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Abstract—Detection and estimation problems in multiple-input
multiple-output (MIMO) radar have recently drawn considerable
interest in the signal processing community. Radar has long
been a staple of signal processing, and MIMO radar presents
challenges and opportunities in adapting classical radar imaging
tools and developing new ones. Our aim in this article is to
showcase the potential of tensor algebra and multidimensional
harmonic retrieval (HR) in signal processing for MIMO radar.
Tensor algebra and multidimensional HR are relatively mature
topics, albeit still on the fringes of signal processing research. We
show they are in fact central for target localization in a variety
of pertinent MIMO radar scenarios. Tensor algebra naturally
comes into play when the coherent processing interval comprises
multiple pulses, or multiple transmit and receive subarrays are
used (multistatic configuration). Multidimensional harmonic
structure emerges for far-field uniform linear transmit/receive
array configurations, also taking into account Doppler shift; and
hybrid models arise in-between. This viewpoint opens the door for
the application and further development of powerful algorithms
and identifiability results for MIMO radar. Compared to the
classical radar-imaging-based methods such as Capon or MUSIC,
these algebraic techniques yield improved performance, especially
for closely spaced targets, at modest complexity.

Index Terms—DoA-DoD estimation, harmonic retrieval, local-
ization, multiple-input multiple-output (MIMO) radar, tensor de-
composition.

I. INTRODUCTION

R ECENTLY, the concept of multiple-input multiple-output
(MIMO) radar has drawn considerable attention (see [2],

[3], and references therein). A MIMO radar utilizes multiple
antennas at both the transmitter and the receiver end, but
unlike conventional phased-array radar, it can transmit linearly
independent waveforms. This waveform diversity endows
MIMO radar with superior capabilities relative to phased-array
radar. One can distinguish two main classes of MIMO radar,
employing widely separated [3] or co-located antennas [2],
respectively. The first class capitalizes on the rich scattering
properties of a target by transmitting linearly independent sig-
nals from sufficiently spaced antennas that illuminate the target
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from ideally decorrelated aspects. The second class allows to
model a target as a point-source in the far field and uses MIMO
spatial signatures to estimate the parameters of interest via
coherent processing.

In this paper, we focus on the problem of estimating the local-
ization parameters of multiple targets in a given range bin via co-
herent processing techniques. The parameters of interest include
direction of arrival (DoA), direction of departure (DoD), and
Doppler shift; but also a target’s spatial signature or radar cross
section (RCS). We will consider the following three MIMO
radar configurations.

• Configuration 1: Single-pulse, bistatic case. In this con-
figuration, the targets are illuminated by an array of
closely spaced antennas and the reflected waveforms are
received by an array of closely spaced antennas. The
transmit and receive arrays are not necessarily colocated
(bistatic case). The propagation environment is assumed to
be nondispersive. The coherent processing interval (CPI)
consists of a single pulse period.

• Configuration 2: Multiple-pulses, bistatic case. In this
scenario, the spatial configuration is the same as in the
first configuration but the CPI now consists of consecu-
tive pulse periods. We distinguish between the Swerling
I target model, where the RCS of all targets is constant
during the CPI, and the Swerling II target model, where
it is varying from pulse to pulse. In both cases, we assume
that the medium is nondispersive.

• Configuration3:Multiple-pulses,multistaticcase. In this
configuration, the transmitter is equipped with nonover-
lapping subarrays and the receiver with nonoverlapping
subarrays. Each transmit and receive subarray consists of
closely spaced antennas, while the subarrays are sufficiently
spaced to ensure that they experience independent RCS
fading coefficients. As in the previous configurations, the
targets are located in the far-field. The RCS coefficients are
assumed to vary independently from pulse to pulse (Swer-
ling II), and the propagation medium is nondispersive.

DoA/DoD estimation in MIMO radar can be accomplished
using 1-D or 2-D radar-imaging techniques [2], [4]–[8], which
look for peaks in a beamformer output spectrum, computed
for every angle (or pair of angles in the bistatic case) in a
region of interest. The main issues with these techniques are
the following:

i) Limited spatial resolution: detection and localization
typically fail for closely spaced targets, since a single lobe
may then occur in the output spectrum;

ii) Sensitivity to fading: changing a target aspect by as little
as one milliradian may result in variations of the reflected
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power of 20 dB or more. Application of radar-imaging on
a per-pulse basis thus gives rise to a target scintillation
phenomenon; and

iii) High complexity: the final image is generated after
angular scanning, which may become highly time-con-
suming for a dense angular grid, especially in the 2-D
case.

A growing number of applications involve signals that are
naturally represented as -D arrays, or th-order tensors,
rather than 2-D arrays, i.e., matrices. Signal processing tools
based on multilinear tensor algebra allow us to exploit the
strong algebraic structure of these multidimensional signals;
we refer to [9], [10], and references therein for a review of
these tools. PARAllel FACtor (PARAFAC) analysis [11], [12]
decomposes a tensor in a sum of rank-one tensors. A rank-one
tensor of order is an outer product of loading vectors.
The rank of a tensor is the smallest number of rank-one tensors
needed to synthesize the given tensor as their sum. PARAFAC
is thus tied to the concept of tensor rank and low-rank decompo-
sition. In this sense, PARAFAC is one possible generalization
of the matrix singular value decomposition (SVD) to the
higher-order case. PARAFAC exhibits strong uniqueness prop-
erties without imposing orthogonality of the loading vectors
[13]–[15]. In practice, however, it is often desirable to im-
pose application—specific constraints on the loadings of the
PARAFAC decomposition. In applications in Chemometrics,
for instance, nonnegativity constraints are often meaningful
[16]. In sensor array processing, one or more loading matrices
of the PARAFAC decomposition may have strong algebraic
structure [17], e.g., Vandermonde. In the 2-D case, a matrix fac-
torization problem of the form where the unknown
matrix factors and both have Vandermonde structure is a
2-D harmonic retrieval (2-D HR) problem. By extension, the
PARAFAC decomposition of an th-order tensor in which
all loading matrices have a Vandermonde structure is an -D
harmonic retrieval problem. Several algorithms and uniqueness
results have been derived for 2-D and -D HR problems; see,
e.g., [18]–[25], and references therein. Pertinent applications of
PARAFAC and -D HR to MIMO channel sounding problems
have been considered in [26] and [27].

In this paper, we revisit the MIMO radar data models consid-
ered in [4]–[8], [28], and show that, for the three configurations
previously listed, detection and localization of multiple targets
can be achieved via appropriate tensor decompositions and mul-
tidimensional harmonic retrieval tools. These techniques offer
the following advantages relative to spectral-Capon and spec-
tral-MUSIC radar imaging methods considered in the aforemen-
tioned references:

i) Improved identifiability and spatial resolution: it is
possible to localize closely spaced targets with relatively
good accuracy. Owing to a well-developed identifiability
theory, it is also possible to pin down fundamental limits
on the number of resolvable point scatterers.

ii) Robustness to fading: the RCS fluctuations from pulse
to pulse (in the case of a Swerling II target model) are not
regarded as a nuisance, but rather as a source of diversity.

iii) Simplicity: the DoAs and DoDs are obtained from a
single algebraic decomposition (including automatic

pairing), without need for angular scanning and peak
detection.

Preliminary results on applications of PARAFAC to MIMO
radar have appeared in conference form in [1]. This journal ver-
sion adds multidimensional harmonic decomposition tools, con-
siders three different radar configurations, establishes a link be-
tween the multistatic case and a generalization of PARAFAC
known as block component decomposition (BCD), and includes
extensive experiments.

The rest of this paper is organized as follows. Some mul-
tilinear algebra prerequisites are introduced in Section II. In
Section III, we focus on the first configuration and establish a
link to the 2-D HR problem when a uniform linear array (ULA)
geometry is assumed at the transmitter and the receiver. In
Section IV, we show that, for the second configuration, the lo-
calization problem amounts to the computation of a PARAFAC
decomposition for general array geometries, and a multidi-
mensional HR problem for ULA geometries. In Section IV,
we show that the data model for the third configuration can be
regarded as a tensor decomposition in block-terms. Section VI
reports numerical results and Section VII summarizes our
conclusions.

Notation: A third-order tensor of size is denoted
by a calligraphic letter , and its elements are denoted by ,

, and . denotes a ma-
trix and a vector. The transpose, complex conjugate, complex
conjugate transpose, and pseudoinverse are denoted by , ,

, and , respectively. denotes the Frobenius norm.
is the operator that stacks the columns of one after

each other in a single vector. is a diagonal matrix that
holds the entries of on its diagonal.
is a block-diagonal matrix with being its di-
agonal submatrices. The Kronecker product is denoted by .
The Khatri-Rao product (or column-wise Kronecker product)
is denoted by , i.e.,

. The identity matrix is denoted by
. We will also use a Matlab-type notation for matrix sub-

blocks, i.e., represents the matrix built after selection
of rows of , from the th to the th, and
columns of , from the th to the th. is used to de-
note selection of all rows and to denote selection of
all columns. The column-wise concatenation of two matrices
and having the same number of rows is denoted by .
The ceiling operator is denoted by .

II. MULTILINEAR ALGEBRA PREREQUISITES

Definition 1 (Matrix Unfoldings): The three standard matrix
unfoldings of a third-order tensor , denoted by

, , and are
defined by ,
and , respectively.

Definition 2 (Mode-n Tensor-Matrix Product): The mode-1
product of by a matrix , denoted by

, is an -tensor with elements defined, for
all index values, by . Similarly,
the mode-2 product by a matrix and the mode-3
product by are the and
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Fig. 1. Schematic representation of PARAFAC decomposition.

tensors, respectively, with elements defined by
and .

Definition 3 (PARAFAC in Element-Wise Format): The par-
allel factor decomposition [11] of a third-order tensor

in factors, represented in Fig. 1, is a decomposi-
tion of the form

(1)

where the , , and matrices , , and defined
by , , , respectively, are
the so-called “loading matrices” of the decomposition, , ,
and denote the th column of , , and , respectively, and

denotes the outer product.
Definition 4 (PARAFAC in Matrix Format): The three ma-

trix unfoldings of a tensor , that follows the
PARAFAC decomposition (1), are linked to the loading ma-
trices , , and as follows: ,

, and
Definition 5 (Essential Uniqueness of PARAFAC): The

PARAFAC decomposition of is said to be essentially unique
if any matrix triplet that also fits the model
is related to via , ,

, with , , arbitrary diagonal matrices sat-
isfying and an arbitrary permutation matrix.
Conditions for which essential uniqueness is guaranteed have
been derived in [13]–[15].

Definition 6 (Harmonic Retrieval): A decomposition of
of the form

is known as a 3-D HR problem. It can be seen a particular
case of the PARAFAC decomposition, where the three loading
matrices have a Vandermonde structure. A decomposition of

of the form

is known as a multiple-snapshots 2-D HR problem. It can be
seen as a particular case of the PARAFAC decomposition, where
two loading matrices have a Vandermonde structure whereas the
third loading matrix has no specific structure.

Recently, a new class of tensor decompositions has
been introduced, the so-called Decompositions in Block
Terms, also referred to as block-component-decompositions

Fig. 2. Schematic representation of the BCD-��� �� �� of � .

(BCD) [29]–[31]. In this paper, we will need the BCD in
rank- terms, compactly written as BCD- .

Definition 7 (BCD in Rank- Terms): The
BCD- of a third-order tensor ,
represented in Fig. 2, is a decomposition of of the form

(2)

in which the and matrix representations of
are full column rank, and (with

) and (with ) are full column rank
[30].

III. SINGLE-PULSE, BISTATIC CONFIGURATION

In this section, we establish a link between the data model of
the first MIMO radar configuration and the single-snapshot 2-D
HR problem.

A. Data Model

Let us consider a MIMO radar system with the following pa-
rameters:

• transmit array of co-located antennas, ;
• receive array of co-located antennas, ;
• the transmit and receive arrays are not necessarily co-lo-

cated (bistatic configuration);
• targets in a range-bin of interest ;
• holds the narrowband

transmitted pulse waveforms, being the number of sam-
ples per pulse period;

• are the RCS fading coefficients;
• , are the DoDs and DoAs with respect to

the transmit and receive array normal, respectively,
• is the transmit steering

matrix and the receive
steering matrix.

In this section, we consider the radar return for a single pulse.
A target is modeled as a point-scatterer in the far-field, as com-
monly assumed in conventional radar systems and in MIMO
radar systems with co-located antennas [2]. The baseband re-
ceived signal at the output of the receive array can be written,
after synchronization, as [2], [6], [28], [32]

(3)

where collects the samples received by the an-
tennas, , , and is the
residual noise term. Note that, in theory, a clutter term should be
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added to (3). In the following, we suppose that the clutter con-
tribution has been filtered from the data in a preprocessing stage
via MIMO radar space-time-adaptive-processing (STAP) tech-
niques [28], [32], and that only residual noise (typically mod-
eled as additive white Gaussian—AWGN) remains in the ob-
served data.1

Unlike conventional phased-array radars, a MIMO radar
can transmit mutually orthogonal waveforms. Assume that

. After right multiplication of (3) by
, the matched-filter output is

(4)

where and .
Vectorization of (4) yields

(5)

where , .

B. Localization Via Radar-Imaging

In the monostatic configuration, , , one pos-
sible option is to localize the targets by beamforming-based
radar-imaging techniques [5], [6]. For instance, the classical
Capon spectrum is given by

(6)

where is the sample covariance matrix
of the observed snapshots.

Another well-known radar-imaging method is the MUSIC
spectral estimator [33], [34]

(7)

where is an matrix that spans the noise column
subspace and can be obtained from the SVD of .

The targets are then localized by searching for the peaks in
the spectrum or , which is computed for
each DoA of interest.

In the bistatic configuration , the DoAs can first be
estimated in the same way via radar-imaging. Then, provided
that , one can build the estimated receive steering ma-
trix and finally compute the DoDs by recovering the array-
manifold structure on each column of , e.g.,
with the periodogram-based approach proposed in [35]. Note
that the DoDs and DoAs are automatically paired in this hybrid
approach. However, in difficult situations where the returned
signal has a low power due to high fading or when the targets
are closely spaced, it is not always possible to clearly distin-
guish one peak per target. This yields poor DoAs estimates, and
consequently poor DoDs estimates in the second step.

1If Doppler is present, the corresponding term can be absorbed by the un-
known RCS term—the model remains unchanged, but Doppler cannot be sepa-
rated from the RCS fluctuations in general.

C. Localization Via 2-D Harmonic Retrieval

When both the transmitter and the receiver employ a uniform
linear array, with interelement spacing and , respectively,
the data model in (4) becomes

(8)

where , , and
is the carrier wavelength.

For the ULA configuration, it was shown in [36] that
searching for the peaks of or can be
accomplished by finding the roots of a polynomial lying close
to the unit circle. The resulting root-MUSIC and root-Capon
techniques are faster and more accurate than their spectral
counterparts [34]. For a generalization of root-MUSIC ideas to
arbitrary nonuniform arrays, see [37] and references therein.
Finally, given the DoAs estimates, the DoDs can be obtained as
explained before, provided that .

A better approach is to treat (8) for what it really is: a 2-D
HR problem, which can be solved by a host of specialized al-
gorithms, including 2-D Unitary ESPRIT [18], 2-D RELAX
[38], 2-D multidimensional folding (2-D MDF) [39], 2-D multi-
dimensional embedding—alternating least squares (2-D MDE-
ALS) [20], 2-D rank reduction estimator (RARE) [21] or 2-D
improved multidimensional folding (2-D IMDF) [23].

D. Uniqueness

For the 2-D HR problem in (8), it was proven in [39] that, if

(9)

then the decomposition (8) is almost surely unique, provided
that the frequencies , , are drawn
from a continuous distribution. This bound was relaxed in [23],
where it was proven that, if

(10)

where and arearbitrarypairsofpositive inte-
gerssatisfying and , respec-
tively, then the decomposition (8) is almost surely unique, given
that the frequencies , , are drawn from
acontinuous distribution. It is important to note that the proofsare
constructive—these identifiability bounds are in fact attained by
algebraic parameter estimation algorithms. This implies that, un-
like the Capon and MUSIC-based estimators described before,
the number of targets can exceed and when 2-D HR
algorithms are used. This is a major advantage of the reformu-
lation of the target localization problem in terms of 2-D HR.

E. Unknown Pulse Waveforms

Suppose that the transmitted waveforms are unknown (e.g.,
passive radar, which relies on existing “commodity” transmis-
sions) and/or not orthogonal. Equation (3) can be written as

(11)
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where is unknown and is the receive steering
matrix. It follows that the DoAs can still be estimated via tech-
niques such as 1-D Capon, 1-D MUSIC or 1-D HR. Instead of
exploiting the shift-invariance structure resulting from a single
subarray displacement as in standard ESPRIT, one can also ex-
ploit the multiple shift-invariance structure of (11) induced by
several subarray displacements, which yields a 3-D PARAFAC
model [17].

IV. MULTIPLE-PULSES, BISTATIC CONFIGURATION

A. Data Model

In the previous section, we have considered a CPI consisting
of a single pulse period. We now consider a CPI consisting
of consecutive pulses (configuration 2) and we establish a
link between the resulting data model and HR/PARAFAC. Let
us assume that the spatial steering matrices and are con-
stant during the CPI. For a nondispersive propagation medium,
the baseband received signal (3) after synchronization can be
written on a per-pulse basis as [28]

(12)

where collects the samples observed by the
antennas for the th pulse period, is the noise-term for the
th pulse period. The diagonal matrix with

accounts for the Doppler effect and RCS fading.
For a Swerling I target model, we have , i.e.,
the RCS coefficients , , are constant during the
CPI, where is the Doppler frequency of the th target [28].
For a Swerling II target model, , i.e., the
RCS coefficients are varying independently from pulse to pulse.
Following the same reasoning as in Section III-A, exploitation
of the mutual orthogonality of the transmitted waveforms yields
the following per-pulse extension of (5)

(13)

which can be written in the following compact form:

(14)

where , and
. In the following, we denote by and the

tensors whose matrix representations are and
, respectively.

B. Localization Via Radar-Imaging

Given (13), one possible strategy is to use the Capon or
MUSIC estimators of Section III-B on a per-pulse basis and
update the DoAs and DoDs from pulse to pulse. However, if
the RCS coefficients are varying from pulse to pulse (Swerling
II), the target scintillation phenomenon caused by fading does
not allow accurate localization and detection of all targets for
every pulse. This is the main motivation for the development of

radar-imaging techniques that mitigate RCS fluctuations. For
instance, the 2-D Capon spectrum can be written as [7]

(15)

where . If the number of targets is known
or has been estimated, the MUSIC spectrum can be computed
as

(16)

where is the matrix that contains the
noise eigenvectors of , i.e., the eigenvectors associated
with the least significant eigenvalues. The targets
are finally localized by searching for the peaks in the 2-D spec-
trum or . The latter spectra being
computed for every pair of angles of interest, complexity is
significant.

C. Localization Via Harmonic Retrieval

When ULAs are employed on the transmitter and the receiver
side, using the notation of Section III-C, element of
can be written as

(17)

in the Swerling I case. The decomposition in (17) is a 3-D HR
problem which can be solved with a variety of specialized algo-
rithms [19], [20], [22], [23]. This yields estimates of the param-
eters , , from which the DoAs/
DoDs can be extracted. In the Swerling II case, we have

(18)

which is a multiple-snapshots version of the 2-D HR problem
that can be solved via the algorithms proposed in, e.g., [19],
[24], and [25]. It is also possible to derive a root-version of 2-D
Capon and 2-D MUSIC when the transmitter and receiver em-
ploy ULAs. The problem then consists of rooting a polynomial
of two variables. The resulting optimization problem can be re-
laxed by sequentially rooting two polynomials, which is the core
idea behind the RARE family of algorithms [21], [40].

D. Uniqueness of Harmonic Retrieval

For the 3-D HR problem associated to the Swerling I target
model, it was proven in [39], that, if

(19)

then the decomposition (17) is almost surely unique, provided
that the frequencies , , are drawn
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from a jointly continuous distribution. Later on, this bound was
relaxed in [23], where it was proven that, if

(20)

where , , and are arbitrary pairs of
positive integers satisfying ,

, and , respectively, then the decomposi-
tion (17) is almost surely unique, given that the frequencies

, , are drawn from a jointly contin-
uous distribution.

For the multiple-snapshots 2-D HR problem associated to the
Swerling II target model, it was proven in [41] that, if

and (21)

then the decomposition (26) is almost-surely unique, provided
that the frequencies , , are drawn
from a jointly continuous distribution and is full
column rank. If , which occurs when the CPI consists
of a very limited number of pulse periods, then is not full
column rank. In this situation, uniqueness is still covered by a
result established in [42], i.e., if

(22)

then the decomposition (18) is unique, provided that the
frequencies , , and the entries of are
drawn from a jointly continuous distribution.

E. Localization Via PARAFAC

From definition 4, it is clear that (14) is the PARAFAC de-
composition, written in matrix format, of the noisy observed
tensor , of which is a matrix representation.
Given that the number of targets is known or has been estimated
(see Section IV-G), a 3-D PARAFAC model with components
can be fitted to by minimization of the cost function

(23)

via various optimization algorithms [43]–[47]. These iterative
algorithms do not impose a specific structure on the estimates

, or . The array-manifold structure of and is there-
fore imposed a posteriori (e.g., with the periodogram-based
approach [35] in the ULA case), i.e., after convergence. This
separation is made possible by the essential uniqueness prop-
erty of PARAFAC, under mild conditions (see Definition 5 and
Section IV-F), i.e., the columns of and are only subject to
scaling and permutation. The latter column-wise permutation is
the same for and , so the pairing between DoDs and DoAs
is automatic. Since it is not necessary to impose a specific
array-manifold structure within the iterative fitting procedure,
the PARAFAC framework allows to deal with array geometries
more general than ULAs, which is a key advantage over HR
algorithms.

In the MIMO radar configuration considered in this section,
it is assumed that the steering matrices and are constant

during the CPI. If these matrices are slowly varying from
pulse to pulse, one can track the DoAs/DoDs with the adaptive
PARAFAC algorithms proposed in [48].

F. Uniqueness of PARAFAC

In the Swerling I ULA configuration, the three loading ma-
trices , , and have a Vandermonde structure, hence the
equivalence to 3-D harmonic retrieval. In the Swerling II ULA
configuration, and are Vandermonde, whereas has no spe-
cific structure. The uniqueness conditions for the HR problem
in Section IV-D can therefore be seen as essential uniqueness
conditions for PARAFAC with a Vandermonde structure on two
or three loading matrices. If this structure is ignored, essential
uniqueness is guaranteed by other sets of conditions. A first re-
sult, known as the Kruskal bound [13], states that if

(24)

and the matrices , and are full Kruskal-rank (true if drawn
from a jointly continuous distribution), then the PARAFAC de-
composition of is essentially unique. In the case where one of
the three matrices, say , is full column rank and the two other
matrices, say and , are full rank, it was established in [45],
[49] that, if

(25)

then the PARAFAC decomposition of is essentially unique,
almost surely.

G. Estimation of the Number of Targets

Provided that , we can deduce from (14)
that is generically rank , in the noiseless case. It follows that
the number of targets can be estimated as the number of signifi-
cant singular values of , i.e., the singular values associated to
the signal subspace. If , is not generically rank . In
this situation, the number of targets can still be estimated by the
core consistency diagnostic (CORCONDIA) procedure [50].

H. Unknown Pulse Waveforms

The model (14) describes the signals extracted from the
matched filterbank, assuming orthogonality and exact knowl-
edge of the transmitted waveforms, and perfect synchroniza-
tion. If these waveforms are not known or not orthogonal, the
matched-filtering operation cannot be performed and one has
to work with the raw data

(26)

where does not have an a priori known
structure, is the matrix that collects the samples
received by the antennas for each of the pulse periods and

is the noise term. It follows that (26) is a noisy PARAFAC
model. Fitting this model yields estimates of , and , and
the DoAs follow from imposing the array manifold structure
onto . In the Swerling I case, has a Vandermonde structure
and the Doppler frequencies of the targets can thus be extracted
after imposing this manifold structure on . In the Swerling II
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case, has no specific structure and the Doppler frequencies
are not identifiable in general.

V. MULTIPLE-PULSES, MULTIPLE ARRAYS

In this section, we show that the data model for the third con-
figuration can be formulated in terms of the BCD- of
a third-order observed tensor.

A. Data Model

We consider the MIMO radar configuration proposed in [8]:
• transmit subarrays, with index ;
• receive subarrays, with index ;
• th transmit subarray with closely spaced antennas;
• th receive subarray with closely spaced antennas;
• is the total number of transmit antennas;

• is the total number of receive antennas;
• the subarrays are sufficiently spaced, so that all transmit

and receive subarray pairs experience statistically indepen-
dent RCS;

• the CPI consists of consecutive pulses and the RCS is
varying independently from pulse to pulse (Swerling II
case);

• targets in the far field;
• holds the

narrowband pulse waveforms transmitted by the th sub-
array, being the number of samples per pulse period;

• , are the DoDs and DoAs with respect
to the th transmit and th receive array normal, respec-
tively;

• is the steering vector relative to the th
transmit subarray and th target, is the
steering vector relative to the th receive subarray and th
target.

The th pulse return received by the th subarray due to the
reflection of the waveforms transmitted by the subarrays can
be written, after synchronization, as [8]

(27)

where collects the samples of the signal re-
ceived by the antennas, denotes the noise term and

is the RCS coefficient of the th target for the th
subarray pair and th pulse.

B. Link to Block-Terms Decomposition

We now show that (27) can be seen as a BCD- of
an observed tensor. Let us define the matrices

Then, (27) can be written as

(28)

. Let us stack the matrices of (28),
, along the third-dimension to build the

observed tensor . We proceed similarly with the matrices
to build . The matrices , for a fixed index

, are stacked in the tensor . Let be the
matrix defined by

(29)

It follows that (28) can be written in tensor format as

(30)

From definition 7, it is clear that (30) is a BCD in
rank- terms of the observed tensor . Thus, the
computation of this decomposition yields estimates of the
steering matrices , from which the DoAs with re-
spect to all receive subarrays have to be extracted, as will be
explained in the sequel.

Let us now assume that all transmitted waveforms are mutu-
ally orthogonal such that . After right-multi-
plication of both sides of (28) by , the matched-filtered
observed tensor is

(31)

where and consist of the
slices and , respec-
tively.

It is now clear that (31) is a BCD in rank- terms
of , the computation of which yields estimates of
and .

The steering matrices and ,
, of this decomposition have a block-diagonal

structure and are full column-rank since we always have
and . Moreover, since the RCS coefficients are varying
independently from pulse to pulse (Swerling II target model)
and since all subarrays are supposed to be sufficiently spaced to
experience independent target RCS, it follows that the
and matrix representations of , , are
generically full column rank for a sufficient number of pulses

. Hence, the conditions for which the formal definition of the
BCD- applies are satisfied. This decomposition can
be computed via an alternating least squares (ALS) algorithm
[31], possibly combined with line search to speed up conver-
gence [47] or via the Levenberg-Marquardt algorithm [51].

In the bistatic case , the BCD- re-
sumes to PARAFAC, which is consistent with the formulation
of the problem in Section IV. In the cases
or , the problem resumes to the computation
of the BCD- or BCD- [30], respectively,
which are particular cases of the BCD- .
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C. Uniqueness

It is clear that in (31), one can arbitrarily permute the
terms. Also, one can postmultiply by a nonsingular matrix

and by a nonsingular matrix ,
provided that is replaced by . The
decomposition is said essentially unique when it is only sub-
ject to these indeterminacies. Let us define the and

matrices and resulting from the concatenation
of the matrices and , respectively. It was established
in [30] that, if and , ,
and if the tensors , , are generic,
i.e., their entries are drawn from jointly continuous probability
density functions, then the decomposition of in (31) is essen-
tially unique.

Practically speaking, essential uniqueness is guaranteed if

and (32)

which gives an upper bound on the maximum number of targets
that can be identified. Note that this bound is only sufficient. In
some cases where this bound is not satisfied, uniqueness can still
be guaranteed, but is more difficult to prove [30]. Moreover, this
bound has been derived without assuming a specific structure on

and . In the application considered in this paper, the latter
matrices are very structured since they are block-diagonal and
hold array steering vectors on their diagonal. Uniqueness of the
BCD- with these constraints on and deserves
further research and is left as future work.

D. Final Angle Estimation

Provided that the number of targets is known or has been
estimated, and that essential uniqueness is guaranteed, the
computation of the BCD- of yields estimates of

, , and . However, these estimates
are still subject to the aforementioned indeterminacies inherent
to the model. In case of perfect estimation, the th estimate

, , is equal to one of the true ma-
trices , 2, up to multiplication by a nonsingular
matrix , and similarly for

(33)

In other words, the BCD- provides estimates of the
column subspaces of the matrices , , but the linear com-
binations of the subspace vectors that yield the true matrices

, , remain unknown in general. In the following, we show
that exploitation of the very particular structure of these ma-
trices is sufficient to get unambiguous DoDs/DoAs estimates.
The purpose is to recover the block-diagonal structure from the
estimates , , after which the array manifold
structure can be imposed.

The matrices and can be partitioned as
and , where

2Obviously, the permutation ambiguity is irrelevant in this problem, since the
order in which the targets are localized is not important and the pairing of DoDs/
DoAs with respect to all subarray pairs is automatic, by definition of essential
uniqueness of the decomposition.

, . From
(33), we get

In other words, in case of perfect estimation, is a rank-1
matrix generated by . It follows that can be esti-
mated, up to an irrelevant arbitrary scaling factor, as the left sin-
gular vector of associated to the largest singular value. The
DoD of the th target with respect to to the th transmit
subarray is finally estimated after imposing the a priori known
manifold structure on . The procedure is repeated for all
transmit subarrays and all targets. In the ULA case, where the
manifold is a spatial harmonic of unknown frequency, this can
be accomplished by peak-picking the periodogram of the recov-
ered vector (this is the optimal LS projection onto the manifold
in this case). More generally, optimally imposing the manifold
structure is a nonlinear regression problem; efficient solution
hinges on properly exploiting the array geometry. For arbitrary
array geometries but only a single parameter (e.g., DoD), one
can resort to 1-D discrete line search, which does not cost much
computationally relative to the main part of the overall algo-
rithm. Finally, this procedure is also applied to the subma-
trices of , for all targets, in order to estimate the DoAs ,

, .
It is interesting to note that (31) can be seen as a set of

PARAFAC models, due to the block-diagonal structure of
and , . The tensor can be
partitioned into a set of tensors ,
where the tensor results from the selection of the elements
of associated to the th receive subarray (subset of rows
of ) and the th transmit subarray (subset of columns of

) for the pulses. It is not difficult to show that

(34)

which is the PARAFAC decomposition in terms of
(see definition 3). Equation (34) is consistent with the results
of Section IV, i.e., when a single transmit array and a single
receive array are used, the observed tensor obtained after
matched-filtering follows a PARAFAC model. Consequently, a
PARAFAC decomposition could be computed for all possible
pairs of (transmit, receive) subarrays which yields several
estimates of all angles. However, since the PARAFAC
decompositions are computed independently, the DoAs/DoDs
estimates will be arbitrarily permuted for each decomposition.

The BCD provides an interesting framework to estimate the
DoAs/DoDs with respect to all subarrays, since a single tensor
decomposition has to be computed and essential uniqueness of
the BCD implies that the pairing between DoAs/DoDs with re-
spect to all subarrays is automatic.

VI. SIMULATION RESULTS

A. Single Pulse, Bistatic Configuration

In this section, we focus on the first configuration consid-
ered in this paper. The th transmitted waveform, i.e., the
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Fig. 3. Typical MUSIC and Capon spectra, for a single pulse realization, mono-
static case. Parameters: � � �, � � �, � � �, � � ���, ��	 � �
 ��
(a) 
��
 � �
 � �
 �. (b) 
�� ���
 ���� �.

th row of , is generated by ,
where is the Hadamard matrix. We consider
ULA transmit and receive arrays with half-wavelength in-
terelement spacing, and a carrier frequency GHz.
From (3), the signal-to-noise ratio (SNR) is defined by

dB, where additive
white Gaussian noise (AWGN) is assumed. The RCS coef-
ficients (diagonal entries of ) are randomly drawn from a
zero-mean unit-variance Gaussian distribution.

In Fig. 3, we plot typical Capon and MUSIC spectra for
targets, either closely or widely spaced, in the monostatic case,

i.e., , . These spectra have been com-
puted for all values of ranging from to 90 , with an an-
gular step-size of 0.1 . For widely spaced targets, MUSIC and
Capon spectra exhibit a peak at each target location, the mag-
nitude of which depends on the power of the signal returned
by the target under consideration. For closely spaced targets,
it becomes hardly possible to distinguish between three dif-
ferent peaks, which illustrates the limited spatial resolution of
radar-imaging methods.

As explained in Section III-C, localization of the multiple
targets for a ULA configuration at the transmitter and receiver
can be achieved by 2-D HR algorithms. In Fig. 4, we compare
the performance of the 2-D MDF [39], 2-D RELAX [38] and
2-D Unitary ESPRIT [18] HR algorithms. For each value of
the SNR, we conduct 200 Monte Carlo runs, where the angles
are kept fixed and the RCS coefficients are randomly regener-
ated for each run. The number of samples per pulse is fixed to

. The performance criterion is the absolute value of
the final angular error, averaged over both angles, all targets
and all Monte Carlo runs. The number of targets is fixed to

and we have generated two scenarios: the targets are
either widely spaced or two by two closely spaced. In Fig. 4(a),
the number of antennas is and in Fig. 4(b), it
is fixed to . In the latter case, and

, so we also plot the performance of the root-MUSIC
estimator described in Section III-C. We observe that the perfor-
mance of all algorithms significantly improve when the number
of antennas and the angular spacing between targets increase.

In this experiment 2-D Unitary ESPRIT is more accurate than
the other algorithms, above a SNR threshold that depends on
the number of antennas and angular spacing. For the simula-
tion settings of Fig. 4(b), the average CPU time in seconds per
run for each method is: 0.023 for ROOT-MUSIC, 0.021 for
2D-MDF, 0.532 for RELAX-2D, and 0.006 for 2D-UESPRIT.
Under the same conditions,the CPU time for the hybrid spectral-
MUSIC and spectral-Capon radar-imaging methods described
in Section III-B is 1.35 and 1.27, respectively, with angular scan-
ning from to 90 with a step-size of 0.01 .

B. Multiple Pulses, Bistatic Configuration

In this section, we focus on the second MIMO radar
configuration, where a CPI consists of consecutive
pulses. The matrices , and are generated as ex-
plained in Section VI-A. The SNR is defined by

, where
AWGN is assumed. For the Swerling II target model, each
column of is generated from a complex Gaussian
distribution with zero mean and variance . For the Swerling
I target model, each column of is a Vandermonde vector, i.e.,

, where is a sample drawn from a com-
plex Gaussian distribution with zero mean and variance and
the Doppler frequency is generated by ,
where is the target velocity, is the pulse
duration in seconds, and , with .

In Fig. 5, we have plotted the 2-D MUSIC spectrum
given by (16), for targets with DoDs

and DoAs
, i.e., for three closely spaced tar-

gets and two targets widely spaced from the others. The other
parameters are , ,

and and a Swerling II model is chosen.
With transmit and receive antennas, 2-D spectral
MUSIC does not allow accurate localization of the three closely
spaced targets, since one can not clearly distinguish three peaks
in the spectra, while the two other targets are well localized.
This is an inherent limit to the radar imaging methods, which
are very sensitive to the inter-target angular spacing. The spatial
resolution significantly improves when the number of antennas
increases from to —the three closely
spaced targets now become distinguishable.

In Fig. 6, a Swerling II model is chosen and we compare
the performance of different localization techniques via a
Monte Carlo simulation, for targets that are either
widely spaced or two by two closely spaced. The settings
are identical to that of the experiment previously conducted
in the single-pulse case. Thus, Fig. 6 is the multiple-pulses
counterpart of Fig. 4. The RCS coefficients are generated with
variances . For each
value of the SNR, 200 Monte Carlo runs have been conducted,
the RCS being regenerated for each run while the angles are
kept fixed. We have plotted the performance of 2-D spectral
Capon and 2-D spectral MUSIC. For the comparison between
all methods to be fair, the angular resolution of the two latter
techniques is fixed to 0.001 . Since scanning all possible pairs
of angles between and 90 with such a small
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Fig. 4. Single-pulse bistatic configuration. Comparison between 2-D MDF, 2-D RELAX, 2-D Unitary ESPRIT, and 2-D root-MUSIC. � � ��� samples.� � �
targets either closely or widely spaced. Widely spaced: ��� �� � ����	 � 
	 �� ���	 � �	 �� ���	 � �	 �����	 ���	 �� �	 ���	 �� ��	 � �	 ��. Closely
spaced: ��� �� � ����	 � 
	 �� ��
� � �� �� ���	 � �	 ������ � �� �� �	 ���	 �� �� ���� ��. (a) � � � � � antennas. (b) � � � � � antennas.

Fig. 5. 2-D MUSIC spectrum for � � � � � and � � � � 
. � � � targets, � � �	 pulses, � � ��� samples, ��� � � ��. �� � �
��	 � �� � �	 ���	 � �� �, �� � � ��	 � �� � �	 � �	 ���� �. (a) � � � � �. (b) � � � � 
.

Fig. 6. Swerling II multiple-pulses bistatic configuration. Comparison between 2D Spectral Capon, 2D Spectral MUSIC, PARAFAC,
2D RARE, and 2D Unitary ESPRIT. � � �	 pulses, � � ��� samples. � � � targets either closely or widely spaced.
Widely spaced: ��� �� � ����	 � 
	 �� ���	 � �	 �� ���	 � �	 �����	 ���	 �� �	 ���	 �� ��	 � �	 ��. Closely spaced:
��� �� � ����	 � 
	 �� ��
� � �� �� ���	 � �	 ������ � �� �� �	 ���	 �� �� ���� ��. (a) � � � � � antennas. (b) � � � � � antennas.
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angular step-size takes too long, we proceed as follows. The
first round of scanning is done with a step-size of 1 , to get
a first localization of the four highest peaks of . Then
the estimation is refined individually for each target around
those peaks in several rounds, to reach the final resolution of
0.001 . We also plot the performance of the 2-D HR RARE
algorithm [21], which generalizes the root-MUSIC ideas to the
2-D case, the performance of 2-D Unitary ESPRIT [18] and the
performance of 3-way PARAFAC, where the PARAFAC model
(14) is fitted by minimization of the cost function (23) via the
algorithm based on Alternating Least Squares combined with
Enhanced Line Search (ALS-ELS) [47]. Once the PARAFAC
model fitted, the ULA manifold is recovered after convergence
with the periodogram-based approach proposed in [35].

From the comparison between Figs. 4 and 6, it is clear that
a better angular resolution (regardless of the algorithm used) is
achieved when the CPI consists of multiple pulses. For instance,
exploitation of this temporal diversity yields a much smaller
angular error in difficult scenarios, e.g., when the targets are
closely spaced and , . As in the single-pulse
scenario, we observe in Fig. 6 that the global performance of
all techniques seriously degrade when the targets get closely
spaced. From the result of the preliminary experiment (Fig. 5),
this was expected for the 2-D spectral Capon and MUSIC tech-
niques. For the algebraic algorithms (PARAFAC, 2-D RARE,
2-D Unitary ESPRIT), closely spaced targets translate to ill-con-
ditioned spatial steering matrices, which makes the separation
more difficult. We observe that 3-D PARAFAC and 2-D RARE
perform similarly for all scenarios considered in Fig. 6. Above a
given SNR threshold, the value of which depends on the number
of antennas and the angular spacing between targets, 2-D spec-
tral MUSIC, 2-D spectral Capon and 2-D Unitary ESPRIT reach
the performance of the former techniques. For the simulation
settings of Fig. 6(b), the average CPU time in seconds per run
for each method is: more than 8 for 2D spectral MUSIC and 2D
Spectral Capon, 0.51 for PARAFAC, 0.42 for 2D-RARE and
0.03 for 2D-UESPRIT.

From these experiments, we can conclude that 3-D
PARAFAC and harmonic retrieval techniques such as 2-D
RARE clearly outperform MUSIC-based and Capon-based
radar-imaging techniques, since they yield a more accurate
localization, especially in difficult scenarios (closely spaced
targets, low SNR, small number of antennas), and at a much
lower complexity (2-D angular scanning is not needed). As
mentioned previously, a key feature of the PARAFAC frame-
work is the possibility to deal with non-ULA arrays since the
manifold structure is imposed after convergence, whereas HR
algorithms such as 2-D RARE or 2-D ESPRIT, despite a similar
or lower complexity than PARAFAC, are designed for ULA
configurations only.

In Fig. 7, a Swerling I target model is chosen, and the other
parameters are the same as in Fig. 6. The Doppler frequencies
are estimated either by the 3-D MDF algorithm [22] or by 3-D
Unitary ESPRIT [19]. The performance criterion is the abso-
lute value of the velocity error, averaged over all targets and all
Monte Carlo runs. Since the HR algorithms jointly estimate the

Fig. 7. Swerling I multiple-pulses bistatic configuration. Comparison be-
tween 3D Multidimensional Folding algorithm and 3D Unitary ESPRIT
algorithm. Same configuration as Fig. 6: � � �� pulses, � � ���

amples, � � � targets either closely or widely spaced. Velocities:
�� � � ����� ��������������������	 � 
 .

spatial and temporal parameters, it is expected that the accu-
racy of the Doppler frequency estimate strongly depends on the
inter-angular spacing between the targets. The SNR threshold
above which the velocity error becomes “acceptable” depends
on the number of antennas and interangular spacing.

C. Multiple Pulses, Multistatic Case

In this section, we focus on the last MIMO radar configuration
considered in this paper. In Fig. 8, we illustrate the performance
of the estimator based on the BCD- via a Monte Carlo
simulation consisting of 200 runs for each value of the SNR.
is fixed to 200 pulses, to 256 samples per pulse and the number
of targets to . The angles of the targets with respect to
the transmit and receive arrays are randomly regenerated
for each run, in the interval , from a uniform dis-
tribution and a minimum inter-target spacing of 2 for all sub-
arrays. The RCS coefficients of the targets are randomly re-
generated for each run from a zero-mean unit-variance complex
Gaussian distribution. The performance criterion is the absolute
value of the angular error, averaged over all transmit and receive
angles, over all targets and all Monte Carlo runs.

Fig. 8(a) shows the evolution of the error for the cases
and , with either 4 or 6 antennas per sub-

array. The case corresponds to the second MIMO
radar configuration, treated in Section IV, and the problem can
be solved by PARAFAC. Fig. 8(a) shows that increasing the
number of transmit and receive subarrays from 1 to 2 improves
the global performance. In Fig. 8(b), the number of antennas is
fixed to 4 for all transmit and receive subarrays. The number of
transmit subarrays is fixed to and we observe the impact
of an increasing number of receive subarrays
on the global performance.

From these results, it is clear that the spatial diversity re-
sulting from the use of several transmit and receive subarrays
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Fig. 8. Monte Carlo simulations, multiple-pulses multistatic configuration. Performance of BCD-� ��� ��� ��. � � �, � � ���, � � ��	, angles randomly
generated with a minimum interangle spacing of 2 . (a) �� � �� � �
� �� and� � � � ��� 	�. (b) �� � �,� � � � �, �� � �
��� �� ��.

is exploited by the BCD- estimator, which takes the
global algebraic structure of the problem into account.

VII. CONCLUSION

In this paper, we have shown that the multitarget localiza-
tion problem in various MIMO radar system configurations can
be posed and solved as a tensor decomposition or multidimen-
sional HR problem, or hybrids in-between. This viewpoint fully
exploits the algebraic structure of the observed data, and diver-
sity in the form of RCS fluctuations commonly viewed as a nui-
sance. The link between these algebraic methods and the local-
ization problem has been fully fleshed for three different MIMO
radar configurations. The rich uniqueness results established for
tensor decompositions (with or without Vandermonde structure)
yield useful bounds on the number of resolvable targets in this
new application area. Numerical experiments illustrated the ac-
curacy and efficacy of the proposed techniques in a variety of
pertinent and challenging scenarios, particularly when the tar-
gets are closely spaced.
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