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On Multicast Beamforming for Minimum Outage
Vassilis Ntranos, Nicholas D. Sidiropoulos, and Leandros Tassiulas

Abstract—The multicast beamforming problem is considered
from the viewpoint of minimizing outage probability subject
to a transmit power constraint. The main difference with the
point-to-point transmit beamforming problem is that in multicast
beamforming the channel is naturally modeled as a Gaussian
mixture, as opposed to a single Gaussian distribution. The
Gaussian components in the mixture model user clusters of
different means (locations) and variances (spreads). It is shown
that minimizing outage probability subject to a transmit power
constraint is an NP-hard problem when the number of Gaussian
kernels, J , is greater than or equal to the number of transmit
antennas, N . Through dimensionality reduction, it is also shown
that the problem is practically tractable for 2 − 3 Gaussian
kernels. An approximate solution based on the Markov inequality
is also proposed. This is simple to compute for any J and N ,
and often works well in practice.

Index Terms—Multicast beamforming, outage probability,
transmit power constraint.

I. INTRODUCTION

CONSIDER a base station or wireless access point that
uses an antenna array to transmit common information

to a pool of users, each equipped with a single receive antenna.
When the channel vectors of all users are known at the
transmitter, it is possible to beamform in a way that directs
power towards the users and limits wasteful radiation in other
directions. This is a physical layer multicasting approach that
has been recently investigated in a series of papers [7]–[9],
[12]. The design formulations in [7]–[9], [12] target signal to
(interference plus) noise ratio (SNR) guarantees: they either
minimize total transmitted power subject to guaranteed SNR
for each receiver, or maximize the minimum SNR subject to
an overall transmitted power constraint.

Beamforming does not in general attain the multicast
channel capacity - this may require a higher-rank transmit
covariance [4], [12]. Beamforming, however, is a relatively
simple approach that often operates close to multicast capacity
- see [7], [8], [12] and the asymptotic capacity scaling results
in [4]. Note that the results in [4] assume an isotropic i.i.d.
Rayleigh model, which is pessimistic. Multicast beamforming
is far more effective when the channel vectors are clustered
around a few dominant directions [7], [8], [12].

Exact channel state information (CSI) will never be avail-
able in practice, in which case it is impossible to guarantee
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instantaneous SNR. An alternative is to offer average (ex-
pected) SNR guarantees. The channel correlation matrices
(which vary far slower than the actual channel realizations)
are then sufficient for transmit optimization, and the solutions
in [7]–[9], [12] carry over almost verbatim. The drawback is
that persistent deep fading can occur in this case, which is
unacceptable for delay-sensitive applications. An alternative
is to start with a set of nominal channel vectors, allow limited
perturbation, and aim for a conservative design that guarantees
a certain SNR for every allowable perturbation; see [6], [8] for
related results in the context of multicasting, and references
therein for earlier work on robust unicast beamforming.

A different approach is pursued here. Channel vectors are
modeled as random, with a known distribution. The objective
is to design the weight vector of the transmit beamformer to
minimize the outage probability, i.e., the probability that the
useful received signal power falls below a certain threshold.
In a multicast context, this has the following interpretation:
If one draws a large number of channel vectors, then the
fraction of users served will be approximately one minus
the outage probability. Minimizing the outage probability thus
approximately maximizes the number of users served.

Several outage probability - based design problems have
been considered in the wireless communications literature,
e.g., [2], [3], [5], [11], [13], [15]–[18]. The power con-
trol problem for fading interference channels under outage
probability specifications has been considered in [5]. Out-
age probability - based robust multiuser detection has been
considered in [18] (see also [17]) for multicarrier CDMA
systems, and [11] for space-time block-coded multiple-input
multiple-output systems. Closer to our present context, unicast
beamforming under an outage probability constraint has been
considered in [15], [16], and minimum outage probability
beamforming for point-to-point multiple-input single-output
systems in [13]. Beamforming under outage probability con-
straints has been considered in [2] for the cellular uplink, and
[3] for the cellular downlink.

The main difference of our setup is that we adopt a Gaussian
mixture distribution for the channel vectors, whereas a single
Gaussian is used in the aforementioned references. A Gaussian
mixture model is natural for wireless multicasting, where
subscribers are spatially dispersed in a non-uniform fashion
(e.g., clustered in malls, squares, campuses, etc). Also, given
enough kernels, it is possible to approximate almost any
density by a Gaussian mixture.

II. MODEL

Consider a base station or access point equipped with N
antennas, transmitting a common information-bearing multi-
cast signal to K subscribers, each equipped with a single
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receive antenna. While it is possible for each subscriber to
estimate its N×1 channel vector hk and send CSI back to the
transmitter, this may not be desirable for a number of reasons.
These include the need for a separate uplink channel with
significant signaling overhead (especially for large K); energy
considerations if battery-operated devices are involved; and
privacy concerns. Ideally, subscribers should be able to join
or drop listening without notifying the transmitter (logging).
In this case, the transmitter must operate without knowing
the instantaneous user channels {hk}K

k=1 or the associated
operational correlation matrices, or even the number of users
currently listening (K). Still, the transmitter may exploit prior
information about the operating scenario, in the form of the
distribution of channel vectors.

In our present context, it is reasonable to assume that each
channel vector, hk, is independently drawn from a common
marginal f(h). Independence is plausible but not crucial here
- it suffices that the {hk} process satisfies appropriate ergodic
mixing conditions, as we will see. The marginal f(h) can be
fitted from samples collected in a measurement campaign or
field trial.

What would be a good model for the marginal distribution
f(h)? A Gaussian can be appropriate in certain cases; but it
can only capture subscribers scattered around a single location,
whereas there may be several ‘hotspots’ (squares, malls,
campus) in a service area. This suggests using a Gaussian
mixture

f(h) =
J∑

j=1

pjN (h;mj , σ
2
j I),

where N ((·);m,C) denotes a multivariate Gaussian distri-
bution of mean vector m and covariance matrix C, assumed
diagonal for simplicity; and pj ≥ 0,

∑J
j=1 pj = 1 are the prior

(mixture) probabilities. For high enough J and appropriate
choice of parameters, the Gaussian mixture model can fit any
empirical distribution.

A real-valued baseband-equivalent channel model is appro-
priate when one-dimensional modulation (PAM) is used, in
which case there is no In-phase / Quadrature (I/Q) processing
at the transmitter or the receiver. Binary PAM is sometimes
used in the low SNR regime, or for hardware simplicity and
cost considerations. On the other hand, most applications of
wireless multicast entail high rates, and thus I/Q processing
and higher-order PSK or QAM modulation. In those cases, the
baseband-equivalent channel model is complex, and a complex
Gaussian mixture is appropriate

f(h) =
J∑

j=1

pjCN (h;mj , σ
2
j I),

where CN denotes a multivariate complex Gaussian distribu-
tion.

In the real case, the beamforming weight vector w will be
real. At the receiver, the signal will be scaled by y := wT h,
with

f(y;w) =
J∑

j=1

pjN (y;wT mj, σ
2
j ||w||2),

i.e., a mixture of univariate Gaussians (throughout, ||·|| denotes
the Euclidean norm). In the complex case, we take the beam-

forming vector to be the conjugate of w (for convenience); at
the receiver, the signal will be scaled by z := wHh, where
(·)H denotes Hermitian (conjugate) transpose, and

f(z;w) =
J∑

j=1

pjCN (z;wHmj , σ
2
j ||w||2),

i.e., a mixture of univariate complex Gaussians.
We will consider the problem of choosing w to minimize

the outage probability. In the real case,

min
||w||2=P

Pr[|y| < γ] ⇐⇒

min
||w||2=P

J∑
j=1

pj

∫ γ

−γ

N (y;wTmj , σ
2
j ||w||2) ⇐⇒

min
||w||2=P

J∑
j=1

pj

∫ γ

−γ

N (y;wT mj , σ
2
j P ),

and likewise in the complex case.
The motivation for this formulation is two-fold. First,

suppose that a new potential subscriber (‘customer’) wishes
to join the particular multicast. Then the above formulation
maximizes the probability that the new customer will be
served. Second, if one draws a large number of customer
channel vectors, then 1 − Pr[|y| < γ] is an estimate of
the fraction of them that will be served. Thus picking w to
minimize Pr[|y| < γ] approximately maximizes the number
of customers served in the large sample regime: the fraction
converges to 1 − Pr[|y| < γ] under quite general ergodic
mixing conditions, notably when the channel vectors are
drawn independently from f(h).

Remark 1: Consider the case of a point-to-point multiple-
input single-output link as in [13], but this time without as-
suming any CSI feedback from the receiver to the transmitter.
Suppose there are J possible channel states, each associated
with a different Gaussian distribution of the channel vector,
and let pj denote the probability of the j-th channel state.
Under ergodic mixing conditions on the channel process,
minimizing outage approximately maximizes the fraction of
time that the link meets a minimum SNR requirement. In
this context, averaging is with respect to the temporal channel
variation, instead of the number of multicast customers.

III. RESULTS

Most of our results in the sequel are applicable in both
the real and the complex case. For brevity and clarity of
exposition, however, we first state and prove results for the
real case, then discuss extensions to the complex case.

A. Special case: J = 1

When there is only one Gaussian kernel (J = 1), min-
imizing the outage probability under ||w||2 = P reduces
to maximizing |wTm1| in the real case, or |wHm1| in the
complex case, under the same constraint. From the Cauchy-
Schwartz inequality, the optimum w is simply m1 scaled to
power P (note there is freedom to choose the sign in the real
case, or phase in the complex case; if m1 = 0, then any w
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on the sphere of radius
√

P is equally good). The solution is
trivial - but also interesting in the following way: for a large
number of customers, it approximately maximizes the number
of customers served. This is interesting, because even if the
channel vectors were exactly known at the transmitter, exactly
maximizing the number of customers served is NP-hard, and
even approximate solutions are non-trivial, see [10]. Thus,
when the number of customers is large, we can approximately
maximize the number of customers served by matching the
weight vector to the mean vector; but exactly maximizing
the number of customers served is prohibitive, even when all
channel vectors are known exactly at the transmitter.

Unfortunately, there’s no escape from NP-hardness for
large-enough J , as the next result shows.

B. NP-hardness

We have the following result, whose proof can be found in
the Appendix. The intuition behind it is as follows. Consider
the case where the components (kernels) of the mixture are
Dirac atoms, δ(h − mj). Then, a beamforming vector will
either miss or hit a certain component; each pj will either
be counted as outage or not as a whole, and a combinatorial
counting problem emerges. Letting all pj’s be equal, minimiz-
ing outage is equivalent to maximizing the number of hits,
which has been shown to be NP-hard in this context. The
technical difficulty in the proof is to show that the same holds
for Gaussian kernels of sufficiently narrow but non-singular
support - which inevitably overlap.

Claim 1: Computing min||w||2=P Pr[|y| < γ] is NP-hard
for J ≥ N .

Remark 2: For brevity, the proof given in the Appendix
is for the real-valued case. The proof relies on the Cauchy-
Schwartz inequality, continuity of the kernel densities, and the
NP-hardness proof in [12] - all of which are valid in both the
real and the complex case. The proof is therefore applicable in
the complex case as well. Furthermore, there is nothing unique
to the Gaussian distribution in so far as this proof is concerned
- other continuous kernel densities could be employed just as
well.

C. Real Case: J = 2, general N

We have seen that minimizing outage is trivial for J = 1,
and NP-hard for J ≥ N . Small values of J < N are of
practical interest, and in this section we present a practical
algorithm for J = 2 real Gaussian kernels. In this case, the
problem becomes

min
||w||2=P

2∑
j=1

pj

∫ γ

−γ

N (y;wT mj , σ
2
j P ). ⇐⇒

min
||w||2=P

2∑
j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]
.

Let

M(w) =
2∑

j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]

Then, wo = arg min||w||2=P M (w) will lie on the subspace
V , spanned by the mean vectors m1,m2 (otherwise, power
allocated in a direction out of V would be wasted). Then
wT mj can be parameterized as ||w||||mj || cos(∠w−∠mj),
where ∠x := arccos(xT vr/||x||||vr||) is the angle between
a vector x and a reference vector vr in the two dimensional
space V . For simplicity we may take vr = m1/||m1||, and
the objective function becomes

M(∠w) =

2∑
j=1

pj

[
Q

(−γ−√
P ||mj || cos(∠w−∠mj)

σj

)

−Q
(

γ−√
P ||mj || cos(∠w−∠mj)

σj

)]
,

and ∠wo = arg min||w||2=P M(∠w) determines wo =
arg min||w||2=P M (w) via

wo =
√

PVQVT vr,

where

Q :=
[
cos(∠w) − sin(∠w)
sin(∠w) cos(∠w)

]

is a rotation matrix, V := [v1,v2] is the orthonormal basis of
V and vr is the reference vector used above. We can therefore
find the optimal ∠wo and wo (up to desired accuracy) by one-
dimensional line search over ∠wo.

Minimizing a function of a real scalar variable may appear
benign, but can be very hard. In our particular context,
however, we aim to minimize a continuous (albeit multi-
modal) function over a bounded interval, and the function is
easy to evaluate. We therefore use a two-step grid search: we
run a grid search once, select the best bin, then run another grid
search that zooms-in on the chosen bin. We call this two-step
process fine grid search. In our experiments, we chose grids
that were fine enough to yield accurate results. Alternatively,
the same accuracy can be obtained using a relatively coarser
grid search, followed by gradient descent or Newton iterations.
The objective function

M(w) =
J∑

j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]
,

is differentiable with

∇M(w) =
J∑

j=1

pjmj

σ2
j

√
2π

[
e

(−γ−wT mj)2

2σ2
j − e

(γ−wT mj)2

2σ2
j

]
.

This combination of grid search and gradient descent can
be computationally more efficient than fine grid search, de-
pending on the required accuracy. We used fine grid search
throughout our simulations.

D. Real Case: J = 3, general N

The complexity of grid search is exponential in the num-
ber of dimensions. This is one reason why dimensionality
reduction using properties of the objective function is a very
important step, prior to any numerical minimization. We show
that the case of three real Gaussian kernels can be reduced to a
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two-dimensional minimization problem, which is the practical
limit of what we can handle using grid search. Consider

M(w) =
3∑

j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]
.

Again, wo = arg min||w||2=P M (w) will lie on the subspace
V , spanned by the mean vectors m1,m2,m3. Let V :=
[v1,v2,v3] be an orthonormal basis of subspace V . We can
use spherical coordinates (r, θ, φ) to write the weight and
mean vectors as:

w = √
PVr̂θw,φw , mj = ||mj ||Vr̂θj ,φj ,

where

r̂θj,φj =

⎡
⎣cos(θj) sin(φj)

sin(θj) sin(φj)
cos(φj)

⎤
⎦

is the spherical position vector, θj is the angle between the
projection of the j-th mean vector on the v1, v2 plane, and
φj is the angle between the jth mean vector and v3.

We may now write M(w) as a function of θw, φw, and
perform a two-dimensional fine grid search of M(θw, φw) to
compute {θwo , φwo} = arg min||w||2=P M (θw, φw), up to
desired accuracy. The associated beamforming vector is then
given by wo = √

PVr̂θwo ,φwo
.

E. Complex Case: J = 2, general N

We now generalize to the complex case. Here, we have

f(h) =
2∑

j=1

pjCN (h;mj , σ
2
j I),

and with z := wHh,

f(z;w) =
2∑

j=1

pjCN (z;wHmj, σ
2
j ||w||2).

The optimal beamforming vector can be found by

min
||w||2=P

Pr[|z| < γ] ⇐⇒

min
||w||2=P

2∑
j=1

pj

∫∫
A

CN (z;wHmj , σ
2
j ||w||2),

where A is a disc of radius γ in the complex plane. The above
integral is given by [1]∫∫

A

CN (z;wHmj, σ
2
j ||w||2)=P

[(
γ

σj ||w||
)2∣∣∣∣

2

,

( |wHmj |
σj ||w||

)2]

where P [χ2|2, λ] is the cdf of the non-central χ2 distribution
with two degrees of freedom and non-centrality parameter λ.
Let

C(w) :=
2∑

j=1

pjP
[(

γ

σj ||w||
)2∣∣∣∣

2

,

( |wHmj |
σj ||w||

)2]
.

Again, wo = arg min||w||2=P C (w) will lie on the subspace
spanned by the complex mean vectors m1,m2. Thus, all
candidate beamforming vectors can be written as w = c1m1+
c2m2, with c1, c2 complex numbers such that ||w||2 = P . We

can use this constraint to find a relationship between c1 and
c2:

||w||2 = P ⇐⇒

(c∗1m
H
1 + c∗2m

H
2 )(c1m1 + c2m2) = P ⇐⇒

|c1|2||m1||2 + |c2|2||m2||2 + 2�{c∗1c2mH
1 m2)} = P.

Using the rotational invariance of the outage probability in the
complex plane

Pr[|wHh| < γ] = Pr[|ejωwHh| < γ],

we can take c2 to be real without loss of generality. Thus:

|c1|2||m1||2 + c2
2||m2||2 + 2c2�{c∗1mH

1 m2)} = P.

We can now compute the optimal beamforming vector by
performing a two-dimensional grid search in C (w) - one di-
mension for ∠c1 ∈ [0, 2π) and one for |c1| ∈ (0,

√
P/||m1||).

For every c1, we can compute c2 through the constraint
equation

c21,2 =
−β ± √

β2 − 4αγ

2α
,

where

α = ||m2||2,

β = 2�{c∗1mH
1 m2},

γ = |c1|2||m1||2 − P.

Note that we need to check only one root for c2: for every
c1, c

′
1 = −c1 ∈ C it is easy to see that c21 = −c2

′
2 ⇒

c1m1+c21m2 = −(c′1m1+c2
′
2m2) ⇒ w = −w′. These two

beamforming vectors are equivalent in terms of minimizing the
outage probability because C(w) = C(−w) = C(w′).

F. General covariance matrix case

Up to this point we have made the assumption that channel
vectors are drawn from a Gaussian mixture distribution with
diagonal component covariance matrices. In general, one may
have to drop that assumption to better fit a given channel
(e.g., an ‘urban canyon’ ellipsoidal scenario). In this case,
f(h) =

∑J
j=1 pjCN (h;mj ,Cj) and the minimization prob-

lem becomes (recall that A is the disc of radius γ in the
complex plane)

min
||w||2=P

J∑
j=1

pj

∫∫
A

CN (z;wHmj ,wHCjw).

Note that the optimal beamforming vector no longer lies on the
subspace spanned by the J mean vectors since w affects not
only the mean of each univariate Gaussian in the projected
mixture, but its variance as well. We will only consider a
special but important case in the sequel.
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a) Special case: J=1: When J = 1, the outage proba-
bility is given by

C(w) =
∫∫

A

CN (z;wHm, wHCw).

Consider problem

Q : min
||w||2=P

C(w).

We have the following result, whose proof can be found in
the Appendix.

Claim 2: Let p be the unit-norm principal compo-
nent of

(
I− mmH

||m||2
)

C
(
I − mmH

||m||2
)
, where I is the iden-

tity matrix. The optimal beamforming vector, wo =
arg min||w||2=P C(w), lies on the subspace spanned by m and
p, and it can be found via the one-dimensional line search

min
0≤c≤ P ||m||2

C
(√

c
m

||m||2 +
√

P − c/||m||2p
)

.

G. Markov Approximation

From Markov’s inequality we have that Pr[x ≥ t] ≤
t−1E[x], for any non-negative random variable. We can thus
consider approximating

min
||w||2=P

Pr[|y| < γ] ⇐⇒ max
||w||2=P

Pr[|y| ≥ γ] ⇐⇒

max
||w||2=P

Pr[|y|2 ≥ γ2]

by
max

||w||2=P
E[|y|2],

thus maximizing an upper bound on the actual objective
function (when put in maximization form). Now,

E[|y|2] =
J∑

j=1

pj

(|wT mj|2 + σ2
j P

)
,

thus we may

max
||w||2=P

J∑
j=1

pj |mH
j w|2.

Solution of the latter problem is easy. Let

D := diag([
√

p1, · · · ,
√

pJ ]), M := [m1, · · · ,mJ ]H ,

then wapp = arg max||w||2=P E[|y|2] is given by the principal
right singular vector of the matrix DM scaled to power P .

Of course, wo does not in general solve the original problem
of minimizing outage (maximizing service) probability; but
it is interesting to note that in the special case of J = 1
(single Gaussian kernel) it does. Also note that wo is not∑J

j=1 pjmj normalized to power P , as quick intuition would
perhaps suggest. To appreciate this, consider for example what
happens when J = 2, p1 = p2 = 1/2, and m2 = −m1.

We note that it would have been preferable to maximize an
achievable lower bound on the objective function, as opposed
to an upper bound. Finding a suitable lower bound appears
non-trivial here - this is an NP-hard problem which, unlike
its perfect-CSI counterpart [12], does not appear amenable
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Fig. 1. Angle between mean vectors(J = 2): Outage Probability as a function
of the angle: M(wopt) and M(wapr) versus φ̂.

to semidefinite relaxation. Our original motivation for the
Markov approximation was that it is optimal in the case of
J = 1, and very simple to compute for any J . Surprisingly, at
least in some cases, it turns out to perform remarkably well in
terms of outage probability. We explore this and other issues
next.

IV. NUMERICAL RESULTS

A. Real case

When J = 2 or 3, we can effectively compute the
optimal beamforming vector via low-dimensional fine grid
search. In this case, we can evaluate how far the solution
based on Markov approximation is from the optimal one.
In four different scenarios for each case (J = 2, J = 3),
we computed wopt = arg min||w||2=P M (w) and wapp =
arg max||w||2=P E[|y|2], through fine grid search and the
Markov approximation respectively. The parameters for the
different scenarios are given below. The results are summa-
rized in Figs. 1 - 8, where curves are parameterized by the
number of transmit antennas, N .

1) Angle between mean vectors (J=2): Fig. 1 plots outage
probability results for p1 = p2 = 1/2, σ2

1 = σ2
2 = 1,

||m1||2 = ||m2||2 = N , ||w||2 = P = 4, as φ̂ := ∠m2−∠m1

varies in [0, π). The worst-case outage occurs when the two
mean vectors are orthogonal, whereas the best situation is
when the mean vectors are aligned, as expected. The Markov
approximation is indistinguishable from the fine grid solution
in this perfectly balanced scenario.

2) Magnitude of mean vectors (J=2): Fig. 2 plots outage
probability results for p1 = p2 = 1/2, σ2

1 = σ2
2 = 1,

φ̂ = π/3, ||m1||2 = N , ||w||2 = P = 4, as ||m2|| varies
in (0, 10]. Notice that the Markov approximation breaks down
when ||m2||2 is larger than about twice the value of ||m1||2 - a
near-far situation. The gap between the Markov approximation
and fine grid search becomes quite pronounced as the number
of transmit antennas (N ) increases.

3) Variance of the Gaussian Kernels (J=2): Fig. 3 plots
outage probability results for p1 = p2 = 1/2, φ̂ = π/3,
||m1||2 = ||m2||2 = N , σ2

1 = 1, ||w||2 = P = 4, as σ2
2

varies in (0, 10]. Notice that the outage probability increases
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Fig. 2. Magnitude of mean vectors(J = 2): Outage Probability as a function
of the magnitude: M(wopt) and M(wapr) versus ||m2||.
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Fig. 3. Variance of the Gaussian Kernels(J = 2): Outage Probability as a
function of the variance: M(wopt) and M(wapr) versus σ2
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with kernel spread, as expected (the scenario becomes less
directional and the beamforming gain diminishes). Also note
that the Markov approximation remains fairly close to fine
grid search, despite the imbalance in kernel spreads.

4) Mixture probability (J=2): Fig. 4 plots outage proba-
bility results for σ2

1 = σ2
2 = 1, ||m1||2 = ||m2||2 = N

φ̂ = π/3, ||w||2 = P = 4, as p1 varies in [0.1, 0.9]. Whereas
fine grid search is robust to mixture probability imbalance, this
is not the case for the Markov approximation - an effect that
becomes more pronounced as the number of transmit antennas
increases.

5) Angle between mean vectors (J=3): For J = 3, the
numerical results are qualitatively similar to the J = 2 case,
with one notable difference: the Markov approximation is
considerably worse relative to fine grid search. Fine grid
search provides clearly superior performance, especially in dif-
ficult scenarios with near-far or mixture probability imbalance
effects.

Fig. 5 plots outage probability results for pj = 1/3, σ2
j = 1,

||mj ||2 = N, ∀j, (θ1, φ1) = (π
4 , π

4 ), (θ2, φ2) = (3π
4 , π

4 ),
θ3 = π

4 , ||w||2 = P = 4, as φ3 varies in [0, π).
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Fig. 4. Mixture Probability(J = 2): Outage Probability as a function of the
mixture probability: M(wopt) and M(wapr) versus p1.
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Fig. 5. Angle between mean vectors(J = 3): Outage Probability as a function
of the angle: M(wopt) and M(wapr) versus φ3.

6) Magnitude of mean vectors (J=3): Fig. 6 plots outage
probability results for pj = 1/3, σ2

j = 1, ∀j, (θ1, φ1) =
(π

4 , π
4 ), (θ2, φ2) = (3π

4 , π
4 ), (θ3, φ3) = (π

2 , π
2 ), ||m1||2 =

||m2||2 = N , ||w||2 = P = 4, as ||m3|| varies in (0, 5].
7) Variance of the Gaussian Kernels (J=3): Fig. 7 plots

outage probability results for pj = 1/3, ||mj ||2 = N, ∀j,
(θ1, φ1) = (π

4 , π
4 ), (θ2, φ2) = (3π

4 , π
4 ), (θ3, φ3) = (π

2 , π
2 ),

σ2
1 = 2, σ2

2 = 1, ||w||2 = P = 4, as σ2
3 varies in (0, 5].

8) Mixture probability (J=3): Fig. 8 plots outage proba-
bility results for σ2

j = 1, ||mj ||2 = N, ∀j, (θ1, φ1) = (π
4 , π

4 ),
(θ2, φ2) = (3π

4 , π
4 ), (θ3, φ3) = (π

2 , π
2 ), p1 = p2 = (1 −

p3)/2,||w||2 = P = 4, as p3 varies in [0.1, 0.9].

B. Complex case

We now turn to the complex case. Only J = 2 kernels are
considered. The results are summarized in Figs. 9 - 12. The
key difference with respect to the J = 2 real case is that the
Markov approximation is much closer to fine grid search in
the complex case. There is no noticeable breakdown due to
near-far or mixture probability imbalance effects.

Analytical explanation of this behavior is not easy - we
are dealing with an NP-hard problem. Worst-case analysis of
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Fig. 6. Magnitude of mean vectors(J = 3): Outage Probability as a function
of the magnitude: M(wopt) and M(wapr) versus ||m3||.
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related problems has revealed that, in the case of perfect CSI,
the approximation problem is easier in the complex case [9].
While the worst-case analysis in [9] is useful and sheds some
light on this puzzle, it is not clear how to adapt it in the present
context - the type of approximation employed in [9] is very
different. Furthermore, it was also shown in [9] that worst-
case analysis can be very pessimistic: average approximation
performance can be orders of magnitude better than what the
worst-case analysis predicts. This limits the engineering value
of worst-case analysis. Still, it is interesting that our numerical
findings corroborate those in [9].

1) Angle between mean vectors: Fig. 9 plots outage
probability results for p1 = p2 = 1/2, σ2

1 = σ2
2 = 1,

||m1||2 = ||m2||2 = N , ||w||2 = P = 1, as the angle between
the mean vectors, θ, varies in [0, π).

2) Magnitude of mean vectors: Fig. 10 plots outage
probability results for p1 = p2 = 1/2, σ2

1 = σ2
2 = 1,

θ = π/3, ||m1||2 = N , ||w||2 = P = 1, as ||m2|| varies in
(0, 5].

3) Variance of the Gaussian Kernels: Fig. 11 plots outage
probability results for p1 = p2 = 1/2, θ = π/3, ||m1||2 =
||m2||2 = N , σ2

1 = 1, ||w||2 = P = 1, as σ2
2 varies in (0, 5].
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Fig. 8. Mixture Probability(J = 3): Outage Probability as a function of the
mixture probability: M(wopt) and M(wapr) versus p3.
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Fig. 9. Angle between mean vectors: Outage Probability as a function of
the angle: C(wopt) and C(wapr) versus θ.

4) Mixture Probability: Fig. 12 plots outage probability
results for σ2

1 = σ2
2 = 1, ||m1||2 = ||m2||2 = N θ = π/3,

||w||2 = P = 1, as p1 varies in [0.1, 0.9].

V. CONCLUSIONS

The multicast beamforming problem was considered from
the viewpoint of minimizing outage probability subject to a
transmit power constraint. In a multicast context, the channel
is naturally modeled as a Gaussian mixture, as opposed to
a single Gaussian distribution. The different Gaussian ker-
nels model user clusters of different means (locations) and
variances (spreads). It was shown that minimizing outage
probability subject to a transmit power constraint is an NP-
hard problem when the number of Gaussian kernels, J , is
greater than or equal to the number of transmit antennas, N .
Through dimensionality reduction, it was also shown that the
problem is practically tractable for 2 − 3 Gaussian kernels.
An approximate solution based on the Markov inequality was
also proposed.

In the real case, the Markov approximation can be very
accurate, but appears sensitive to near-far and mixture prob-
ability imbalance effects. For a large number of transmit
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Fig. 10. Magnitude of mean vectors: Outage Probability as a function of
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antennas, N , the Markov approximation brakes down in the
presence of such imbalances - the gap from the optimal
solution is significant. The reason is that the principal right
singular vector of the matrix DM then tends to align with the
dominant component(s), effectively ignoring weaker ones.

Interestingly, the Markov approximation seems to be far
more accurate in the complex case. This corroborates findings
in [9], which showed that related approximation problems are
easier in the complex case.

Acknowledgment: The authors would like to express their
gratitude to an anonymous reviewer, whose insightful com-
ments and refreshing sportsmanship not only helped improve
the quality of this paper, but also made the review process
interesting and enjoyable.

VI. APPENDIX: PROOFS

A. Claim 1

Proof: Consider the special case where σj = σ, pj =
1/J , ∀j. Using the Cauchy-Schwartz inequality, it can be
shown (cf. [14]) that

|wTmj | − ε||w|| ≤ |wT hj | ≤
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Fig. 12. Mixture Probability: Outage Probability as a function of the mixture
probability: C(wopt) and C(wapr) versus p1.

|wT mj| + ε||w||, ∀hj ∈ Bε(mj),

where Bε(mj) denotes a ball of radius ε centered at mj . Let
hj be drawn from the j-th component pdf N (h;mj , σ

2I).
Given ε and δ > 0, we can pick σ = σ(ε, δ) such that Pr[hj ∈
Bε(mj)] ≥ 1 − δ. Let

pout(w) :=
1
J

J∑
j=1

pout|j(w), p∗out := min
||w||2=P

pout(w),

where pout|j(w) := Pr[|wT hj | < γ]. With 1(condition)
denoting the indicator function, and Ehj [·] the expectation
conditioned on the j-th component,

pout|j(w) = Ehj [1(|wThj | < γ)].

For hj ∈ Bε(mj), it holds

|wT mj| + ε||w|| < γ ⇒ |wT hj | < γ,

and therefore

1(|wT mj| < γ − ε||w||) ≤ 1(|wT hj | < γ).

It follows that, for all hj ,

1(|wT mj| < γ − ε||w||)1(hj ∈ Bε(mj)) ≤ 1(|wThj | < γ).

Taking Ehj [·] we obtain

(1 − δ)1(|wT mj| < γ − ε||w||) ≤ pout|j(w).

In a similar way, for hj ∈ Bε(mj), it holds

|wT hj | < γ ⇒ |wT mj| − ε||w|| < γ,

and therefore

1(|wT hj | < γ) ≤ 1(|wTmj | < γ + ε||w||).
It follows that, for all hj ,

1(|wT hj | < γ) ≤ 1(|wT mj| < γ+ε||w||)1(hj ∈ Bε(mj))+

1 − 1(hj ∈ Bε(mj)),

where the last term is a trivial upper bound that applies to the
complement of Bε(mj). Again taking Ehj [·] we obtain

pout|j(w) ≤ (1 − δ)1(|wTmj | < γ + ε||w||) + δ.
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Combining the two inequalities, we have

(1 − δ)1(|wT mj | < γ − ε||w||) ≤ pout|j(w) ≤

(1 − δ)1(|wTmj | < γ + ε||w||) + δ,

Averaging out over j and taking the minimum over w with
||w|| =

√
P yields

1 − δ

J
min

||w||=√
P

J∑
j=1

1(|wT mj| < γ − ε
√

P ) ≤ p∗out(γ) ≤

1 − δ

J
min

||w||=√
P

J∑
j=1

1(|wTmj | < γ + ε
√

P ) + δ,

where we have also made explicit that p∗out depends on γ. It
follows that

p∗out(t − ε
√

P ) − δ ≤ 1 − δ

J
min

||w||=√
P

J∑
j=1

1(|wT mj| < t) ≤

p∗out(t + ε
√

P ),

for all t ∈ (ε
√

P , 1 − ε
√

P ). Notice now that p∗out(·) is a
continuous function, whereas

1 − δ

J
min

||w||=√
P

J∑
j=1

1(|wT mj| < t)

only takes discrete values, separated by 1−δ
J . Recall that ε > 0,

δ > 0, but otherwise up to our control. Pick 0 < δ < 1
J+1

(which implies δ < 1−δ
J ) and ε sufficiently small to sandwich

1 − δ

J
min

||w||=√
P

J∑
j=1

1(|wT mj| < t)

within an interval strictly less than 1−δ
J . This leaves no

ambiguity - computing p∗out(t ± ε
√

P ) pin-points the exact
value of min||w||=√

P

∑J
j=1 1(|wTmj | < t). In particular, this

answers the question of whether or not it is possible to find
a w of norm

√
P such that |wTmj | ≥ t, ∀j ∈ {1, · · · , J}.

The latter is the decidability version of a problem shown to
be NP-hard in [12] for J ≥ N .

B. Claim 2

Proof: Problem Q can be equivalently written in two
stages. By conditioning on the mean wHm, minimizing
outage is equivalent to maximizing variance. Due to circular
symmetry, only |wHm| matters, and problem Q is equivalent
to

Q′ : min
0≤c≤ P ||m||2

C
⎛
⎝ arg maxwHCw

s.t. : ||w||2 = P
|wHm|2 = c

⎞
⎠ .

Let

wo(c) := arg maxwHCw

s.t. : ||w||2 = P

|wHm|2 = c

Due to phase invariance, it suffices to consider the following
solution parametrization

w =
√

c
m

||m||2 + v,

with vHm = 0 and ||v||2 = P − c/||m||2. The maximization
problem can now be reformulated in terms of v

vo(c) := arg maxvHCv

s.t. : ||v||2 = P − c/||m||2
vHm = 0.

Introduce the eigen-decomposition C = UDUH , and decom-
pose U = Um + U⊥, where Um := mmH

||m||2 U and U⊥ :=

U−Um =
(
I − mmH

||m||2
)
U are parallel and perpendicular to

m, respectively. Under vHm = 0, vHCv = vHU⊥DUH
⊥v;

but UH
⊥ annihilates components in the direction of m, and

thus

vo(c) := arg maxvHU⊥DUH
⊥v

s.t. : ||v||2 = P − c/||m||2.
It follows that vo(c) is the principal component of

U⊥DUH
⊥ =

(
I − mmH

||m||2
)
UDUH

(
I− mmH

||m||2
)

=(
I − mmH

||m||2
)
C

(
I − mmH

||m||2
)
, scaled to squared norm

P − c/||m||2. Let p denote the said principal component,
scaled to unit norm. The optimal beamforming vector can be
found by one-dimensional line search over c:

min
0≤c≤ P ||m||2

C
(√

c
m

||m||2 +
√

P − c/||m||2p
)

.
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