randomization with ~ 50 samples gener-
ates a feasible approximate solution that satisfies this
bound with very high probability.

o (Usually pessimistic: ¢ << 8M often the case in practice)

Slional Processing Soclely \— /A
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Max-min

-falr version

S.1%

Mmax min

{WEEEN}E:;l ke{l,..

G %
2 Iwilz < P.

=1

2
w;' h
He. I;fgl

.,G} 1€ z}f#k |W€ h; |2 + c:"

73 // 222z
//k
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Exact Globally Optimal Solution in the Vandermonde Case (1)

Motivation: fixed wireless LoS communications, e.g., WiMAX

[ ]
,\Iﬁ' - All chstructions to be
— T outside of 0.6 of the
- T T 1st Fresnel clearance
b - - zone
|r~ | .
M
I[\’JII
|h“"f1|
~NA
1
41
~
R
WiMAX Base Station CPE
Location Location
73 B % 7/
/4
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Exact Globally Optimal Solution in the Vandermonde Case (2)

For ULA, far-field / LoS (or, single-path) scenario
- Vandermonde channel vectors h; = [1 el%i ¢i20i ... d(N=1)6;]T

Numerical observation: SDR consistently rank-1!

Suggests: Problem not NP-hard, in fact convex in this case?

Rx signal power at user | from beam K : ‘wf Zg _“ 0 ri.(0)ed0i
Autocorrelation fun.: r.(¢) = m_l wk(m)w*(m +4), 0<{<N-1

Conjugate-symmetric about the origin: r;(—£) = r.(¢)

Slonal Processing Socrely A
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Exact Globally Optimal Solution in the Vandermonde Case (3)

* 1= [rp(-N+1),--- 7 (=1),7%(0), 7(1),- - - (N + 1)),
s [E—jﬁi(h"—l): .MUl 1 el ?Ejﬂ-,-(h-’—l)]i*‘
wih|? = Tr,  7k(0) = rp(N) = X5 =g wp(m)wi(m) = [|wyl|3
 Equivalent reformulation:

G
min ) ri(N)

{r.liif}g:=1 k:l

st: flry>~ Y v, + ~0?, Vi€ Gy, VR € {1,...,G},
t#k

r; . autocorrelation vector, Vk € {1,... ,G}

« Autocorrelation constraints equivalent to LMIs [AlkVan02] - SDP
» ACS - spectral factorization - optimal beamvectors

IEEE 5 //% i 22

Slional Processing Soclely \— /A




Department of
Electronic and
Computer Engineering \

Example

Y = = —d = a1 0dB

Algorithm 1: SDR + Randomization + MGPC Algorithm 2: SDP + Spectral factorization

90 4, 0 3
; 120 :

180 180

270

270

24 users in 2 groups, spaced 10 deg apart
24 users in 2 groups, spaced 10 deg apart

Slonal Processing Sociely \— 7




‘; Technical University of C
wd | Department of
S Electronic and
T N Computer Engineering
] _

Robust Multicast Beamforming for imperfect CSI

+ Perfect CSI: B, 1= h;/y/i02

ONRB :
; 2
min |(|w
weCNH 15
gl wBhe| = 1, % el . . M)
e Robust version for imperfect CSI:
Ry
: 2
min ||w
min_[[wi3

SE® w7 MY h; eBe(h; )t Vi el ML)
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Robust Multicast Beamforming

- Result: Let w’ be an exact solution of RB.
Then w'/(1 + €||w’|]) is an exact solution of ONRB.

Conversely, if w, is an exact solution of ONRB,
then wo/(1 — €||wol|) is an exact solution of RB.
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Multicast Beamforming: Recap

e Multi-group multicast transmit beamforming under SINR constraints is
NP-hard in general [KarSidLuo,SidDavLuo]

 Good & efficient approximation algorithms via SDR

* In the important special case of Vandermonde steering vectors it is in
fact SDP — can be solved exactly & efficiently!

» For general steering vectors, exact solutions of the robust and non-
robust versions of the single-group (broadcast) problem related via
simple one-to-one scaling transformation!

» For Vandermonde steering vectors, robust version of the multi-group
multicast problem is convex as well! [KarSidLuo]

IEEE = //% 2z 26
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Part 11: Joint Multicast Beamforming and Admission Control

e Joint work w/ Vivi Matskani, Tom Luo, Leandros Tassiulas

IEEE

Inter-group interference and/or power constraint -
Infeasibility = admission control

Joint multicast beamforming and admission control: MDR

Single multicast group: important special case, in view of
UMTS-LTE / E-MBMS

MDR works for multiple co-channel multicast groups; will
focus on single group for brevity

In this case, infeasibility arises due to Tx power constraint

Slional Processing Soclely \— /-



Infeasibility and Admission Control

e Often infeasible — admission control

e Goal: max # users served @ pre-specified SNR
levels for a given P.

e [wo stages:

e argma"sgu,{wecN}|S|

min_|lw|5
5 weCN
subject to : ||w||5 < P, 2
wih,|2 .
[wih|2 Rl gt
—— 2 e, ¥i €S, i
U‘.

1

73 // 222z
//k
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Single-stage reformulation

min w2+ (1 — 4 1)2
WEEN’{S'EE{—L—H}};;E“E” 15+ ( E)ig(s )

subject to : ||w||% <%

'wHh;|2 + 6 1(s; + 1)2
2

g;

> ¢, VI €EU.

—1
Result: (Cf. [MatSidLuoTas:07-08]) For d < min;¢yy —12—4;';

and € < ﬁ, the reformulated problem is always
feasible, and its solution simultaneously maximizes
the number of users served and minimizes the power
required to serve them.

Slonal Processing Sociely \— /e
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Getting ‘close’ to a convex problem

W =wwl S, = sis?, where s; := [s; 1]7, and
H; := h;h#; rewrite as

~ min eTr(W)+(1—¢) > Tr(12x2S;)
Weq:h'x;\-!{siemzxz}ieu iclU

subject to: Tr(W) < P,

Tr(H;W) + 6 1Tr(1542S;)

7
ag;

2 Cq, \ eu?

W > 0,rank(W) = 1,

o= I’BI"IK(S@) = 1?8?;(1? 1) = S?;(Q, 2) =1, Viel.

V773 = //% s 30
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Semidefinite Relaxation (SDR)

Drop rank-1 constraints — convex

min e Tr(W)4(1—¢ Frfl S,
WeCH*xN {8;eR2x2}. . (W)+( )%}{ (12x2S;)

subject to : Tr(W) < P,

Tr(H;W) + 671 Tr(155S;)

2
g;

:EC-E', WEM,

W > 0,

Si :_3' O,. Si(l,. 1) — 81(2,2) —_ 1, L b =N

Slional Processing Soclely \— /A
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R MDR- Algorithm

TN, - RS

2. Solve the relaxed problem and let W denote the
resulting transmit covariance matrix

3. w = principal component of W, scaled to power

Tr(W).

4. For each 7 € U, check whether
|Wih;|2
Lot =3,

z

If true for all ¢ € U, stop (a feasible solution has been
found); else pick the user with largest gap to its target
SNR, remove from I/ and go to step 2.

Ny »

Slional Processing Soclely \— /A
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Lozano’s Algorithm

1. Initt w=1[10.--0]T

2. Compute SNR;(t—1) = Pw/l \Hywy_1, Vie U
3.Sort SNR;(t — 1), Vie U.

4. Drop a fixed proportion of users with lowest at-
tained SN Rs.

5. Find weakest link among remaining ones (— k)

6. Take step in its direction: wy = w;_1 + uHpwy_1;
then w; = w/||w¢l|2

/. Repeat until no significant change in minimum SN R.

Slional Processing Soclely \— /A
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« Simple algorithm, but intricate convergence behavior

* No guidelines for choosing n

* We show via toy counter-example:
— May shut-off users completely (no chance of admission) — fairness issue
— May not converge
— Can exhibit limit cycle behavior, even for very small u

Issues w/ Lozano’s algorithm

Example of
ol A T it eyele behavior
il Il | H I || || (i | |u| | |l||||”| |||||| |||"_ of Lozano’s algorithm.
D 0.47 ‘ ‘ | 1
TR By =207, hy = [0 1]T
ol < mu:O.‘I/ | EER=—— & == =l
045 e * Random initialization,
f:1:[1;0], h2:[0‘; 1], rand init # s 0'1.

tion numb

b

Slional Processing Soclely \— /A
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Proposed improvement - I: LLI

[Lopez:2004]: Max average SNR beamformer <-> pricipal
component:

H:=[hy,--- ,hg] (N X K),

[U,S, V] =svd(H?); wg = V(;, 1);

e Use this for initialization

* PC can be tracked, e.g., using power method - overall solution
remains simple, adaptive

e LLI: Lozano with Lopez Initialization

Slonal Processing Sociely \— ar
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Y Proposed improvement - 11: dLLI

e Simple and effective way to suppress limit cycle be-
havior: damp p according to a predefined back-off
schedule. This should be balanced against our pri-
mary objective, which is to find a good solution

e The weight update of Lozano’s algorithm can be in-
terpreted as taking a step in the direction of the /local
subgradient of min;c 4, SN R;(t — 1), where the min-
imum is taken over the currently active user set A;.

Slonal Processing Sociely \— /e
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‘ Proposed improvement - 11: dLLI

e There are two difficulties here: this is not a subgradi-
ent in the usual sense, because it is only a local, not a
global under-estimator of min;c 4, SNR;(t — 1); and
Ay can change as iterations progress. These difficul-
ties arise because we are dealing with a non-convex
and NP-hard problem.

o dLLI: p —i;lé if t mod 10 = 0, else puy = pp_1

(back-off every 10 iterations).

4 .

Slonal Processing Socrely A
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Falr comparison

« MDR fixes min SNR, attempts to optimize coverage
e Lozano and (d)LLI fix coverage, attempt to optimize min SNR

* Proper comparison: min SNR vs. coverage operating characteristic
(similar to ROC)

e Using measured channel data
 Benchmark: enumeration over all subsets: for each use SDR

o Per-subset problem is still NP-hard, but

— enumeration+SDR (‘ENUM?’) yields upper bound on min SNR (attainable
performance)

— when SDR returns rank-1 solution for maximal subset, it is overall
optimal; this happens in vast majority of cases considered > ENUM
yields tight upper bound

IEEE = //% 2z 38
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Measured channel data

19 9
o 16, 17 19 11 ty 5 x
= L7 L5 L2 /7 TX
= 18 12 . Gz

| 2 134 14 X

. central Academic ! |
Building Building '.-5.-__:' #ﬁ-]‘_ L — ij x-fx‘ ‘]_‘ —T’t
LR T bt - - " i P . =
= T o T

http://www.ece.ualberta.ca/~mimo/
N =4 Tx antennas

Left: Outdoor Right: Indoor
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Results — I: Outdoor, I-CSIT

Instantaneous CSI-T. ” | | | |
30 Measured channel | | | —%— ENUM
snapshots. | : | tﬂc?;mo
K = 10 users, P = 30, 261y o |
INT==- Tl ==.c"

2 = g2 = ik ‘v’z
MDR e=,10~
§ < min;cy 4::_1/0‘3-2.
Lozano’s, LLI: u = 1072
accuracy (convergence) 5 5 5
— 103, 10 e R R S N

N
o

_________________________________________________________________________

<ty 0=

Average SNRBmin (dB)
o

Complexity (per problem instance): ; ; ; . 4
ENUM: about 2 min % 5 A 5 . 10
MDR: between 10~2 and 1 sec Average # users served

Lozano's, LLI: between 10~ 2and 101 sec.

HEE // 7 =4
./ 7
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N Results — I1: Outdoor, LT-CSIT

—*— ENUM

Long-term CSI-T. S—MDR
5 LOZANO

K =10 users, P = 30, o0 ........ ........ LI ]

N A dLL
N == 4 Txg Cg == C; D &\\'jsh?ﬂiﬁx _______________________ ________________ _
g? = o2 =1, Vi. _ S N\g L TSN

~10 @ A8 D e R e (L .

MDR: e = 10 ; s | T A o
, " = T D S

d < Min;gy 4c 1/53-2. § >
) b T -

Lozano’s, LLI: p = 10~2, | , | , T |
accuracy (convergence) L S E N R e L
=X 0[N

Complexity: . . . . . . . .
ENUM: about 2 min 6 2 3 4 5 6 7 8 9 10
MDR: between 102 and 1 sec # users served

Lozano's, LLI: between 10=2 and 101 sec.
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30

2b

Average SNRmin (dB)
o =

—_
]

JEEE e

Results — I11: Indoor, I-CSIT

—+F— ENUM
—— MDR

"""" h-q-?‘\-q\_;"""""""'""'"""""""""""

SR ; ; | LLI

>— Lozano | |

:?}'\

| "

| \
i I I l l

Average # users served
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Results — 1V: Indoor, LT-CSIT
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‘ Results — V: iid Rayleigh, I-CSIT
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Conclusions

 ENUM returned rank-1 solutions in all cases except full coverage;
complexity exponential in K; prohibitive for large K.

e dLLI and MDR emerge as clear winners
e dLLI bestfor LT-CSIT

e« MDR best in certain I-CSIT cases

o dLLI issimpler and faster than MDR

e ... but MDR works for multiple groups
« Both close to optimal

o dLLlI : significant improvement over Lozano’s original algorithm; due
to adaptive nature and only quadratic complexity - ideal candidate for
practical implementation in LTE / E-MBMS

IEEE = /// 2 45
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Multicast beamforming for minimum outage
(Ntranos, Sidiropoulos, Tassiulas, IEEE TWC)

« Assume channel vectors random, drawn from, say,
Gaussian

o Max # customers served under power constraint is NP-
hard, even if you know their channels exactly.

e For large # customers, can approx. max # served by min
P(outage)

 Trivial for single Gaussian — and It doesn’t require channel
state — only channel statistics!

e NP-hard problem - trivial one! ©
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Multicast beamforming for minimum outage
(Ntranos, Sidiropoulos, Tassiulas, IEEE TWC)

e Promising ... but Gaussian mixture model is far more
realistic for multicast

BASESTATION

Slional Processing Soclely \— /A
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e Sneak preview:

Computer Engineering ‘\

Multicast beamforming for minimum outage: Results

 When # kernels in mixture > # Tx antennas, there’s no escape from
NP-hardness ... ®

» But for 2-3 kernels (practical), optimal solution is tractable.

* For any number of kernels, effective approximation of very low
computational complexity.

e Very interesting because approach requires no CSlI, and still delivers
(probabilistic) service guarantee

» Respects subscriber privacy concerns; requires no logging
* No reverse-link signaling

Thank you for your attention ©
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